Quantum matter without quasiparticles: strange metals and black holes

University of California, Santa Cruz
October 9, 2017

Subir Sachdev

Talk online: sachdev.physics.harvard.edu
A quasiparticle is an “excited lump” in the many-electron state which responds just like an ordinary particle.
Quantum matter with quasiparticles:

The quasiparticle idea is the key reason for the many successes of quantum condensed matter physics:

- Fermi liquid theory of metals, insulators, semiconductors
- Theory of superconductivity (pairing of quasiparticles)
- Theory of disordered metals and insulators (diffusion and localization of quasiparticles)
- Theory of metals in one dimension (collective modes as quasiparticles)
- Theory of the fractional quantum Hall effect (quasiparticles which are `fractions’ of an electron)
Strange metal

Entangled electrons lead to “strange” temperature dependence of resistivity and other properties.

Quantum matter without quasiparticles

Figure: K. Fujita and J. C. Seamus Davis
Quantum matter without quasiparticles

Resistivity \(\sim \rho_0 + AT^\alpha \)

Superconductivity in Bad Metals

V. J. Emery and S. A. Kivelson
Phys. Rev. Lett. 74, 3253 – Published 17 April 1995

Beyond YBCO

$D^{-1} (s/cm^2)$

$T[K]$

No resistivity available to compare

Thermal diffusivity measurements by the group of A. Kapitulnik in $(Sm_{1.839}Ce_{0.161})_2CuO_4$
Quantum matter with quasiparticles:

- **Quasiparticles are additive excitations:** The low-lying excitations of the many-body system can be identified as a set \(\{ n_\alpha \} \) of quasiparticles with energy \(\varepsilon_\alpha \)

\[
E = \sum_\alpha n_\alpha \varepsilon_\alpha + \sum_{\alpha,\beta} F_{\alpha\beta} n_\alpha n_\beta + \ldots
\]

In a lattice system of \(N \) sites, this parameterizes the energy of \(\sim e^{\alpha N} \) states in terms of poly(\(N \)) numbers.
Quasiparticles eventually collide with each other. Such collisions eventually leads to thermal equilibration in a chaotic quantum state, but the equilibration takes a long time. In a Fermi liquid, this time diverges as

$$\tau_{eq} \sim \frac{\hbar E_F}{(k_B T)^2}, \quad \text{as } T \to 0,$$

where E_F is the Fermi energy.
Quantum Ising models

Qubits with states $|\uparrow\rangle_i$, $|\downarrow\rangle_i$, on the sites, i, of a regular lattice.

$$\sigma^z |\uparrow\rangle = |\uparrow\rangle \quad , \quad \sigma^z |\downarrow\rangle = -|\downarrow\rangle$$

$$\sigma^x |\uparrow\rangle = |\downarrow\rangle \quad , \quad \sigma^x |\downarrow\rangle = |\uparrow\rangle$$

$$H = -J \left(\sum_{\langle ij \rangle} \sigma^z_i \sigma^z_j + g \sum_i \sigma^x_i \right)$$

For $g = 0$, ground state is a ferromagnet:

$$|G\rangle = |\cdots \uparrow\cdots \cdots \rangle \quad \text{or} \quad |\cdots \downarrow\cdots \cdots \rangle$$

For $g \gg 1$, unique ‘paramagnetic’ ground state:

$$|G\rangle = |\cdots \rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\cdots \rangle$$

where

$$|\rightarrow\rangle = \frac{1}{\sqrt{2}} (|\uparrow\rangle + |\downarrow\rangle) \quad , \quad |\leftarrow\rangle = \frac{1}{\sqrt{2}} (|\uparrow\rangle - |\downarrow\rangle)$$
Quantum Ising models

- In one dimension, quasiparticles exist even at the quantum critical point: there is a non-local transformations from the qubits to a system of free fermions.
In two dimensions, the “quantum critical” region provides us the first example of a system without a quasiparticle description. This is described by a strongly-coupled conformal field theory (CFT) in 2+1 dimensions, and dynamic properties cannot be computed accurately.
In two dimensions, the “quantum critical” region provides us the first example of a system without a quasiparticle description. This is described by a strongly-coupled conformal field theory (CFT) in 2+1 dimensions, and dynamic properties cannot be computed accurately.

Quantum matter **without** quasiparticles:

- If there are no quasiparticles, then

 \[E \neq \sum_{\alpha} n_{\alpha} \varepsilon_{\alpha} + \sum_{\alpha, \beta} F_{\alpha \beta} n_{\alpha} n_{\beta} + \ldots \]
Quantum matter without quasiparticles:

- If there are no quasiparticles, then
 \[E \neq \sum_{\alpha} n_{\alpha} \varepsilon_{\alpha} + \sum_{\alpha, \beta} F_{\alpha \beta} n_{\alpha} n_{\beta} + \ldots \]

- If there are no quasiparticles, then
 \[\tau_{eq} = \# \frac{\hbar}{k_B T} \]
Quantum matter without quasiparticles:

- If there are no quasiparticles, then

\[E \neq \sum_{\alpha} n_{\alpha} \varepsilon_{\alpha} + \sum_{\alpha,\beta} F_{\alpha\beta} n_{\alpha} n_{\beta} + \ldots \]

- If there are no quasiparticles, then

\[\tau_{\text{eq}} = \# \frac{\hbar}{k_B T} \]

- Systems without quasiparticles are the fastest possible in reaching local equilibrium, and all many-body quantum systems obey, as \(T \to 0 \)

\[\tau_{\text{eq}} > C \frac{\hbar}{k_B T} . \]

- In Fermi liquids \(\tau_{\text{eq}} \sim 1/T^2 \), and so the bound is obeyed as \(T \to 0 \).
- This bound rules out quantum systems with e.g. \(\tau_{\text{eq}} \sim \hbar/(Jk_B T)^{1/2} \).
- There is no bound in classical mechanics (\(\hbar \to 0 \)). By cranking up frequencies, we can attain equilibrium as quickly as we desire.
A simple model of a metal with quasiparticles

Pick a set of random positions
A simple model of a metal with quasiparticles

Place electrons randomly on some sites
A simple model of a metal with quasiparticles

Electrons move one-by-one randomly
Electrons move one-by-one randomly

A simple model of a metal with quasiparticles
A simple model of a metal with quasiparticles

Electrons move one-by-one randomly
A simple model of a metal with quasiparticles

Electrons move one-by-one randomly
A simple model of a metal with quasiparticles

$$H = \frac{1}{(N)^{1/2}} \sum_{i,j=1}^{N} t_{ij} c_i^\dagger c_j + \ldots$$

$$c_i c_j + c_j c_i = 0 \quad , \quad c_i c_j^\dagger + c_j^\dagger c_i = \delta_{ij}$$

$$\frac{1}{N} \sum_i c_i^\dagger c_i = Q$$

t_{ij} are independent random variables with $\overline{t_{ij}} = 0$ and $|t_{ij}|^2 = t^2$

Fermions occupying the eigenstates of a $N \times N$ random matrix
Let ε_α be the eigenvalues of the matrix t_{ij}/\sqrt{N}. The fermions will occupy the lowest $N_\mathcal{Q}$ eigenvalues, up to the Fermi energy E_F. The density of states is $\rho(\omega) = (1/N) \sum_\alpha \delta(\omega - \varepsilon_\alpha)$.
A simple model of a metal with quasiparticles

There are 2^N many body levels with energy

$$E = \sum_{\alpha=1}^{N} n_{\alpha} \varepsilon_{\alpha},$$

where $n_{\alpha} = 0, 1$. Shown are all values of E for a single cluster of size $N = 12$. The ε_{α} have a level spacing $\sim 1/N$.

Many-body level spacing $\sim 2^{-N}$

Quasiparticle excitations with spacing $\sim 1/N$
A simple model of a metal with quasiparticles

Let ε_α be the eigenvalues of the matrix t_{ij}/\sqrt{N}. The fermions will occupy the lowest NQ eigenvalues, up to the Fermi energy E_F. The density of states is $\rho(\omega) = (1/N) \sum_\alpha \delta(\omega - \varepsilon_\alpha)$.

\[\varepsilon_\alpha \text{ level spacing } \sim 1/N \]
A simple model of a metal with quasiparticles

There are 2^N many body levels with energy

$$E = \sum_{\alpha=1}^{N} n_\alpha \varepsilon_\alpha,$$

where $n_\alpha = 0, 1$. Shown are all values of E for a single cluster of size $N = 12$. The ε_α have a level spacing $\sim 1/N$.

Many-body level spacing $\sim 2^{-N}$

Quasiparticle excitations with spacing $\sim 1/N$
The Sachdev-Ye-Kitaev (SYK) model

Pick a set of random positions
Place electrons randomly on some sites
The SYK model

Entangle electrons pairwise randomly
The SYK model

Entangle electrons pairwise randomly
Entangle electrons pairwise randomly
Entangle electrons pairwise randomly

The SYK model
The SYK model

Entangle electrons pairwise randomly
The SYK model

Entangle electrons pairwise randomly
This describes both a strange metal and a black hole!
The SYK model

(See also: the “2-Body Random Ensemble” in nuclear physics; did not obtain the large N limit; T.A. Brody, J. Flores, J.B. French, P.A. Mello, A. Pandey, and S.S.M. Wong, Rev. Mod. Phys. 53, 385 (1981))

$$H = \frac{1}{(2N)^{3/2}} \sum_{i,j,k,\ell=1}^{N} J_{ij;k\ell} c_i^\dagger c_j^\dagger c_k c_\ell - \mu \sum_i c_i^\dagger c_i$$

$$c_i c_j + c_j c_i = 0 \quad , \quad c_i c_j^\dagger + c_j^\dagger c_i = \delta_{ij}$$

$$Q = \frac{1}{N} \sum_i c_i^\dagger c_i$$

$J_{ij;k\ell}$ are independent random variables with $\bar{J_{ij;k\ell}} = 0$ and $|\bar{J_{ij;k\ell}}|^2 = J^2$

$N \to \infty$ yields critical strange metal.

S. Sachdev and J. Ye, PRL 70, 3339 (1993)
The SYK model

There are 2^N many body levels with energy E, which do not admit a quasiparticle decomposition. Shown are all values of E for a single cluster of size $N = 12$. The $T \to 0$ state has an entropy $S_{GPS} = Ns_0$ with

$$s_0 = \frac{G}{\pi} + \frac{\ln(2)}{4} = 0.464848\ldots$$

$$< \ln 2$$

where G is Catalan’s constant, for the half-filled case $Q = 1/2$.

GPS: A. Georges, O. Parcollet, and S. Sachdev, PRB 63, 134406 (2001)

W. Fu and S. Sachdev, PRB 94, 035135 (2016)
Many-body level spacing \(\sim 2^{-N} = e^{-N \ln 2} \)

Non-quasiparticle excitations with spacing \(\sim e^{-N s_0} \)

There are \(2^N \) many body levels with energy \(E \), which do not admit a quasiparticle decomposition. Shown are all values of \(E \) for a single cluster of size \(N = 12 \). The \(T \to 0 \) state has an entropy \(S_{GPS} = N s_0 \) with

\[
s_0 = \frac{G}{\pi} + \frac{\ln(2)}{4} = 0.464848 \ldots
\]

where \(G \) is Catalan's constant, for the half-filled case \(Q = 1/2 \).

No quasiparticles!

\[
E \neq \sum_{\alpha} n_{\alpha} \varepsilon_{\alpha} + \sum_{\alpha, \beta} F_{\alpha \beta} n_{\alpha} n_{\beta} + \ldots
\]

W. Fu and S. Sachdev, PRB 94, 035135 (2016)
The SYK model

- Low energy, many-body density of states
 \[\rho(E) \sim e^{Ns_0} \sinh\left(\sqrt{2(E - E_0)}N \gamma\right) \]

 A. Georges, O. Parcollet, and S. Sachdev, PRB 63, 134406 (2001)
 D. Stanford and E. Witten, 1703.04612
 A. M. Garica-Garcia, J.J.M. Verbaarschot, 1701.06593
 D. Bagrets, A. Altland, and A. Kamenev, 1607.00694
The SYK model

- Low energy, many-body density of states
 \[\rho(E) \sim e^{Ns_0} \sinh(\sqrt{2(E - E_0)}N\gamma) \]

- Low temperature entropy
 \[S = Ns_0 + N\gamma T + \ldots \]

A. Kitaev, unpublished
J. Maldacena and D. Stanford, 1604.07818
The SYK model

- Low energy, many-body density of states
 \[\rho(E) \sim e^{Ns_0} \sinh(\sqrt{2(E - E_0)N\gamma}) \]

- Low temperature entropy
 \[S = Ns_0 + N\gamma T + \ldots \]

- At zero temperature, the fermion Green's function
 \[G(\tau) \sim \tau^{-1/2} \]
 at large \(\tau \).

S. Sachdev and J. Ye, PRL 70, 3339 (1993)
The SYK model

- Low energy, many-body density of states
 \[\rho(E) \sim e^{Ns_0} \sinh(\sqrt{2(E - E_0)}N\gamma) \]

- Low temperature entropy
 \[S = Ns_0 + N\gamma T + \ldots \]

- \(T = 0 \) fermion Green’s function
 \[G(\tau) \sim \tau^{-1/2} \text{ at large } \tau. \]

- \(T > 0 \) Green’s function has conformal invariance
 \[G \sim (T/\sin(\pi k_B T \tau/\hbar))^{1/2} \]

A. Georges and O. Parcollet PRB 59, 5341 (1999)
The SYK model

- Low energy, many-body density of states
 \[\rho(E) \sim e^{Ns_0} \sinh(\sqrt{2(E - E_0)}N\gamma) \]

- Low temperature entropy \(S = Ns_0 + N\gamma T + \ldots \).

- \(T = 0 \) fermion Green’s function \(G(\tau) \sim \tau^{-1/2} \) at large \(\tau \).

- \(T > 0 \) Green’s function has conformal invariance
 \[G \sim \left(\frac{T}{\sin(\pi k_B T \tau/\hbar)} \right)^{1/2} \]

- The last property indicates \(\tau_{eq} \sim \hbar/(k_B T) \), and this has been found in a recent numerical study.

A. Eberlein, V. Kasper, S. Sachdev, and J. Steinberg, arXiv:1706.07803
The basic features can be determined by a simple power-counting. Considering for simplicity quantum criticality governs the entire low temperature "SYK cluster interaction of strength 10^{-18} has been generalized to SYK Prominent systems like the high-T_c-fermion interactions. Subsequent works have shown the system has a coherence temperature and random inter-cluster interactions.[10–18] We show the system has a coherence temperature and both electrical and thermal conductivity at all scales. We find study. The Sachdev-Ye-Kitaev (SYK) model describes a Landau quasiparticle interactions, and both electrical and thermal conductivity at all scales. We find study. The Sachdev-Ye-Kitaev (SYK) model describes a $0 \leftrightarrow 1$ transition metal to incoherent metal crossover in full detail, including thermodynamics, low temperature of quasi-particles. Here we study a lattice of complex-fermion SYK dots with random inter-site interactions between many "orbitals". We obtained in a double limit of infinite dimension and large N. This model is simpler, and does not require infinite dimensions. We and an incoherent metal. For $\bar{t} > t_c$ we are in the quasiparticle description. The Sachdev-Ye-Kitaev (SYK) model describes a heavy Fermi liquid to incoherent metal regime and the resistivity of a non-Fermi liquid

$$H = \sum_x \sum_{i<j,k<l} U_{ijkl} x c_{ix}^\dagger c_{jx}^\dagger c_{kx} c_{lx} + \sum_{\langle xx' \rangle} \sum_{i,j} t_{ij,xx'} c_{i,x}^\dagger c_{j,x',x'}$$

$$|U_{ijkl}|^2 = \frac{2U^2}{N^3} \quad |t_{ij,xx'}|^2 = \frac{t_0^2}{N}.$$
Title: A strongly correlated metal built from Sachdev-Ye-Kitaev models
Authors: Xue-Yang Song, Chao-Ming Jian, Leon Balents

Low ‘coherence’ scale

\[E_c \sim \frac{t_0^2}{U} \]
Title: A strongly correlated metal built from Sachdev-Ye-Kitaev models

Authors: Xue-Yang Song, Chao-Ming Jian, Leon Balents

Low ‘coherence’ scale

\[E_c \sim \frac{t_0^2}{U} \]

For \(E_c < T < U \), the resistivity, \(\rho \), and entropy density, \(s \), are

\[\rho \sim \frac{\hbar}{e^2} \left(\frac{T}{E_c} \right), \quad s = s_0 \]
Title: A strongly correlated metal built from Sachdev-Ye-Kitaev models
Authors: Xue-Yang Song, Chao-Ming Jian, Leon Balents

Low ‘coherence’ scale

\[E_c \sim \frac{t_0^2}{U} \]

For \(T < E_c \), the resistivity, \(\rho \), and entropy density, \(s \), are

\[\rho = \frac{h}{e^2} \left[c_1 + c_2 \left(\frac{T}{E_c} \right)^2 \right] \]

\[s \sim s_0 \left(\frac{T}{E_c} \right) \]
Black holes have an entropy and a temperature, T_H.

- The entropy is proportional to their surface area.
The Hawking temperature, T_H, influences the radiation from the black hole at the very last stages of the ring-down (not observed so far). The ring-down (approach to thermal equilibrium) happens very rapidly in a time $\sim \frac{\hbar}{k_B T_H} = \frac{8\pi G M}{c^3} \sim 8$ milliseconds.
Black holes have an entropy and a temperature, T_H.

The entropy is proportional to their surface area.
- Black holes have an entropy and a temperature, T_H.
- The entropy is proportional to their surface area.
- They relax to thermal equilibrium in a time $\sim \hbar/(k_B T_H)$.
AdS/CFT correspondence at zero temperature

Quantum gravity in 3+1 dimensions

Maximally supersymmetric Yang-Mills theory in 2+1 dimensions

\[ds^2 = \left(\frac{L}{r} \right)^2 \left[dr^2 - dt^2 + dx^2 + dy^2 \right] \]

Maldacena, Gubser, Klebanov, Polyakov, Witten
AdS/CFT correspondence at zero temperature

Quantum gravity in 3+1 dimensions

Minkowski

Maximally supersymmetric Yang-Mills theory in 2+1 dimensions

This spacetime is a solution of Einstein gravity with a negative cosmological constant

\[S_E = \int d^4x \sqrt{-g} \left[\frac{1}{2\kappa^2} \left(R + \frac{6}{L^2} \right) \right] \]

Maldacena, Gubser, Klebanov, Polyakov, Witten
There is a family of solutions of Einstein gravity which describe non-zero temperatures.

\[ds^2 = \left(\frac{L}{r} \right)^2 \left[\frac{dr^2}{f(r)} - f(r)dt^2 + dx^2 + dy^2 \right] \]

with \(f(r) = 1 - \left(\frac{r}{R} \right)^3 \)

AdS/CFT correspondence at non-zero temperatures

AdS\(_4\)-Schwarzschild black-brane

Maximally supersymmetric Yang-Mills at a temperature

\[k_B T = \frac{3 \hbar}{4\pi R} \]

Maldacena, Gubser, Klebanov, Polyakov, Witten
AdS/CFT correspondence at non-zero temperatures

AdS$_4$-Schwarzschild black-brane

$ds^2 = \left(\frac{L}{r} \right)^2 \left[\frac{dr^2}{f(r)} - f(r) dt^2 + dx^2 + dy^2 \right]$

with $f(r) = 1 - (r/R)^3$

Maximally supersymmetric Yang-Mills at a temperature $k_B T = \frac{3\hbar}{4\pi R}$.

Black hole horizon at a Hawking temperature $T_H = T$

Maldacena, Gubser, Klebanov, Polyakov, Witten
AdS/CFT correspondence at non-zero temperatures

AdS\(_4\)-Schwarzschild black-brane

\[ds^2 = \left(\frac{L}{r} \right)^2 \left[\frac{dr^2}{f(r)} - f(r) dt^2 + dx^2 + dy^2 \right] \]

with \(f(r) = 1 - \left(\frac{r}{R} \right)^3 \)

Maximally supersymmetric Yang-Mills at a temperature

\[k_B T = \frac{3\hbar}{4\pi R}. \]

Black hole entropy = Entropy of Yang-Mills theory

Maldacena, Gubser, Klebanov, Polyakov, Witten
Is there a holographic quantum gravity dual of the SYK model?
The leading low temperature properties of the Einstein-Maxwell theory holographically match those of the SYK model. The mapping applies when temperature \(\ll 1/(\text{size of } T^2) \).
The SYK model

- Low energy, many-body density of states
 \[\rho(E) \sim e^{Ns_0} \]

- Low temperature entropy \(S = N s_0 \)

- \(T = 0 \) fermion Green’s function \(G(\tau) \sim \tau^{-1/2} \) at large \(\tau \).

- \(T > 0 \) Green’s function has conformal invariance
 \[G \sim (T/\sin(\pi k_B T \tau/\hbar))^1/2 \]

- The last property indicates \(\tau_{eq} \sim \hbar/(k_B T) \), and this has been found in a recent numerical study.
The SYK model

- Low energy, many-body density of states
 \(\rho(E) \sim e^{N s_0} \)

- Low temperature entropy \(S = N s_0 \)

- \(T = 0 \) fermion Green’s function
 \(G(\tau) \sim \tau^{-1/2} \) at large \(\tau \).

- \(T > 0 \) Green’s function has conformal invariance
 \(G \sim (T/\sin(\pi k_B T \tau / \hbar))^{1/2} \)

All these properties of the SYK model match those of the AdS\(_2\) horizon on Einstein-Maxwell theory.

S. Sachdev, PRL 105, 151602 (2010)
The SYK model

• Low energy, many-body density of states
 \(\rho(E) \sim e^{Ns_0} \sinh(\sqrt{2(E - E_0)N\gamma}) \)

• Low temperature entropy \(S = Ns_0 + N\gamma T + \ldots \)

• \(T = 0 \) fermion Green’s function \(G(\tau) \sim \tau^{-1/2} \) at large \(\tau \).

• \(T > 0 \) Green’s function has conformal invariance
 \(G \sim (T/\sin(\pi k_B T \tau / \hbar))^{1/2} \)

Schwarzian theory of quantum gravity fluctuations also matches these corrections

D. Stanford and E. Witten, arXiv:1703.04612
Many-body quantum chaos

- Using holographic analogies, Shenker and Stanford introduced the “Lyapunov time”, τ_L, the time over which a generic many-body quantum system loses memory of its initial state.

 S. Shenker and D. Stanford, arXiv:1306.0622
Many-body quantum chaos

- Using holographic analogies, Shenker and Stanford introduced the "Lyapunov time", τ_L, the time over which a generic many-body quantum system loses memory of its initial state.

 S. Shenker and D. Stanford, arXiv:1306.0622

- A shortest-possible time to reach quantum chaos was established

 $$\tau_L \geq \frac{\hbar}{2\pi k_B T}$$

Many-body quantum chaos

- Using holographic analogies, Shenker and Stanford introduced the “Lyapunov time”, τ_L, the time over which a generic many-body quantum system loses memory of its initial state.

 S. Shenker and D. Stanford, arXiv:1306.0622

- A shortest-possible time to reach quantum chaos was established

 $\tau_L \geq \frac{\hbar}{2\pi k_B T}$

- The SYK model, and black holes in Einstein gravity, saturate the bound on the Lyapunov time

 $\tau_L = \frac{\hbar}{2\pi k_B T}$

 A. Kitaev, unpublished
 J. Maldacena and D. Stanford, arXiv:1604.07818
Quantum matter without quasiparticles:

- No quasiparticle decomposition of low-lying states:
 \[E \neq \sum_{\alpha} n_\alpha \varepsilon_\alpha + \sum_{\alpha,\beta} F_{\alpha\beta} n_\alpha n_\beta + \ldots \]

- Thermalization and many-body chaos in the shortest possible time of order \(\hbar/(k_B T) \).
Quantum matter without quasiparticles:

- No quasiparticle decomposition of low-lying states:

\[E \neq \sum_{\alpha} n_{\alpha} \varepsilon_{\alpha} + \sum_{\alpha,\beta} F_{\alpha\beta} n_{\alpha} n_{\beta} + \ldots \]

- Thermalization and many-body chaos in the shortest possible time of order \(\hbar/(k_B T) \).

- These are also characteristics of black holes in quantum gravity.
Graphene
Graphene

$T(K)$

Quantum critical
Dirac liquid

Hole
Fermi liquid

Electron
Fermi liquid

$\mu < 0$

$\mu > 0$

$\sim \sqrt{n} (1 + \lambda \ln \Lambda \sqrt{n})$

$T(K)$

$n / 10^{12} m^{-2}$

M. Müller, L. Fritz, and S. Sachdev, PRB 78, 115406 (2008)
M. Müller and S. Sachdev, PRB 78, 115419 (2008)
Graphene

Predicted “strange metal” without quasiparticles

$T(K)$

Quantum critical Dirac liquid

Hole Fermi liquid

Electron Fermi liquid

$\mu < 0$

$\mu > 0$

$\frac{n}{10^{12}/m^2}$

M. Müller, L. Fritz, and S. Sachdev, PRB 78, 115406 (2008)
M. Müller and S. Sachdev, PRB 78, 115419 (2008)
Strange metal in graphene

Measurements of the Lorenz ratio L, between the thermal and electrical conductivities

Wiedemann-Franz obeyed

Strange metal in graphene

Measurements of the Lorenz ratio L, between the thermal and electrical conductivities

Wiedemann-Franz violated!
Two-terminal to keep a well-defined temperature profile

Nitride (hBN) \([\text{atures set the experimental window in which the DF and the electron-electron scattering rate. These two temper-}

Channels. This high temperature limit occurs when the potential, and even when the sample is globally neutral, it

Ritaries cause spatial variations in the local chemical po-

Tential, so that the thermal energy be larger than the local chemical po-

Neutrality point.

FIG. 1. To minimize disorder, the monolayer graphene samples –

\(r\) Elec. Conductivity (4 e

\(50 K\) (B)

\(10^{-10} \text{cm}^{-2}\)

\(\text{Thermal conductivity (red points) as a function of (C) gate voltage and (D) bath temperature}

All measurements are performed in a cryostat controlling

\(\Delta V (V)\) measured at various fixed temperatures for a

\(\text{representative device (see SM for all samples). From this, versus }

\(\text{ph}\)

\(\text{imp}\)

\(\text{dis}\)

\(\text{e}\)

\(\text{B}\)

\(\text{H}\)

\(\text{C}\)

\(\text{ Vladimir H. Istrate, M. Müller, and S. Sachdev, PRB 76, 144502 (2007) }

\(\text{S. A. Hartnoll, P. K. Kovtun, M. Müller, and S. Sachdev, PRB 76, 144502 (2007) }

\(\text{J. Crossno et al., Science 351, 1058 (2016) }

\(\text{Lorentz ratio } L = \kappa/(Ts) \)

\(= \frac{v_F^2 H T_{\text{imp}}}{T^2 \sigma_Q} \frac{1}{(1 + e^2 v_F^2 Q^2 T_{\text{imp}}/(H \sigma_Q))^2} \)

\(Q \rightarrow \text{electron density; } H \rightarrow \text{enthalpy density} \)

\(\sigma_Q \rightarrow \text{quantum critical conductivity} \)

\(T_{\text{imp}} \rightarrow \text{momentum relaxation time from impurities} \)