Entanglement, holography, and the quantum phases of matter

Utrecht University, June 13, 2012

Subir Sachdev

Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World
arXiv:1203.4565

sachdev.physics.harvard.edu
Modern phases of quantum matter
Not adiabatically connected
to independent electron states:

many-particle
quantum entanglement
“Complex entangled” states of quantum matter in d spatial dimensions

Gapped quantum matter
Spin liquids, quantum Hall states

Conformal quantum matter
Graphene, ultracold atoms, antiferromagnets

Compressible quantum matter
Strange metals in higher temperature superconductors, spin liquids
“Complex entangled” states of quantum matter in d spatial dimensions

Gapped quantum matter

Spin liquids, quantum Hall states

Conformal quantum matter

Graphene, ultracold atoms, antiferromagnets

Compressible quantum matter

Strange metals in higher temperature superconductors, spin liquids

topological field theory
“Complex entangled” states of quantum matter in d spatial dimensions

Gapped quantum matter
 Spin liquids, quantum Hall states

Conformal quantum matter
 Graphene, ultracold atoms, antiferromagnets

Compressible quantum matter
 Strange metals in higher temperature superconductors, spin liquids
“Complex entangled” states of quantum matter in d spatial dimensions

Gapped quantum matter
Spin liquids, quantum Hall states

Conformal quantum matter
Graphene, ultracold atoms, antiferromagnets

Compressible quantum matter
Strange metals in higher temperature superconductors, spin liquids

topological field theory

conformal field theory

?
$|\Psi\rangle \Rightarrow \text{Ground state of entire system, }$

$\rho = |\Psi\rangle \langle \Psi|$

$\rho_A = \text{Tr}_B \rho = \text{density matrix of region } A$

Entanglement entropy $S_E = -\text{Tr} (\rho_A \ln \rho_A)$
“Complex entangled” states of quantum matter in d spatial dimensions

Gapped quantum matter
 Spin liquids, quantum Hall states

Conformal quantum matter
 Graphene, ultracold atoms, antiferromagnets

Compressible quantum matter
 Strange metals in higher temperature superconductors, spin liquids
Band insulators

An even number of electrons per unit cell
$S_E = aP - b \exp(-cP)$

where P is the surface area (perimeter) of the boundary between A and B.
Mott insulator

Emergent excitations

An odd number of electrons per unit cell but electrons are localized by Coulomb repulsion; state has long-range entanglement
Mott insulator: Kagome antiferromagnet

\[H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j \]
Mott insulator: Kagome antiferromagnet

\[H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j \]

\[\bullet \bullet = \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right) \]

Mott insulator: Kagome antiferromagnet

\[H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j \]

\[\frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \]

Mott insulator: Kagome antiferromagnet

\[H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j \]

\[\bigcirc - \bigcirc = \frac{1}{\sqrt{2}} \left(\left| \uparrow \downarrow \right\rangle - \left| \downarrow \uparrow \right\rangle \right) \]

Mott insulator: Kagome antiferromagnet

\[H = J \sum_{\langle ij \rangle} \mathbf{\hat{S}}_i \cdot \mathbf{\hat{S}}_j \]

\[
\mathbf{\hat{S}} = \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right)
\]

Mott insulator: Kagome antiferromagnet

\[H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j \]

\[
\bullet \quad \bullet = \frac{1}{\sqrt{2}} \left(\uparrow \downarrow - \downarrow \uparrow \right)
\]

Mott insulator: Kagome antiferromagnet

\[H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j \]

\[\mathcal{O} = \frac{1}{\sqrt{2}} \left(\left| \uparrow \downarrow \right\rangle - \left| \downarrow \uparrow \right\rangle \right) \]

P. Fazekas and P. W. Anderson,
Philos. Mag.
Mott insulator: Kagome antiferromagnet

\[H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j \]

\[\bullet \bullet = \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right) \]

Mott insulator: Kagome antiferromagnet

Alternative view

Pick a reference configuration

Mott insulator: Kagome antiferromagnet

Alternative view

A nearby configuration

Mott insulator: Kagome antiferromagnet

Alternative view

Difference: a closed loop

D. Rokhsar and S. Kivelson,
Mott insulator: Kagome antiferromagnet

Alternative view

Ground state: sum over closed loops

Mott insulator: Kagome antiferromagnet

Alternative view

Ground state: sum over closed loops

D. Rokhsar and S. Kivelson,
Mott insulator: Kagome antiferromagnet

Alternative view

Ground state: sum over closed loops

D. Rokhsar and S. Kivelson,
Mott insulator: Kagome antiferromagnet

Alternative view

Ground state: sum over closed loops

D. Rokhsar and S. Kivelson,
Quantum “disordered” state with exponentially decaying spin correlations.

non-collinear Néel state

Quantum “disordered” state with exponentially decaying spin correlations.
Mott insulator: Kagome antiferromagnet

Entangled quantum state: \mathbb{Z}_2 spin liquid.

non-collinear Néel state

Mott insulator: Kagome antiferromagnet

\[\mathbb{Z}_2 \text{ spin liquid: parton construction} \]

Write spin operators in terms of \(S = 1/2 \) ‘partons’

\[\vec{S}_i = \frac{1}{2} b_{i\alpha}^\dagger \vec{\sigma}_{\alpha\beta} b_{i\beta}. \]

The ground state is

\[|\Psi\rangle = \mathcal{P}_{n_b=1} \exp \left(f(i - j) \varepsilon^{\alpha\beta} b_{i\alpha}^\dagger b_{j\alpha}^\dagger \right) |0\rangle \]

Leads to a description of fractionalized ‘spinon’ and ‘vison’ excitations coupled to an emergent \(\mathbb{Z}_2 \) gauge field.

Entanglement in the \mathbb{Z}_2 spin liquid
Entanglement in the \mathbb{Z}_2 spin liquid

Sum over closed loops: only an even number of links cross the boundary between A and B
Entanglement in the Z_2 spin liquid

\[S_E = aP - \ln(2) \]

where P is the surface area (perimeter) of the boundary between A and B.

Entanglement in the \mathbb{Z}_2 spin liquid

\[S_E = aP - \ln(4) \]

where P is the surface area (perimeter) of the boundary between A and B.

Entanglement in the Z_2 spin liquid

\[S_E = aP - \ln(2) \]

where P is the surface area (perimeter) of the boundary between A and B.

Mott insulator: Kagome antiferromagnet

Strong numerical evidence for a \mathbb{Z}_2 spin liquid

Hong-Chen Jiang, Z. Wang, and L. Balents, arXiv:1205.4289

Mott insulator: Kagome antiferromagnet

Evidence for spinons
Young Lee,
APS meeting, March 2012

ZnCu$_3$(OH)$_6$Cl$_2$ (also called Herbertsmithite)

![Graphical representation of ZnCu$_3$(OH)$_6$Cl$_2$]

![Intensity plot for ZnCu$_3$(OH)$_6$Cl$_2$ at different temperatures]

(a) 6meV 1.5K
(b) 2meV 1.5K

(H H O)

Intensity (arb. units)
“Complex entangled” states of quantum matter in d spatial dimensions

Gapped quantum matter
Spin liquids, quantum Hall states

Conformal quantum matter
Graphene, ultracold atoms, antiferromagnets

Compressible quantum matter
Strange metals in higher temperature superconductors, spin liquids
“Complex entangled” states of quantum matter in d spatial dimensions

Gapped quantum matter
Spin liquids, quantum Hall states

Conformal quantum matter
Graphene, ultracold atoms, antiferromagnets

Compressible quantum matter
Strange metals in higher temperature superconductors, spin liquids
Spinning electrons localized on a square lattice

\[H = \sum_{\langle ij \rangle} J_{ij} \vec{S}_i \cdot \vec{S}_j \]

Examine ground state as a function of \(\lambda \)
Quantum critical point described by a CFT3 (O(3) Wilson-Fisher)

Entanglement entropy obeys $S_E = aP - \gamma$, where γ is a shape-dependent universal number associated with the CFT3.

Tensor network representation of entanglement at quantum critical point

d-dimensional space

Depth of entanglement

Tensor network representation of entanglement at quantum critical point

d-dimensional space

depth of entanglement

Brian Swingle, arXiv:0905.1317
Tensor network representation of entanglement at quantum critical point

Most links describe entanglement within A

d-dimensional space

depth of entanglement

Brian Swingle, arXiv:0905.1317
Tensor network representation of entanglement at quantum critical point

Links overestimate entanglement between A and B

Brian Swingle, arXiv:0905.1317
Entanglement entropy = Number of links on optimal surface intersecting minimal number of links.

Tensor network representation of entanglement at quantum critical point

d-dimensional space

depth of entanglement

Brian Swingle, arXiv:0905.1317
Key idea: ⇒ Implement r as an extra dimension, and map to a local theory in $d + 2$ spacetime dimensions.
For a relativistic CFT in d spatial dimensions, the metric in the holographic space is uniquely fixed by demanding the following scale transformation (\(i = 1 \ldots d\))

\[x_i \rightarrow \zeta x_i \quad , \quad t \rightarrow \zeta t \quad , \quad ds \rightarrow ds \]
For a relativistic CFT in d spatial dimensions, the metric in the holographic space is uniquely fixed by demanding the following scale transformation

\[(i = 1 \ldots d) \]

\[x_i \rightarrow \zeta x_i \quad , \quad t \rightarrow \zeta t \quad , \quad ds \rightarrow ds \]

This gives the unique metric

\[ds^2 = \frac{1}{r^2} (-dt^2 + dr^2 + dx_i^2) \]

Reparametrization invariance in r has been used to the prefactor of dx_i^2 equal to $1/r^2$. This fixes $r \rightarrow \zeta r$ under the scale transformation. This is the metric of the space AdS_{d+2}.
AdS/CFT correspondence

AdS_4

$R^{2,1}$

Minkowski

CFT$_3$
AdS/CFT correspondence

AdS_4 \hspace{2cm} $\mathbb{R}^{2,1}$

Minkowski

CFT3

A

r
Associate entanglement entropy with an observer in the enclosed spacetime region, who cannot observe “outside” : i.e. the region is surrounded by an imaginary horizon.

AdS/CFT correspondence

The entropy of this region is bounded by its surface area (Bekenstein-Hawking-’t Hooft-Susskind)

AdS/CFT correspondence

Minimal surface area measures entanglement entropy

Entanglement entropy

Entanglement entropy = Number of links on optimal surface intersecting minimal number of links.

Brian Swingle, arXiv:0905.1317
Entanglement entropy = Number of links on optimal surface intersecting minimal number of links.
Entanglement entropy = Number of links on optimal surface intersecting minimal number of links.

Emergent direction of AdS_{d+2}
AdS/CFT correspondence

Computation of minimal surface area yields

\[S_E = aP - \gamma, \]

where \(\gamma \) is a shape-dependent universal number.

Computation of minimal surface area, or direct computation in CFT2, yield \(S_E = (c/6) \ln P \), where \(c \) is the central charge.

“Complex entangled” states of quantum matter in d spatial dimensions

Gapped quantum matter
 Spin liquids, quantum Hall states

Conformal quantum matter
 Graphene, ultracold atoms, antiferromagnets

Compressible quantum matter
 Graphene, strange metals in high temperature superconductors, spin liquids
“Complex entangled” states of quantum matter in d spatial dimensions

Gapped quantum matter
 Spin liquids, quantum Hall states

Conformal quantum matter
 Graphene, ultracold atoms, antiferromagnets

Compressible quantum matter
 Graphene, strange metals in high temperature superconductors, spin liquids
The Fermi liquid
The Fermi liquid

- Area enclosed by the Fermi surface $\mathcal{A} = \mathcal{Q}$, the fermion density
The Fermi liquid

- Area enclosed by the Fermi surface $A = Q$, the fermion density
- Particle and hole of excitations near the Fermi surface with energy $\omega \sim |q|$.
The Fermi liquid

- Area enclosed by the Fermi surface $A = Q$, the fermion density

- Particle and hole of excitations near the Fermi surface with energy $\omega \sim |q|$.

- The phase space density of fermions is effectively one-dimensional, so the entropy density $S \sim T^{d_{\text{eff}}}$ with $d_{\text{eff}} = 1$.
Logarithmic violation of “area law”:

\[S_E = \frac{1}{12} (k_F P) \ln(k_F P) \]

for a circular Fermi surface with Fermi momentum \(k_F \), where \(P \) is the perimeter of region A with an arbitrary smooth shape.

Strange metals

To obtain a compressible state which is not a Fermi liquid, take a Fermi surface in $d = 2$, and couple it to any gapless scalar field, ϕ, which has low energy excitations near $\mathbf{q} = 0$.
Strange metals

To obtain a compressible state which is not a Fermi liquid, take a Fermi surface in $d = 2$, and couple it to any gapless scalar field, ϕ, which has low energy excitations near $\mathbf{q} = 0$. The field ϕ could represent

- ferromagnetic order
- breaking of point-group symmetry (Ising-nematic order)
- breaking of time-reversal symmetry
- circulating currents
- transverse component of an Abelian or non-Abelian gauge field.
- ...
Strange metals

- Area enclosed by the Fermi surface $\mathcal{A} = Q$, the fermion density
• Area enclosed by the Fermi surface $A = Q$, the fermion density

• Particle and hole of excitations near the Fermi surface with energy $\omega \sim |q|^z$; three-loop computation shows $z = 3/2$.

Strange metals

- Area enclosed by the Fermi surface $\mathcal{A} = Q$, the fermion density

- Particle and hole of excitations near the Fermi surface with energy $\omega \sim |q|^z$; three-loop computation shows $z = 3/2$.

- The phase space density of fermions is effectively one-dimensional, so the entropy density $S \sim T^{d_{\text{eff}}}/z$ with $d_{\text{eff}} = 1$.
Entanglement entropy of Fermi surfaces

Logarithmic violation of “area law”: \(S_E = \frac{1}{12} (k_F P) \ln (k_F P) \)

for a circular Fermi surface with Fermi momentum \(k_F \), where \(P \) is the perimeter of region A with an arbitrary smooth shape.

Non-Fermi liquids have, at most, the “1/12” prefactor modified.

Holography

\mathbf{r}
Consider the metric which transforms under rescaling as

\[x_i \rightarrow \zeta x_i \]
\[t \rightarrow \zeta^z t \]
\[ds \rightarrow \zeta^\theta/d ds. \]

This identifies \(z \) as the dynamic critical exponent (\(z = 1 \) for “relativistic” quantum critical points).

\(\theta \) is the violation of hyperscaling exponent.
Consider the metric which transforms under rescaling as

\[x_i \rightarrow \zeta x_i \]
\[t \rightarrow \zeta^z t \]
\[ds \rightarrow \zeta^{\theta/d} ds. \]

This identifies \(z \) as the dynamic critical exponent (\(z = 1 \) for “relativistic” quantum critical points).

\(\theta \) is the violation of hyperscaling exponent.

The most general choice of such a metric is

\[
\begin{align*}
 ds^2 &= \frac{1}{r^2} \left(-\frac{dt^2}{r^{2d(z-1)/(d-\theta)}} + r^{2\theta/(d-\theta)} dr^2 + d\bar{x}_i^2 \right)
\end{align*}
\]

We have used reparametrization invariance in \(r \) to choose so that it scales as \(r \rightarrow \zeta^{(d-\theta)/d} r \).
\[ds^2 = \frac{1}{r^2} \left(-\frac{dt^2}{r^2 d(z-1)/(d-\theta)} + r^2 \frac{\theta}{(d-\theta)} dr^2 + dx_i^2 \right) \]

- The thermal entropy density scales as
 \[S \sim T^{(d-\theta)/z}. \]

 The third law of thermodynamics requires \(\theta < d \).

- The entanglement entropy, \(S_E \), of an entangling region with boundary surface ‘area’ \(P \) scales as
 \[S_E \sim \begin{cases}
 P & \text{, for } \theta < d - 1 \\
 P \ln P & \text{, for } \theta = d - 1 \\
 P^{\theta/(d-1)} & \text{, for } \theta > d - 1
 \end{cases} \]

 All local quantum field theories obey the “area law” (upto log violations) and so \(\theta \leq d - 1 \).

- The null energy condition implies \(z \geq 1 + \frac{\theta}{d} \).
The value of θ is fixed by requiring that the thermal entropy density $S \sim T^{1/z}$ for general d.

Conjecture: this metric then describes a compressible state with a hidden Fermi surface of quarks coupled to gauge fields

The value of θ is fixed by requiring that the thermal entropy density $S \sim T^{1/z}$ for general d. Conjecture: this metric then describes a compressible state with a hidden Fermi surface of quarks coupled to gauge fields.

The null energy condition yields the inequality $z \geq 1 + \theta/d$. For $d = 2$ and $\theta = 1$ this yields $z \geq 3/2$. The field theory analysis gave $z = 3/2$ to three loops!

The entanglement entropy exhibits logarithmic violation of the area law only for this value of θ!!

The logarithmic violation is of the form $P \ln P$, where P is the perimeter of the entangling region. This form is independent of the shape of the entangling region, just as is expected for a (hidden) Fermi surface!!

$$ds^2 = \frac{1}{r^2} \left(-\frac{dt^2}{r^2d(z-1)/(d-\theta)} + r^{2\theta}/(d-\theta) dr^2 + dx_i^2 \right)$$

$\theta = d - 1$

- The entanglement entropy exhibits logarithmic violation of the area law only for this value of θ!!

The entanglement entropy exhibits logarithmic violation of the area law only for this value of θ!

The logarithmic violation is of the form $P \ln P$, where P is the perimeter of the entangling region. This form is independent of the shape of the entangling region, just as is expected for a (hidden) Fermi surface!!

$$ds^2 = \frac{1}{r^2} \left(-\frac{dt^2}{r^{2d(z-1)/(d-\theta)}} + \frac{r^{2\theta/(d-\theta)} dr^2 + dx_i^2}{d^2 - \theta} \right)$$

$\theta = d - 1$

This metric can be realized in a Maxwell-Einstein-dilaton theory, which may be viewed as a "bosonization" of the non-Fermi liquid state. The entanglement entropy of this theory has log-violation of the area law with

\[S_E = \Xi \frac{Q^{(d-1)/d}}{P} \ln P, \]

where \(P \) is surface area of the entangling region, and \(\Xi \) is a dimensionless constant which is independent of all UV details, of \(Q \), and of any property of the entangling region. Note \(Q^{(d-1)/d} \sim k_F^{d-1} \) via the Luttinger relation, and then \(S_E \) is just as expected for a Fermi surface !!!!
Gauss Law and the “attractor” mechanism ⇔ Luttinger theorem on the boundary
Conclusions

Gapped quantum matter

Numerical and experimental observation of a spin liquid on the kagome lattice. Likely a \mathbb{Z}_2 spin liquid.
Conclusions

Conformal quantum matter

Numerical and experimental observation in coupled-dimer antiferromagnets, and at the superfluid-insulator transition of bosons in optical lattices.
Conclusions

Compressible quantum matter

Field theory of a non-Fermi liquid obtained by coupling a Fermi surface to a gapless scalar field with low energy excitations near zero wavevector. Obtained promising holographic dual of this theory.
Conclusions

Compressible quantum matter

Evidence for *hidden Fermi surfaces* in compressible states obtained for a class of holographic Einstein-Maxwell-dilaton theories. These theories describe a *non-Fermi liquid* (NFL) state of gauge theories at non-zero density.

After fixing $\theta = d - 1$ to obtain thermal entropy density $S \sim T^{1/z}$, we found:

- Log violation of the area law in entanglement entropy, S_E.
- Leading-log S_E independent of shape of entangling region.
- The $d = 2$ bound $z \geq 3/2$, compared to $z = 3/2$ in three-loop field theory.
- Evidence for Luttinger theorem in prefactor of S_E.

Wednesday, June 13, 2012
Thank you !