Quantum phase transitions: from Mott insulators to the cuprate superconductors

Colloquium article in Reviews of Modern Physics 75, 913 (2003)

Leon Balents (UCSB)
Eugene Demler (Harvard)
Matthew Fisher (UCSB)
Kwon Park (Maryland)
Anatoli Polkovnikov (Harvard)
T. Senthil (MIT)
Ashvin Vishwanath (MIT)
Matthias Vojta (Karlsruhe)
Ying Zhang (Maryland)
Parent compound of the high temperature superconductors: La_2CuO_4

Band theory

Half-filled band of Cu 3d orbitals – ground state is predicted by band theory to be a metal.

However, La_2CuO_4 is a very good insulator
Parent compound of the high temperature superconductors: \(\text{La}_2\text{CuO}_4 \)

A Mott insulator

\[
H = \sum_{\langle ij \rangle} J_{ij} \vec{S}_i \cdot \vec{S}_j
\]

\(\vec{S}_i \Rightarrow \text{spin operator with angular momentum } S=1/2 \)

Ground state has long-range spin density wave (Néel) order at wavevector \(\mathbf{K} = (\pi, \pi) \)

Spin density wave order parameter:

\[
\langle \vec{\phi} \rangle \neq 0
\]

\[
\vec{\phi} = \eta_i \frac{\vec{S}_i}{S} ; \quad \eta_i = \pm 1 \text{ on two sublattices}
\]
Parent compound of the high temperature superconductors: La_2CuO_4

A Mott insulator

$$H = \sum_{\langle ij \rangle} J_{ij} \vec{S}_i \cdot \vec{S}_j$$

$\vec{S}_i \Rightarrow$ spin operator with angular momentum $S=1/2$

Ground state has long-range spin density wave (Néel) order at wavevector $\mathbf{K} = (\pi, \pi)$

spin density wave order parameter:

$$\bar{\phi} = \eta_i \frac{\vec{S}_i}{S} ; \quad \eta_i = \pm 1 \text{ on two sublattices}$$

$$\langle \bar{\phi} \rangle \neq 0$$
Parent compound of the high temperature superconductors: \(\text{La}_2\text{CuO}_4 \)

A Mott insulator

\[
H = \sum_{\langle ij \rangle} J_{ij} \vec{S}_i \cdot \vec{S}_j
\]

\(\vec{S}_i \) ⇒ spin operator with angular momentum \(S = 1/2 \)

Ground state has long-range spin density wave (Néel) order at wavevector \(\mathbf{K} = (\pi, \pi) \)

spin density wave order parameter:

\[
\langle \vec{\phi} \rangle \neq 0
\]

\[
\vec{\phi} = \eta_i \frac{\vec{S}_i}{S} ; \quad \eta_i = \pm 1 \text{ on two sublattices}
\]
Superconductivity in a doped Mott insulator

Introduce mobile carriers of density δ by substitutional doping of out-of-plane ions e.g. $\text{La}_{2-\delta}\text{Sr}_\delta\text{CuO}_4$

Doped state is a paramagnet with $\langle \tilde{\phi} \rangle = 0$

and also a high temperature superconductor with the BCS pairing order parameter $\langle \Psi_{\text{BCS}} \rangle \neq 0$.

\Rightarrow With increasing δ, there must be one or more quantum phase transitions involving

(i) onset of a non-zero $\langle \Psi_{\text{BCS}} \rangle$

(ii) restoration of spin rotation invariance by a transition from $\langle \tilde{\phi} \rangle \neq 0$ to $\langle \tilde{\phi} \rangle = 0$

First study magnetic transition in Mott insulators..............
Outline

A. Magnetic quantum phase transitions in “dimerized” Mott insulators
 Landau-Ginzburg-Wilson (LGW) theory

B. Mott insulators with spin $S=1/2$ per unit cell
 Berry phases, bond order, and the breakdown of the LGW paradigm

C. Cuprate Superconductors
 Competing orders and recent experiments
A. Magnetic quantum phase transitions in “dimerized” Mott insulators:

Landau-Ginzburg-Wilson (LGW) theory:
Second-order phase transitions described by fluctuations of an order parameter associated with a broken symmetry
M. Matsumoto, B. Normand, T.M. Rice, and M. Sigrist, cond-mat/0309440.
Coupled Dimer Antiferromagnet

\[S = \frac{1}{2} \text{ spins on coupled dimers} \]

\[
H = \sum_{\langle ij \rangle} J_{ij} \vec{S}_i \cdot \vec{S}_j
\]

\[0 \leq \lambda \leq 1 \]
λ close to 0

Weakly coupled dimers
λ close to 0

Weakly coupled dimers

Paramagnetic ground state

$\left\langle \tilde{S}_i \right\rangle = 0$, $\left\langle \tilde{\phi} \right\rangle = 0$

$\frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right)$
λ close to 0

Weakly coupled dimers

Excitation: $S=1$ *triplon*
Weakly coupled dimers

\[\lambda \text{ close to } 0 \]

\[
\begin{align*}
\lambda & \approx 0 \\
\text{Excitation: } S=1 \text{ triplon}
\end{align*}
\]

\[
\begin{align*}
\Phi &= \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right)
\end{align*}
\]
Weakly coupled dimers

\[\lambda \text{ close to 0} \]

\[\downarrow \uparrow - \uparrow \downarrow = 2 \]

Excitation: \(S=1 \) triplon

\[= \frac{1}{\sqrt{2}} \left(\left| \uparrow \downarrow \right> - \left| \downarrow \uparrow \right> \right) \]
λ close to 0

Weakly coupled dimers

\[\begin{align*}
\downarrow & \uparrow - \uparrow & \downarrow = & \frac{1}{2} \left(\lvert \uparrow \downarrow \rangle - \lvert \downarrow \uparrow \rangle \right) \\
\end{align*} \]

Excitation: $S=1$ triplon
\(\lambda \) close to 0 \hspace{2cm} \text{Weakly coupled dimers}

\[\frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right) \]

Excitation: \(S=1 \) \textit{triplon}
λ close to 0

Weakly coupled dimers

$\frac{\omega_{xx}}{2} + \frac{\omega_{yy}}{2} + \frac{c_p^2}{2\Delta} \rightarrow$

Energy dispersion away from antiferromagnetic wavevector $\varepsilon_p = \Delta + \frac{c_x^2 p_x^2 + c_y^2 p_y^2}{2\Delta}$

$\Delta \rightarrow$ spin gap

Excitation: $S=1$ triplon (exciton, spin collective mode)
For quasi-one-dimensional systems, the triplon linewidth takes the exact universal value $1.20 k_B T e^{-\Delta/k_B T}$ at low T. This result is in good agreement with observations in CsNiCl$_3$ (M. Kenzelmann, R. A. Cowley, W. J. L. Buyers, R. Coldea, M. Enderle, and D. F. McMorrow Phys. Rev. B 66, 174412 (2002)) and Y$_2$NiBaO$_5$ (G. Xu, C. Broholm, G. Aeppli, J. F. DiTusa, T.Ito, K. Oka, and H. Takagi, preprint).
Coupled Dimer Antiferromagnet
λ close to 1

Weakly dimerized square lattice
Weakly dimerized square lattice

Excitations:
2 spin waves (magnons)

\[\varepsilon_p = \sqrt{c_x^2 p_x^2 + c_y^2 p_y^2} \]

Ground state has long-range spin density wave (Néel) order at wavevector \(K = (\pi, \pi) \)

spin density wave order parameter: \(\bar{\phi} = \eta_i \frac{\vec{S}_i}{\vec{S}} \); \(\eta_i = \pm 1 \) on two sublattices

Neutron Diffraction Study of the Pressure-Induced Magnetic Ordering in the Spin Gap System TlCuCl$_3$

Akira OOSAWA*, Masashi FUJISAWA1, Toyotaka OSAKABE, Kazuhsa KAKURAI and Hidekazu TANAKA2

*Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195
1Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo 152-8551
2Research Center for Low Temperature Physics, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo 152-8551

(Received February 3, 2003)

Fig. 3. Temperature dependence of the magnetic Bragg peak intensity for $Q = (1,0,-3)$ reflection measured at $P = 1.48$ GPa in TlCuCl$_3$.
$\lambda_c = 0.52337(3)$
M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama,

\[\lambda_c = 0.52337(3) \]

LGW theory for quantum criticality

Landau-Ginzburg-Wilson theory: write down an effective action for the antiferromagnetic order parameter $\bar{\phi}$ by expanding in powers of $\bar{\phi}$ and its spatial and temporal derivatives, while preserving all symmetries of the microscopic Hamiltonian.

$$S_\phi = \int d^2 x d\tau \left[\frac{1}{2} \left((\nabla_x \bar{\phi})^2 + \frac{1}{c^2} (\partial_\tau \bar{\phi})^2 + (\lambda_c - \lambda) \bar{\phi}^2 \right) + \frac{u}{4!} (\bar{\phi}^2)^2 \right]$$

LGW theory for quantum criticality

Landau-Ginzburg-Wilson theory: write down an effective action for the antiferromagnetic order parameter $\bar{\phi}$ by expanding in powers of $\bar{\phi}$ and its spatial and temporal derivatives, while preserving all symmetries of the microscopic Hamiltonian.

$$S_{\phi} = \int d^2x d\tau \left[\frac{1}{2} \left((\nabla_x \bar{\phi})^2 + \frac{1}{c^2} (\partial_\tau \bar{\phi})^2 + (\lambda_c - \lambda) \bar{\phi}^2 \right) + \frac{u}{4!} \left(\bar{\phi}^2 \right)^2 \right]$$

For $\lambda < \lambda_c$, oscillations of $\bar{\phi}$ about $\bar{\phi} = 0$ constitute the *triplon* excitation.

B. Mott insulators with spin \(S=1/2 \) per unit cell:

Berry phases, bond order, and the breakdown of the LGW paradigm
Mott insulator with two $S=1/2$ spins per unit cell
Mott insulator with one $S=1/2$ spin per unit cell
Mott insulator with one $S=1/2$ spin per unit cell

Ground state has Neel order with $\tilde{\phi} \neq 0$
Mott insulator with one $S=1/2$ spin per unit cell

Destroy Neel order by perturbations which preserve full square lattice symmetry e.g. second-neighbor or ring exchange. The strength of this perturbation is measured by a coupling g.

Small $g \Rightarrow$ ground state has Neel order with $\langle \tilde{\phi} \rangle \neq 0$

Large $g \Rightarrow$ paramagnetic ground state with $\langle \tilde{\phi} \rangle = 0$
Mott insulator with one $S=1/2$ spin per unit cell

Destroy Neel order by perturbations which preserve full square lattice symmetry e.g. second-neighbor or ring exchange. The strength of this perturbation is measured by a coupling g.

Small $g \Rightarrow$ ground state has Neel order with $\langle \phi \rangle \neq 0$

Large $g \Rightarrow$ paramagnetic ground state with $\langle \phi \rangle = 0$
Mott insulator with one $S=1/2$ spin per unit cell

Possible large g paramagnetic ground state (Class A) with $\langle \tilde{\phi} \rangle = 0$
Mott insulator with one $S=1/2$ spin per unit cell

Possible large g paramagnetic ground state (Class A) with $\langle \phi \rangle = 0$

Such a state breaks the symmetry of rotations by $n\pi / 2$ about lattice sites, and has $\langle \Psi_{\text{bond}} \rangle \neq 0$, where Ψ_{bond} is the bond order parameter

$$\Psi_{\text{bond}}(i) = \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j e^{i \arctan(r_j - r_i)}$$
Mott insulator with one $S=1/2$ spin per unit cell

\[
\Psi = \sum_i \Psi_{\text{bond}}(i)
\]

Possible large g paramagnetic ground state (Class A) with $\langle \bar{\phi} \rangle = 0$

Such a state breaks the symmetry of rotations by $n\pi / 2$ about lattice sites, and has $\langle \Psi_{\text{bond}} \rangle \neq 0$, where Ψ_{bond} is the bond order parameter

\[
\Psi_{\text{bond}}(i) = \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j e^{i \arctan(r_j - r_i)}
\]
Mott insulator with one $S=1/2$ spin per unit cell

Possible large g paramagnetic ground state (Class A) with $\langle \tilde{\phi} \rangle = 0$

Such a state breaks the symmetry of rotations by $n\pi / 2$ about lattice sites, and has $\langle \Psi_{\text{bond}} \rangle \neq 0$, where Ψ_{bond} is the bond order parameter

$$\Psi_{\text{bond}}(i) = \sum_{\langle ij \rangle} \tilde{\mathbf{S}}_i \cdot \tilde{\mathbf{S}}_j e^{i\arctan(r_j - r_i)}$$
Mott insulator with one $S=1/2$ spin per unit cell

Possible large g paramagnetic ground state (Class A) with $\langle \bar{\phi} \rangle = 0$

Such a state breaks the symmetry of rotations by $n\pi / 2$ about lattice sites, and has $\langle \Psi_{\text{bond}} \rangle \neq 0$, where Ψ_{bond} is the bond order parameter

$$\Psi_{\text{bond}}(i) = \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j e^{i\arctan(r_j - r_i)}$$
Mott insulator with one $S=1/2$ spin per unit cell

Possible large g paramagnetic ground state (Class A) with $\langle \bar{\phi} \rangle = 0$

Such a state breaks the symmetry of rotations by $n\pi / 2$ about lattice sites, and has $\langle \Psi_{\text{bond}} \rangle \neq 0$, where Ψ_{bond} is the **bond order parameter**

$$\Psi_{\text{bond}} (i) = \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j e^{i \arctan(r_j - r_i)}$$
Mott insulator with one $S=1/2$ spin per unit cell

Another state breaking the symmetry of rotations by $n\pi/2$ about lattice sites, which also has $\langle \Psi_{\text{bond}} \rangle \neq 0$, where Ψ_{bond} is the bond order parameter.

$$\Psi_{\text{bond}}(i) = \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j e^{i \arctan(r_j - r_i)}$$
Mott insulator with one $S=1/2$ spin per unit cell

Possible large g paramagnetic ground state (Class A) with $\langle \bar{\phi} \rangle = 0$

Another state breaking the symmetry of rotations by $n\pi / 2$ about lattice sites, which also has $\langle \Psi_{\text{bond}} \rangle \neq 0$, where Ψ_{bond} is the bond order parameter.

$$\Psi_{\text{bond}} (i) = \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j e^{i \arctan(r_j - r_i)}$$
Mott insulator with one $S=1/2$ spin per unit cell

Another state breaking the symmetry of rotations by $n\pi / 2$ about lattice sites, which also has $\langle \Psi_{\text{bond}} \rangle \neq 0$, where Ψ_{bond} is the bond order parameter.

$$\Psi_{\text{bond}}(i) = \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j e^{i \arctan(r_j - r_i)}$$
Mott insulator with one $S=1/2$ spin per unit cell

Another state breaking the symmetry of rotations by $n\pi / 2$ about lattice sites, which also has $\langle \Psi \rangle \neq 0$, where Ψ is the bond order parameter.

$$\Psi_{\text{bond}}(i) = \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j e^{i\arctan(r_j-r_i)}$$
Mott insulator with one $S=1/2$ spin per unit cell

Another state breaking the symmetry of rotations by $n\pi/2$ about lattice sites, which also has $\langle \Psi_{\text{bond}} \rangle \neq 0$, where Ψ_{bond} is the bond order parameter

$$\Psi_{\text{bond}}(i) = \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j e^{i\arctan(r_j-r_i)}$$
Resonating valence bonds

Different valence bond pairings resonate with each other, leading to a resonating valence bond liquid, (Class B paramagnet) with $\langle \Psi_{\text{bond}} \rangle = 0$

Such states are associated with non-collinear spin correlations, Z_2 gauge theory, and topological order.

Resonance in benzene leads to a symmetric configuration of valence bonds

(F. Kekulé, L. Pauling)
Excitations of the paramagnet with non-zero spin

\(\langle \Psi_{\text{bond}} \rangle \neq 0; \text{Class A} \)
Excitations of the paramagnet with non-zero spin

\[\langle \Psi_{\text{bond}} \rangle \neq 0; \text{ Class A} \]
Excitations of the paramagnet with non-zero spin

\[\langle \Psi_{\text{bond}} \rangle \neq 0; \text{Class A} \]
Excitations of the paramagnet with non-zero spin

\[\langle \Psi_{\text{bond}} \rangle \neq 0; \text{Class A} \]
Excitations of the paramagnet with non-zero spin

\[\langle \Psi_{\text{bond}} \rangle \neq 0; \text{Class A} \]
Excitations of the paramagnet with non-zero spin

\[\langle \Psi_{\text{bond}} \rangle \neq 0; \text{Class A} \]

\(S = \frac{1}{2} \) spinons, \(Z_\alpha \), are confined into a \(S = 1 \) triplon, \(\tilde{\phi} \)

\(\tilde{\phi} \sim Z_\alpha \tilde{\sigma}_{\alpha\beta} Z_\beta \)
Excitations of the paramagnet with non-zero spin

\[\langle \Psi_{\text{bond}} \rangle \neq 0; \text{Class A} \]

\[\langle \Psi_{\text{bond}} \rangle = 0; \text{Class B} \]

\[
S=\frac{1}{2} \text{ spinons, } z_\alpha, \text{ are confined into a } S=1 \text{ triplon, } \phi
\]

\[\phi \sim z_\alpha \sigma_{\alpha\beta} z_\beta \]
Excitations of the paramagnet with non-zero spin

\[\langle \Psi_{\text{bond}} \rangle \neq 0; \text{Class A} \]

\[\langle \Psi_{\text{bond}} \rangle = 0; \text{Class B} \]

\(S = 1/2 \) spinons, \(z_\alpha \), are \textit{confined} into a \(S = 1 \) triplon, \(\vec{\phi} \)

\(\vec{\phi} \sim z_\alpha^* \vec{\sigma}_{\alpha\beta} z_\beta \)
Excitations of the paramagnet with non-zero spin

\[\langle \Psi_{\text{bond}} \rangle \neq 0; \text{Class A} \]

\[\langle \Psi_{\text{bond}} \rangle = 0; \text{Class B} \]

\(S=1/2 \) spinons, \(z_\alpha \), are confined into a \(S=1 \) triplon, \(\Phi \)

\[\Phi \sim z_\alpha \sigma_{\alpha \beta} z_\beta \]
Excitations of the paramagnet with non-zero spin

\[\langle \Psi_{\text{bond}} \rangle \neq 0; \text{Class A} \]

\[\langle \Psi_{\text{bond}} \rangle = 0; \text{Class B} \]

*\(S=1/2 \) spinons, \(z_\alpha \), are confined into a \(S=1 \) triplon, \(\tilde{\phi} \)

\[\tilde{\phi} \sim z_*^* \tilde{\sigma}_{\alpha \beta} z_\beta \]

*\(S=1/2 \) spinons can propagate independently across the lattice
Quantum theory for destruction of Neel order

Ingredient missing from LGW theory:
Spin Berry Phases

\[e^{iSA} \]
Quantum theory for destruction of Neel order

Ingredient missing from LGW theory:
Spin Berry Phases

e^{iSA}
Quantum theory for destruction of Neel order
Quantum theory for destruction of Neel order

Discretize imaginary time: path integral is over fields on the sites of a cubic lattice of points a.
Quantum theory for destruction of Neel order

Discretize imaginary time: path integral is over fields on the sites of a cubic lattice of points \(a \)

Recall \(\vec{\phi}_a = 2\eta_a \vec{S}_a \rightarrow \vec{\phi}_a = (0,0,1) \) in classical Neel state;

\(\eta_a \rightarrow \pm 1 \) on two square sublattices ;
Quantum theory for destruction of Neel order

Discretize imaginary time: path integral is over fields on the sites of a cubic lattice of points \(a \)

Recall \(\vec{\phi}_a = 2\eta_a \vec{S}_a \rightarrow \vec{\phi}_a = (0,0,1) \) in classical Neel state;

\(\eta_a \rightarrow \pm 1 \) on two square sublattices; \(A_{a\mu} \rightarrow half \) oriented area of spherical triangle formed by \(\vec{\phi}_a, \vec{\phi}_{a+\mu} \), and an arbitrary reference point \(\vec{\phi}_0 \)

Quantum theory for destruction of Neel order

Discretize imaginary time: path integral is over fields on the sites of a cubic lattice of points a

Recall $\vec{\phi}_a = 2\eta_a \vec{S}_a \rightarrow \vec{\phi}_a = (0,0,1)$ in classical Neel state;

$\eta_a \rightarrow \pm 1$ on two square sublattices;

$A_{a\mu} \rightarrow$ half oriented area of spherical triangle formed by $\vec{\phi}_a$, $\vec{\phi}_{a+\mu}$, and an arbitrary reference point $\vec{\phi}_0$

\[S. \text{ Sachdev and K. Park, } Annals \text{ of Physics, } 298, \text{ 58 (2002)} \]
Quantum theory for destruction of Neel order

Discretize imaginary time: path integral is over fields on the sites of a cubic lattice of points \(a \)

Recall \(\vec{\phi}_a = 2\eta_a S_a \rightarrow \vec{\phi}_a = (0,0,1) \) in classical Neel state;
\(\eta_a \rightarrow \pm 1 \) on two square sublattices ;
\(A_{a\mu} \rightarrow half \) oriented area of spherical triangle formed by \(\vec{\phi}_a, \vec{\phi}_{a+\mu}, \) and an arbitrary reference point \(\vec{\phi}_0 \)

Quantum theory for destruction of Neel order

Discretize imaginary time: path integral is over fields on the sites of a cubic lattice of points a

Recall $\vec{\phi}_a = 2\eta_a \vec{S}_a \rightarrow \vec{\phi}_a = (0,0,1)$ in classical Neel state;

$\eta_a \rightarrow \pm 1$ on two square sublattices;

$A_{a\mu} \rightarrow \text{half}$ oriented area of spherical triangle formed by $\vec{\phi}_a$, $\vec{\phi}_{a+\mu}$, and an arbitrary reference point $\vec{\phi}_0$

Quantum theory for destruction of Neel order

Discretize imaginary time: path integral is over fields on the sites of a cubic lattice of points a

Recall $\vec{\phi}_a = 2\eta_a \vec{S}_a \rightarrow \vec{\phi}_a = (0,0,1)$ in classical Neel state;

$\eta_a \rightarrow \pm 1$ on two square sublattices;

$A_{a\mu} \rightarrow$ half oriented area of spherical triangle formed by $\vec{\phi}_a$, $\vec{\phi}_{a+\mu}$, and an arbitrary reference point $\vec{\phi}_0$

$$2A_{a\mu} \rightarrow 2A_{a\mu} - \gamma_{a+\mu} + \gamma_a$$

Change in choice of $\vec{\phi}_0$ is like a “gauge transformation”

Quantum theory for destruction of Neel order

Discretize imaginary time: path integral is over fields on the sites of a cubic lattice of points a

Recall $\phi_a = 2\eta_a S_a \rightarrow \phi_a = (0,0,1)$ in classical Neel state;

$\eta_a \rightarrow \pm 1$ on two square sublattices;

$A_{a\mu} \rightarrow \text{half} \ oriented \ area \ of \ spherical \ triangle$

formed by ϕ_a, $\phi_{a+\mu}$, and an arbitrary reference point ϕ_0

$2A_{a\mu} \rightarrow 2A_{a\mu} - \gamma_{a+\mu} + \gamma_a$

Change in choice of ϕ_0 is like a “gauge transformation”

The area of the triangle is uncertain modulo 4π, and the action has to be invariant under $A_{a\mu} \rightarrow A_{a\mu} + 2\pi$

Quantum theory for destruction of Neel order

Ingredient missing from LGW theory:

Spin Berry Phases

\[
\exp\left(i \sum_a \eta_a A_{a\tau}\right)
\]

Sum of Berry phases of all spins on the square lattice.

\[
= \exp\left(i \sum_{a,\mu} J_{a\mu} A_{a\mu}\right)
\]

with "current" \(J_{a\mu}\) of static charges \(\pm 1\) on sublattices.
Quantum theory for destruction of Neel order

Partition function on cubic lattice

\[Z = \prod_a \int d\vec{\phi}_a \delta\left(\vec{\phi}_a^2 - 1\right) \exp\left(\frac{1}{g} \sum_{a,\mu} \vec{\phi}_a \cdot \vec{\phi}_{a+\mu}\right) \]

LGW theory: weights in partition function are those of a classical ferromagnet at a “temperature” \(g \)

Small \(g \) ⇒ ground state has Neel order with \(\langle \vec{\phi} \rangle \neq 0 \)

Large \(g \) ⇒ paramagnetic ground state with \(\langle \vec{\phi} \rangle = 0 \)
Quantum theory for destruction of Neel order

Partition function on cubic lattice

$$Z = \prod_a \int d\vec{\varphi}_a \delta\left(\vec{\varphi}_a^2 - 1\right) \exp\left(\frac{1}{g} \sum_{a,\mu} \vec{\varphi}_a \cdot \vec{\varphi}_{a+\mu} + i \sum_a \eta_a A_{a\tau}\right)$$

Modulus of weights in partition function: those of a classical ferromagnet at a “temperature” g

Small $g \Rightarrow$ ground state has Neel order with $\langle \vec{\varphi} \rangle \neq 0$

Large $g \Rightarrow$ paramagnetic ground state with $\langle \vec{\varphi} \rangle = 0$

Berry phases lead to large cancellations between different time histories \Rightarrow need an effective action for $A_{a\mu}$ at large g

Simplest large g effective action for the $A_{a\mu}$

\[Z = \prod_{a,\mu} \int dA_{a\mu} \exp \left(\frac{1}{2e^2} \sum \cos \left(\Delta_\mu A_{a\nu} - \Delta_\nu A_{a\mu} \right) + i \sum \eta_a A_{a\tau} \right) \]

with $e^2 \sim g^2$

This is compact QED in 3 spacetime dimensions with static charges ± 1 on two sublattices.

Analysis by a duality mapping shows that this theory is *always* in a phase with $\langle \Psi_{\text{bond}} \rangle \neq 0$ (Class A paramagnet).

The gauge theory is in a *confining* phase (spinons are confined and only $S=1$ triplons propagate).

Proliferation of monopoles in the presence of Berry phases.

Ordering by quantum fluctuations
Phase diagram of $S=1/2$ square lattice antiferromagnet

Neel order
\[
\langle \tilde{\phi} \rangle \sim \langle z^*_\alpha \tilde{\sigma}_{\alpha\beta} z_\beta \rangle \neq 0
\]

Bond order $\langle \Psi_{\text{bond}} \rangle \neq 0$
(associated with condensation of monopoles in A_μ),
\[
S = 1/2 \text{ spinons } z_\alpha \text{ confined},
\]
\[
S = 1 \text{ triplon excitations}
\]

Second-order critical point described by
\[
S_{\text{critical}} = \int d^2x d\tau \left[|(\partial_\mu - iA_\mu)z_\alpha|^2 + r |z_\alpha|^2 + \frac{u}{2} (|z_\alpha|^2)^2 + \frac{1}{4e^2} (\partial_\mu A_\nu - \partial_\nu A_\mu)^2 \right]
\]
at its critical point $r = r_c$, where A_μ is non-compact

Bond order in a frustrated $S=1/2$ XY magnet

First large scale (> 8000 spins) numerical study of the destruction of Neel order in a $S=1/2$ antiferromagnet with full square lattice symmetry

\[
H = 2J \sum_{\langle ij \rangle} \left(S_i^x S_j^x + S_i^y S_j^y \right) - K \sum_{\langle ijkl \rangle} \left(S_i^+ S_j^- S_k^+ S_l^- + S_i^- S_j^+ S_k^- S_l^+ \right)
\]
Mott insulators with spin $S=1/2$ per unit cell:

Berry phases, bond order, and the breakdown of the LGW paradigm

Order parameters/broken symmetry
+
Emergent gauge excitations, fractionalization.
C. Cuprate superconductors:
Competing orders and recent experiments
Minimal LGW phase diagram with $\bar{\phi}$ and Ψ_{BCS}

Quantum phase transitions

- **Paramagnetic Mott Insulator**
 - $\langle \bar{\phi} \rangle = 0$, $\langle \Psi_{BCS} \rangle = 0$

- **Magnetic Mott Insulator**
 - $\langle \bar{\phi} \rangle \neq 0$, $\langle \Psi_{BCS} \rangle = 0$

- **Superconductor**
 - $\langle \bar{\phi} \rangle = 0$, $\langle \Psi_{BCS} \rangle \neq 0$

- **Magnetic Superconductor**
 - $\langle \bar{\phi} \rangle \neq 0$, $\langle \Psi_{BCS} \rangle \neq 0$

La$_2$CuO$_4$
Quantum phase transitions

Minimal LGW phase diagram with $\bar{\phi}$ and Ψ_{BCS}

- $\langle \bar{\phi} \rangle = 0$, $\langle \Psi_{BCS} \rangle = 0$
 - Paramagnetic Mott Insulator

- $\langle \bar{\phi} \rangle = 0$, $\langle \Psi_{BCS} \rangle \neq 0$
 - Superconductor

- $\langle \bar{\phi} \rangle \neq 0$, $\langle \Psi_{BCS} \rangle = 0$
 - Magnetic Mott Insulator

- $\langle \bar{\phi} \rangle \neq 0$, $\langle \Psi_{BCS} \rangle \neq 0$
 - Magnetic Superconductor

La$_2$CuO$_4$

High temperature superconductor

Spin density wave order $K \neq (\pi, \pi)$

Spirals... Shraiman, Siggia
Stripes... Zaanen, Kivelson...
Quantum phase transitions

Paramagnetic Mott Insulator

\[\langle \phi \rangle = 0, \langle \Psi_{BCS} \rangle = 0 \]

Magnetic Mott Insulator

\[\langle \phi \rangle \neq 0, \langle \Psi_{BCS} \rangle = 0 \]

La\textsubscript{2}CuO\textsubscript{4}
Quantum phase transitions

\[
\langle \phi \rangle = 0, \quad \langle \Psi_{BCS} \rangle = 0
\]

\[
\langle \phi \rangle \neq 0, \quad \langle \Psi_{BCS} \rangle = 0
\]

Paramagnetic Mott Insulator

Magnetic Mott Insulator

Bond order

Neel order

La_2CuO_4
Large N limit of a theory with Sp(2N) symmetry: yields existence of bond order and \(\delta \)-wave superconductivity

Magnetic, bond and superconducting order

Bond order

Neel order

La$_2$CuO$_4$

Localized holes

Large N limit of a theory with Sp$(2N)$ symmetry: yields existence of bond order and d-wave superconductivity

Scattering off spin density wave order with

$$\langle \vec{S}_i \rangle = \vec{N} \cos(\vec{Q} \cdot \vec{r}_i + \alpha)$$

$$\vec{Q} = 2\pi \left(\frac{1}{2}, \frac{1}{2} \pm \frac{1}{8} \right) \text{ and } 2\pi \left(\frac{1}{2} \pm \frac{1}{8}, \frac{1}{2} \right)$$

At higher energies, semiclassical theory predicts that peaks lead to spin-wave ("light") cones.
Neutron scattering measurements of La_{15/8}Ba_{1/8}CuO_4 (Zurich oxide)

At higher energies, semiclassical theory predicts that peaks lead to spin-wave ("light") cones.

La_{5/3}Sr_{1/3}NiO_4

Ni has $S = 1$; $\mathbf{Q} = 2\pi \left(\frac{1}{2} \pm \frac{1}{6}, \frac{1}{2} \pm \frac{1}{6} \right)$

La$_{5/3}$Sr$_{1/3}$NiO$_4$

Spin waves: $J=15$ meV, $J'=7.5$meV

Scattering off spin density wave order with

$$\langle \vec{S}_i \rangle = \bar{N} \cos(\vec{Q} \cdot \vec{r}_i + \alpha)$$

$$\vec{Q} = 2\pi \left(\frac{1}{2}, \frac{1}{2} \pm \frac{1}{8} \right) \text{ and } 2\pi \left(\frac{1}{2} \pm \frac{1}{8}, \frac{1}{2} \right)$$

At higher energies, semiclassical theory predicts that peaks lead to spin-wave ("light") cones.
Observations in La$_{15/8}$Ba$_{1/8}$CuO$_4$ are very different and do not obey spin-wave model.

Similar spectra are seen in most hole-doped cuprates.

Red lines: triplon excitation of a 2 leg ladder with exchange $J=100$ meV

Red lines: triplon excitation of a 2 leg ladder with exchange $J=100$ meV

Red lines: triplon excitation of a 2 leg ladder with exchange $J=100$ meV

Spectrum of a two-leg ladder

J. M. Tranquada et al., cond-mat/0401621
Possible simple microscopic model of bond order

- M. Vojta and T. Ulbricht, cond-mat/0402377
- G.S. Uhrig, K.P. Schmidt, and M. Grüninger, cond-mat/0402659
- M. Vojta and S. Sachdev, unpublished.

J. M. Tranquada et al., cond-mat/0401621
Numerical study of coupled ladder model,
G.S. Uhrig, K.P. Schmidt, and M. Grüninger,
cond-mat/0402659
J. M. Tranquada et al., cond-mat/0401621

G.S. Uhrig, K.P. Schmidt, and M. Grüninger, cond-mat/0402659
I. Theory of quantum phase transitions between magnetically ordered and paramagnetic states of Mott insulators:

B. *S=1/2 square lattice*: Berry phases induce bond order, and LGW theory breaks down. Critical theory is expressed in terms of emergent fractionalized modes, and the order parameters are secondary.
Conclusions

II. Competing spin-density-wave/bond/superconducting orders in the hole-doped cuprates.

• Main features of spectrum of excitations in LBCO modeled by LGW theory of quantum critical fluctuations in the presence of static bond order across a wide energy range.

Conclusions

III. Breakdown of LGW theory of quantum phase transitions with magnetic/bond/superconducting orders in doped Mott insulators?