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These notes are adapted from earlier reviews [1, 2].

I. CONFORMAL QUANTUM MATTER

We will demonstrate that the superfluid-insulator quantum phase transition of the boson

Hubbard model in two spatial dimensions is described by a conformal field theory (CFT).

The boson Hubbard model is

Hb = −w
∑
〈ij〉

(
b†ibj + b†jbi

)
+
U

2

∑
i

ni(ni − 1)− µ
∑
i

ni, (1.1)

where bi is the canonical boson annihilation operator, ni = b†ibi is the boson number operator,

w is the hopping matrix element between nearest-neighbor sites, U is the on-site repulsive

energy between a pair of bosons, and µ is the chemical potential. Let us assume that the

average boson density is exactly n0 per site, where n0 is a positive integer. For U/w � 1,

the ground state is simply

|GS〉 =
∏
i

(b†i )
n0 |0〉, (1.2)

where |0〉 is the empy state with no bosons. In the same limit, the lowest excited states are

“particles” and “holes” with one extra or missing boson,

|pi〉 = b†i |GS〉, (1.3)

|hi〉 = bi|GS〉. (1.4)

For w/U = 0 strictly, the particle and hole energies (relative to the ground state) are

E(0)
p = Un0 − µ, E

(0)
h = U(1− n0) + µ. (1.5)

For 0 < w/U � 1, these states will develop dispersion. By considering the first order

splitting of the degenerate manifold of particle or hole states (degeneracy associated with

the site of the particle or hole), one obtains (considering the square lattice for simplicity)

Ep(k) = E(0)
p − 2w(n0 + 1)(cos kx + cos ky) ≈ ∆p +

k2

2mp

Eh(k) = E
(0)
h − 2wn0(cos kx + cos ky) ≈ ∆h +

k2

2mh

, (1.6)

where we have Taylor expanded around the minimum at k = 0, giving mp = 1/(2(n0 + 1)w)
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and mh = 1/(2n0w) The excitation gaps, ∆p/h, are

∆p = Un0 − µ− 4w(n0 + 1)

∆h = U(1− n0) + µ− 4wn0. (1.7)

to this order in w/U . As long as both of the these gaps are positive, our starting point of a

Mott insulating state with an average of n0 particles per site is stable.

When one of the gaps vanish, the Mott insulator is no longer stable, and we have a

quantum transition to a superfluid state. Let us assume that it is ∆p that vanishes first

with increasing w. The transition then corresponds to a Bose-Einstein condensation of

particles, with −∆p acting as the effective chemical potential. At T = 0, an increasing

chemical potential implies an increasing particle density, and so the superfluid state will

have a density greater than that of the Mott insulator. Similarly, if the value of µ is such

that ∆h vanishes first, the superfluid state will have a density smaller than that of the Mott

insulator.

However, let us consider the special case when the density of both the Mott insulator and

the superfluid are equal to n0; this is often naturally the case under experimental conditions.

Our reasoning makes it clear that this is only possible if µ is chosen so that ∆p = ∆h ≡ ∆.

This both gaps vanish simultaneously, the insulator-superfluid transition corresponds to

condensation of both particles and holes (which can be viewed as “anti-particles”). This

symmetry and particles and anti-particles is responsible for the relativistic structure of the

low energy theory.

Let us now proceed to derive the effective action for the low energy theory near the

insulator-superfluid transition. While it is possible to derive a field theory of this condensa-

tion from Hb, we instead just write it down based on our simple physical picture. We model

the particle and hole excitations by fields p(r, τ), h(r, τ) respectively, in the imaginary time

(τ) path integral. The weight in the path integral is, as usual, the Euclidean action,

Sb =

∫
dτd2r

[
p†
(
∂

∂τ
+ ∆− ∇

2

2mp

)
p + h†

(
∂

∂τ
+ ∆− ∇

2

2mh

)
h − Λ(p†h† + ph) + · · ·

]
.

(1.8)

Here we have included a term Λ which creates and annihilates particles and holes together in

pairs, which is expected since this conserves boson number. Microscopically this term arises

from the action of the hopping w on the naive ground state, which creates particle-hole pairs

on neighboring sites, so Λ ∼ O(w) (the spatial dependence is unimportant for the states

near k = 0). We have neglected – for brevity of presentation – to write a number of higher

order terms involving four or more boson fields, representing interactions between particles

and/or holes, and other boson number-conserving two-body and higher-body collisional

processes. Note that the dependence upon w/U in Eq. (1.8) arises primarily through implicit

dependence of ∆.
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Without loss of generality, we assume Λ > 0, and change variables to the linear combi-

nations

ψ =
1√
2

(p + h†) ξ =
1√
2

(p − h†). (1.9)

Then the quadratic terms in the action are

Sb =

∫
dτd2r

[
ξ†
∂ψ

∂τ
− ξ ∂ψ

†

∂τ
+ (∆− Λ)|ψ|2 + (∆ + Λ)|ξ|2

+

(
1

4mp

+
1

4mh

)
(|∇ψ|2 + |∇ξ|2) +

(
1

4mp

− 1

4mh

)
(∇ψ†∇ξ +∇ξ†∇ψ)

]
. (1.10)

Notice that the quadratic form for ψ becomes unstable, before that of ξ. So let us integrate

out ξ, expanding the resulting action in powers and gradients of ψ. In this manner we obtain

the theory for the superfluid order parameter ψ [3]

Sb =

∫
dτd2r

[
1

(∆ + Λ)

∣∣∣∣∂ψ∂τ
∣∣∣∣2 + (∆− Λ)|ψ|2 +

(
1

4mp

+
1

4mh

)
|∇ψ|2 + u|ψ|4

]
.(1.11)

This is the promised relativistic field theory. The energy gap for both particle and hole

excitations is
√

∆2 − Λ2, and this vanishes at the quantum critical point.

There are a number of additional higher-order terms, not displayed above, which are not

relativistically invariant. However, all of these are formally irrelevant at the Wilson-Fisher

fixed point which controls the critical theory.

Finally, we note that the scaling properties and relativistic invariance of the critical point

are sufficient to establish its invariance under conformal transformations.

A. Quantum critical transport

To illustrate the general issues, we begin by computing the transport properties of the

free field theory of a complex scalar with mass m, written in a Lorentz invariant notation:

Sψ =

∫
dDr

[
|∂µψ|2 +m2|ψ|2

]
(1.12)

This theory can be obtained from Eq. (1.11) at u = 0, after appropriate rescalings of co-

ordinates and fields.

The conserved electrical current is

Jµ = −i (ψ∗∂µψ − ψ∂µψ∗) . (1.13)

Let us compute its two-point correlator, Kµν(k) at a spacetime momentum kµ at T = 0.
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This is given by the one-loop diagram which evaluates to

Kµν(k) =

∫
d3p

8π3

(
(2pµ + kν)(2pν + kν)

((p+ k)2 +m2)(p2 +m2)
− 2

δµν
p2 +m2

)
= − 1

8π

(
δµν −

kµkν
k2

)∫ 1

0

dx
k2(1− 2x)2√
m2 + k2x(1− x)

. (1.14)

The second term in the first equation arises from a ‘tadpole’ contribution which is omitted

in Eq. (1.13). Note that the current correlation is purely transverse, and this follows from

the requirement of current conservation

kµKµν = 0. (1.15)

Of particular interest to us is the K00 component, after analytic continuation to Minkowski

space where the spacetime momentum kµ is replaced by (ω, k). The conductivity is obtained

from this correlator via the Kubo formula

σ(ω) = lim
k→0

−iω
k2

K00(ω, k). (1.16)

In the insulator, where m > 0, analysis of the integrand in Eq. (1.14) shows that that

the spectral weight of the density correlator has a gap of 2m at k = 0, and the conductivity

in Eq. (1.16) vanishes. These properties are as expected in any insulator.

At the critical point, where m = 0, the fermionic spectrum is gapless, and so is that of

the charge correlator. The density correlator in Eq. (1.14) and the conductivity in Eq. (1.16)

evaluate to the simple universal results

K00(ω, k) =
1

16

k2√
k2 − ω2

σ(ω) =
1

16
. (1.17)

Going beyond the free field theory in Eq. (1.12), the effect of interactions can be accounted

for order-by-order in u. In the renormalization group approach, u takes the value specified

by the Wilson-Fisher fixed point at the quantum critical point. Combined with the absence

of of divergencies in the perturbative expansion (which is a consequence of Eq. (1.15)), this

means the only effect of interactions is to change the pre-factor in Eq. (1.17) to a different

universal numerical value. So we write

K00(ω, k) = σ∞
k2√

k2 − ω2

σ(ω) = σ∞, (1.18)
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where σ∞ is a universal number dependent only upon the universality class of the quantum

critical point, whose value can be computed by various expansion methods.

1. Non-zero temperatures

We begin by repeating the above computation for the free field theory at T > 0. This

only requires replacing the integral over the loop frequency in Eq. (1.14), by a summation

over the Matsubara frequencies which are quantized by integer multiples of 2πT . Such a

computation, via Eq. (1.16) leads to the conductivity

Re[σ(ω)] = P δ(ω) +
θ(|ω| − 2m)

16

(
ω2 − 4m2

4ω2

)
coth

(
|ω|
4T

)
P ≡ 1

8T

∫ ∞
0

k3dk

(k2 +m2)

1

sinh2
(√

k2 +m2/2T
) ; (1.19)

the imaginary part of σ(ω) is the Hilbert transform of Re[σ(ω)]−1/16. Note that this reduces

to Eq. (1.17) in the limit ω � T . However, the most important new feature of Eq. (1.19)

arises for ω � T , where we find a delta function at zero frequency in the real part. Thus the

d.c. conductivity is infinite at this order, arising from the collisionless transport of thermally

excited carriers. This is clearly an artifact of the free field theory.

At non-zero u, collisions between carriers invalidate the form in Eq. (1.19) for the density

correlation function, and we instead expect the form dictated by the hydrodynamic diffusion

of charge. Thus for K00, Eq. (1.18) applies only for ω � T , while

K00(ω, k) = χ
Dk2

Dk2 − iω
, ω � T. (1.20)

Here χ is the charge susceptibility (here it is the compressibility), and D is the charge

diffusion constant. By the universality of the Wilson-Fisher fixed point, we expect that

these have universal values in the quantum critical region:

χ = CχT , D =
CD
T
, (1.21)

where again Cχ and CD are universal numbers. For the conductivity, we expect a crossover

from the collisionless critical dynamics at frequencies ω � T , to a hydrodynamic collision-

dominated form for ω � T . This entire crossover is universal, and is described by a universal

crossover function

σ(ω) = Σ(ω/T ). (1.22)

The result in Eq. (1.18) applies for ω � T , and so

Σ(∞) = σ∞. (1.23)
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For the hydrodynamic transport, we apply the Kubo formula in Eq. (1.16) to Eq. (1.20) and

obtain

Σ(0) = CχCD (1.24)

which is a version of Einstein’s relation for Brownian motion.

II. COMPRESSIBLE QUANTUM MATTER

Now we will consider the Hubbard model for fermionic particles with spin S = 1/2

(electrons) on the triangular lattice.

For small U/w, the ground state of this model is a metal, rather than a superfluid. This

is because the fermions cannot condense; instead they occupy all single particle states inside

a ‘Fermi surface’ in momentum space, forming a Fermi liquid.

For large U/w, and with a density of one electron per site, we do expect an insulating state

to form, with a gap to both particle and hole excitations, just as was the case for bosons.

However, the electron localized on each site of the lattice now has a spin degeneracy, and we

also have to specify the spin wavefunction in the insulator. At the largest values of U/w, it

is believed that the insulator has long-range antiferromagnetic order; we will not study this

ordered state here. The nature of the insulator at smaller U/w, and in particular, in the

vicinity of the insulator-metal transition is still a question of some debate. In the following,

we will assume that the insulating state proximate to the critical point is a particular “U(1)

spin liquid”, which we will describe more completely below.

The Hubbard Hamiltonian is

H = −w
∑
〈ij〉

(
c†iαcjα + c†jαciα

)
+
∑
i

[
−µ (ni↑ + ni↓) + U

(
ni↑ −

1

2

)(
ni↓ −

1

2

)]
. (2.1)

Here ciα, α =↑, ↓ are annihilation operators on the site i of a triangular lattice. The density

of electrons is controlled by the chemical potential µ which couples to the total electron

density, with

ni↑ ≡ c†i↑ci↑ , ni↓ ≡ c†i↓ci↓. (2.2)

For completeness, we also note the algebra of the fermion operators:

ciαc
†
jβ + c†jβciα = δijδαβ

ciαcjβ + cjβciα = 0. (2.3)

Let us begin by considering the case U = 0. Then the ground state is a metal at all

densities, with a Fermi surface separating occupied and empty states in momentum space.

Landau’s Fermi liquid (FL) theory describes how the free-electron model of a metal can be

extended to non-zero U . For our purposes, we need only two basic facts: (i) the fermionic
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FIG. 1: The triangular lattice

excitations near the Fermi surface are essentially non-interacting electrons, and (ii) the area

enclosed by the Fermi surface is equal to the electron density—this is Luttinger’s theorem,

which we state more explicitly below.

At U = 0, the Hamiltonian of the FL metal is

H0 =
∑
k

c†α(k)
[
−µ− 2t

(
cos(k · e1) + cos(k · e2) + cos(k · e3)

)]
cα(k), (2.4)

where the ei are as shown in Fig. 1. The reciprocal lattice consists of the vectors G =∑
i niGi, where

G1 =
4π

3
(e1 − e2) , G2 =

4π

3
(e2 − e3) , G3 =

4π

3
(e3 − e1). (2.5)

The electronic dispersion in Eq. (2.4) is plotted in Fig. 2: it only has simple parabolic minima

at k = 0, and its periodic images at k = G, and there are no Dirac points. At any chemical

potential, the negative energy states are occupied, leading to a Fermi surface bounding the

set of occupied states, as shown in Fig. 3. Luttinger theorem states that the total area of

the occupied states, the shaded region of the first Brillouin zone in Fig. 3 occupies an area,

A, given by
A

2π2
= N , (2.6)

where N =
∑

α c
†
αcα is the total electron density. This relationship is obviously true for

free electrons simply by counting occupied states, but it also remains true for interacting

electrons.

Now we turn up the strength of the interactions, U , at a density of one electron per

site. By the same argument as that for bosons, an insulator will appear for sufficiently large
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FIG. 2: The electronic dispersion in Eq. (2.4) for µ = 0 and t = 1.

FIG. 3: The Fermi surface of Eq. (2.4) for µ = 1/2 and t = 1; the occupied states are shaded. Also

shown are the periodic images of the Fermi surface in their respective Brillouin zones.

U . As stated above, we will focus particular route to the destruction of the small U Fermi

liquid, one which reaches directly to an insulator which is a ‘spin liquid’ [5–7]. The spin

liquid insulator is a phase in which the spin rotation symmetry is preserved, and there is a

gap to all charged excitations. However, there are gapless spin excitations, and an emergent

compact U(1) gauge field in a deconfined phase.

The key to the description of this metal-insulator transition is an exact rewriting of the

Hubbard model in Eq. (2.1) as a compact U(1) lattice gauge theory. To derive this, let us

proceed with using the same strategy as that used in Section I for the boson Hubbard model.

So to represent charged excitations of the insulator, we introduce bosonic operators pi and

hi, representing the doubly-occupied and empty sites respectively. However, the singly-

occupied site cannot be treated as a featureless vacuum, as we were able to in Section I.
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Now we need a fermionic operator fα (the ‘spinon’) to represent the spin orientation of the

singly-occupied site. For every site, we make the following correpondences for the four states

in the Fock space

|0〉 ⇔ h†|0〉
c†α|0〉 ⇔ f †α|0〉

c†↑c
†
↓|0〉 ⇔ p†f †↑f

†
↓ |0〉 (2.7)

It is now easy to verify that Eq. (2.7) is equivalent to the operator identification

cα = (h† + p)fα, (2.8)

provided we always project to states which obey the constraint

f †αfα − p†p+ h†h = 1 (2.9)

on every site. All physical observables are operators which stay within the subspace de-

fined by Eq. (2.9): such operators are invariant under the following compact U(1) gauge

transformation

fα → fαe
iζ , p→ pe−iζ , h→ heiζ . (2.10)

As we will show below, there will is an emergent gauge field Bµ in the effective theory

associated with this gauge transformation. The constraint in Eq. (2.9) will be the Gauss

law of this gauge theory. These operator identities are related to those of the ‘slave rotor’

representation [8].

First, let us rewrite the Hubbard model in terms of these new bosonic and fermionic

operators. The Hubbard Hamiltonian in Eq. (2.1) is now exactly equivalent to

H[f, p, h] = −w
∑
〈ij〉

f †iαfjα(hi + p†i )(h
†
j + pj) + H.c.

+
∑
i

(
−µ(p†ipi − h

†
ihi + 1) +

U

2

(
p†ipi + h†ihi −

1

2

))
, (2.11)

provided our attention is restricted to the set of states which obey the constraint in Eq. (2.9)

on every lattice site; note that the Hamiltonian in Eq. (2.11) commutes with constraints in

(2.9), and so these can be consistently imposed. In the on-site terms Eq. (2.11) we have

used the p and h operators to measure the electron density on each site

We can now implement the commutation relations, the Hamiltonian, and the constraint
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in a coherent state path integral

Z =

∫
Dfiα(τ)Dpi(τ)Dhi(τ)Dλi(τ) exp

(
−
∫
dτ H[f, p, h]

−
∫
dτ
∑
i

[
f †iα

∂fiα
∂τ

+ p†i
∂pi
∂τ

+ h†i
∂hi
∂τ

+ iλi(f
†
iαfiα − p

†
ipi + h†ihi − 1)

])
, (2.12)

where the constraint in Eq. (2.9) is implemented using an auxilliary field λi(τ) which acts

as a Lagrange multiplier.

A key observation now is that the partition function in Eq. (2.12) is invariant under a

site, i, and τ -dependent U(1) gauge transformation ζi(τ) where the fields transform as in

Eq. (2.10), and λ transforms as

λi → λi −
∂ζi
∂τ

. (2.13)

In other words, λ transforms like the temporal component of a U(1) gauge field.

How do we obtain the spatial components of the gauge field? For this, we apply a

“Hubbard-Stratonovich transformation” to the hopping term in Eq. (2.11). For this, we

introduce another auxiliary complex field Qij(τ) which lives on the links of the triangular

lattice and replace the hopping term by

∑
〈ij〉

(
|Qij(τ)|2

w
−Qij(τ)f †iαfjα −Q∗ij(τ)(hi + p†i )(h

†
j + pj) + H.c.

)
(2.14)

We now see from Eq. (2.10), thatQij transforms under the gauge transformation in Eq. (2.10)

as

Qij → Qije
i(ζi−ζj). (2.15)

In other words, arg(Qij) is the needed spatial component of the compact U(1) gauge field.

So far, we have apparently only succeeded in making our analysis of the Hubbard model in

Eq. (2.1) more complicated. Instead of the functional integral of the single complex fermion

ciα, we now have a functional integral over the complex fermions fiα, the bosons pi, hi, and

the auxilliary fields λi and Qij. How can this be helpful? The point, of course, is that the

new variables help us access new phases and critical points which were inaccessible using the

electron operators, and these phases have strong correlations which are far removed from

those of weakly interacting electrons.

The utility of the new representation is predicated on the assumption that the fluctuations

in the auxiliary fields Qij and λi are small along certain directions in parameter space. So

let us proceed with this assumption, and describe the structure of the phases so obtained.

We parameterize

Qij = Qije
Bij , λi = −iλ−Biτ (2.16)
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and ignore fluctuations in the complex numbers Qij, and the real number λ. With these

definitions, it is clear from Eqs. (2.13) and (2.15) that Bij and Bτ form the spatial and

temporal components of a U(1) gauge field, and so must enter into all physical quantities in

a gauge invariant manner. The values of Qij and λ are determined by a suitable saddle-point

analysis of the partition function, and ensure that the constraint (2.9) is obeyed. With these

assumptions, the partition function separates into separate fermionic and bosonic degrees

of freedom interacting via their coupling to a common U(1) gauge field (Biτ , Bij). In the

continuum limit, the gauge fields become a conventional U(1) gauge field Bµ = (Bτ ,B).

The partition function of the gauge theory is

Z =

∫
Dfiα(τ)Dpi(τ)Dhi(τ)DBiτ (τ)DBij(τ)

exp

(
−
∫
dτ
[
Lf + Lb + i

∑
i

Biτ

])

Lf =
∑
i

f †iα

(
∂

∂τ
+ λ− iBiτ

)
fiα −

∑
〈ij〉

Qijf
†
iαe

iBijfjα + H.c.

Lb =
∑
i

p†i

(
∂

∂τ
− λ− µ+

U

2
+ iBiτ

)
pi +

∑
i

h†i

(
∂

∂τ
+ λ+ µ+

U

2
− iBiτ

)
hi

−
∑
〈ij〉

Q
∗
ij(hi + p†i )e

−iBij(h†j + pj) + H.c.. (2.17)

Thus we have fermions fiα moving in a band structure which is roughly the same as that of

the electrons in Eq. (2.4), the bosons pi, hi Hubbard-like Hamiltonian essentially identical in

form to that in Section I, and all particles are minimally coupled to a compact U(1) gauge

field.

We begin by neglecting the gauge fields, and computing the separate phase diagrams of

Lf and Lb.
The fermions are free, and so occupy the negative energy states determined by the chem-

ical potential λ.

The phase diagram of Lb is more interesting: it involves strong interactions between the p

and h bosons. It can be a analyzed in a manner similar to that of the boson Hubbard model

(see Chapter 9 of Ref. 4), leading to the familiar “Mott lobe” structure shown in Fig. 4.

At large values of Q/U we have the analog of the superfluid states of the boson Hubbard

model, in which there is a condensate of the same operator as that in Eq. (1.9):

ψ = p+ h†. (2.18)

Note that ψ is the ladder operator for the number operator n = p†p−h†h used to characterize

the insulating phases in Fig. (4). The ψ operator carries unit charge under the U(1) gauge

field (from Eq. (2.10), and so the superfluid phase, with 〈ψ〉 6= 0, does not break any global
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Fermi liquid

Band insulator

Vacuum

Mott insulator
Spin liquid

FIG. 4: Possible phase diagram of the electron Hubbard model in Eq. (2.1) on the triangular

lattice. This phase diagram is obtained by a mean-field analysis of the theory Lb in Eq. (2.17),

similar to that for the boson Hubbard model in Chapter 9 of Ref. 4. We use the number operator

n = p†p− h†h, which commutes with the boson hopping term, to characterize the Mott insulating

states. Only the Mott insulating lobes with n = −1, 0, 1 are compatible with the constraint in

Eq. (2.9); these Mott insulating lobes have fermion density
〈
f †αfα

〉
= n+ 1.

symmetries (unlike the boson model of Section I). Instead it is a “Higgs” phase. In the

presence of the Higgs condensate, the operator relation in Eq. (2.8) implies that cα ∼ fα, and

so the fα fermions carry the same quantum numbers as the physical electron. Consequently,

the fα Fermi surface is simply an electron Fermi surface. Furthermore, the Higgs condensate

quenches the Bµ fluctuations, and so there are no singular interactions between the Fermi

surface excitations. This identifies the present phase as the familiar Fermi liquid, as noted

in Fig. 4. We note that we can equally well identify this phase as a “confining” phase of the

U(1) gauge theory, in which the ψ boson has formed a bound state with the fα fermions,

which is just the gauge-neutral cα fermion. Indeed, as is well known, Higgs and confining

phases are qualitatively the same when the Higgs condensate carries a fundamental gauge

charge, as is the case here.

Having reproduced a previously known phase of the Hubbard model in the U(1) gauge

theory, let us now examine the new phases within the ‘Mott lobes’ of Fig. 4. In these states,

the boson excitations are gapped, and number operator n = p†p−h†h has integer expectation

values. The constraint in Eq. (2.9) implies that only n = −1, 0, 1 are acceptable values, and
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so only these values are shown. It is clear from the representation in Eq. (2.7) that any

excitation involving change in electron number must involve a p or h excitation, and so the

gap to the latter excitations implies a gap in excitations carrying non-zero electron number.

This identifies the present phases as insulators. Thus the phase boundary out of the lobes

in Fig. 4 is a metal-insulator transition.

The three insulators in Fig. 4 have very different physical characteristics.

Using the constraint in Eq. (2.9) we see that the n = −1 insulator has no fα fermions.

Consequently this is just the trivial empty state of the Hubbard model, with no electrons.

Similarly, we see that the n = 1 insulator has 2 fα fermions on each site. This is the just

the fully-filled state of the Hubbard model, with all electronic states occupied. It is a band

insulator.

Finally, we turn to the most interesting insulator with n = 0. Now the electronic states

are half-filled, with 〈f †αfα〉 = 1. Thus there is an unpaired fermion on each site, and its

spin is free to fluctuate. There is a non-trivial wavefunction in the spin sector, realizing an

insulator which is a ‘spin liquid’. In our present mean field theory, the spin wavefunction

is specified by Fermi surface state of the fα fermions. Going beyond mean-field theory, we

have to consider the fluctuations of the Bµ gauge field, and determine if they destabilize the

spin liquid. The fα fermions carry the Bµ gauge charge, and these fermions form a Fermi

surface. The gapless fermionic excitations at the Fermi surface prevent the proliferation of

monopoles in the compact U(1) gauge field: the low energy fermions suppress the tunneling

event associated with global change in Bµ flux[9, 10]. Thus the emergent U(1) gauge field

remains in a deconfined phase, and this spin liquid state is stable. These gapless gauge

excitations have strong interactions with the fα fermions, and this leads to strong critical

damping of the fermions at the Fermi surface which is described by a strongly-coupled field

theory[11–13]. The effect of the gauge fluctuations is also often expressed in terms of an

improved trial wavefunction for the spin liquid [5]: we take the free fermion state of the fα
fermions, and apply a projection operator which removes all components which violate the

constraint in Eq. (2.9). This yields the ‘Gutzwiller projected’ state

|spin liquid〉 =

(∏
i

[
1− (−1)

∑
α f

†
iαfiα

2

])(∏
k<kF

f †↑(k)f †↓(k)

)
|0〉, (2.19)

where the product over k is over all points inside the Fermi surface.

Finally, we turn to an interesting quantum phase transition in Fig. 4. This is the transition

between the spin liquid and the Fermi liquid at total electron density N = 1, which occurs

at the tip of the n = 0 Mott lobe. From the boson sector, this looks like a Higgs transition,

of the condensation of a complex scalar ψ as in Section I, but in the presence of a fluctuating

U(1) gauge field. However, the fermionic sector is crucial in determining the nature of this

transition. Indeed, in the absence of the Fermi surface, this transition would not even exist

beyond mean field theory: this is because the U(1) gauge field is compact, and the scalar
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carries unit charge, and so the confining and Higgs phases of this gauge theory are smoothly

connected. So we have to combine the Higgs theory of a complex scalar with the gapless

Fermi surface excitations. We can obtain the field theory for this metal-insulator transition

by applying the methods of Section I to Eq. (2.17). The analog of the condition ∆p = ∆h

needed to obtain a density of one electron per site is now λ + µ = 0. In this manner, we

find the field theory [7, 15]

L = |(∂µ + iBµ)ψ|2 + s|ψ|2 + u|ψ|4 + iBτN

+ f †α

[
∂

∂τ
− εF − iBτ −

1

2m
(∇− iA)2

]
fα, (2.20)

where the energy εF is to be adjusted to yield total fermion density N = 1. The transition

is accessed by tuning s, and we move from a spin liquid with 〈ψ〉 = 0 for s > sc, to a Fermi

liquid with 〈ψ〉 6= 0 for s < sc. The critical properties of the theory at s = sc have been

studied [7, 14], and an interesting result is obtained: the Fermi surface excitations damp

the gauge bosons so that they become ineffective in coupling to the critical b fluctuations.

Consequently, the gauge bosons can be ignored in the ψ fluctuations, and the transition is in

the universality class of the 2+1 dimensional XY model. In other words, quite unexpectedly,

the critical theory is the same as that of the superfluid-insulator transition of Section I. There

are additional gapless excitations associated with the gauge field and the Fermi surface, but

these are irrelevant for the values of certain critical exponents.
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