Quantum phases and critical points of correlated metals

T. Senthil (MIT)
Subir Sachdev
Matthias Vojta (Karlsruhe)

cond-mat/0209144

paper rejected by cond-mat

Transparencies online at
http://pantheon.yale.edu/~subir
Outline

I. Kondo lattice models

 Doniach’s phase diagram and its quantum critical point

II. Paramagnetic states of quantum antiferromagnets:

 (A) Confinement of spinons and bond order
 (B) Spin liquids with deconfined spinons: Z_2 and $U(1)$ gauge theories

III. A new phase: a fractionalized Fermi liquid (FL*)

IV. Extended phase diagram and its critical points

V. Conclusions
I. Doniach’s $T=0$ phase diagram for the Kondo lattice

\[H = \sum_{i<j} t_{ij} c_{i\sigma}^\dagger c_{j\sigma} + \sum_i \left(J_K c_{i\sigma}^\dagger \vec{\tau}_{\sigma\sigma} c_{i\sigma} \cdot \vec{S}_{fi} \right) \]

$c_{i\sigma} \rightarrow$ Conduction electrons;

$\vec{S}_{fi} \rightarrow$ localized $f_{i\sigma}$ moments (assumed $S=1/2$, for specificity)

Local moments choose some static spin arrangement

$J_{RKKY} \sim J_K^2 / t \gg T_K \sim \exp\left(-t / J_K\right)$

“Heavy” Fermi liquid with moments Kondo screened by conduction electrons. Fermi surface obeys Luttinger’s theorem.
Luttinger’s theorem on a d-dimensional lattice for the FL phase

Let ν_0 be the volume of the unit cell of the ground state, n_T be the total number density of electrons per volume ν_0. (need not be an integer)

$$n_T = n_f + n_c = 1 + n_c$$

$$2 \times \frac{\nu_0}{(2\pi)^d} \text{(Volume enclosed by Fermi surface)} = n_T \text{ (mod 2)}$$

A “large” Fermi surface
Arguments for the Fermi surface volume of the FL phase

Single ion Kondo effect implies $J_K \to \infty$ at low energies

\[
\left(c_{i\uparrow}^+ f_{i\uparrow}^+ - c_{i\downarrow}^+ f_{i\uparrow}^+ \right) |0\rangle
\]

\[
f_{i\downarrow}^+ |0\rangle, \ S=1/2 \ hole
\]

Fermi liquid of $S=1/2$ holes with hard-core repulsion

Fermi surface volume $= - (\text{density of holes}) \mod 2$

$= - (1 - n_c) = (1 + n_c) \mod 2$
Arguments for the Fermi surface volume of the FL phase

Alternatively:

Formulate Kondo lattice as the large U limit of the Anderson model

$$H = \sum_{i<j} t_{ij} c_{i\sigma}^\dagger c_{j\sigma} + \sum_i \left(V c_{i\sigma}^\dagger f_{i\sigma} + V f_{i\sigma}^\dagger c_{i\sigma} + \varepsilon_f \left(n_{fi\uparrow} + n_{fi\downarrow} \right) + Un_{fi\uparrow} n_{fi\downarrow} \right) + \cdots$$

$$n_T = n_f + n_c$$

For small U, Fermi surface volume = $(n_f + n_c) \mod 2$. This is adiabatically connected to the large U limit where $n_f = 1$
Quantum critical point between SDW and FL phases

Spin fluctuations of renormalized $S=1/2$ fermionic quasiparticles, h_σ (loosely speaking, T_K remains finite at the quantum critical point)

Gaussian theory of paramagnon fluctuations: $\vec{\phi} \sim h_\sigma^+ \tau_{\sigma\sigma} h_\sigma$.

Action: $S = \int \frac{d^dq d\omega}{(2\pi)^{d+1}} |\vec{\phi}(q,\omega)|^2 \left(q^2 + |\omega| + \Gamma(\delta,T) \right)$

Characteristic paramagnon energy at finite temperature $\Gamma(0,T) \sim T^p$ with $p > 1$.

Arises from non-universal *corrections* to scaling, generated by $\vec{\phi}^4$ term.

Quantum critical point between SDW and FL phases

Additional singular corrections to quasiparticle self energy in $d=2$

Ar. Abanov and A. V. Chubukov *Phys. Rev. Lett.* **84**, 5608 (2000);

Additional corrections in dynamic mean field theory:
Outline

I. Kondo lattice models
 Doniach’s phase diagram and its quantum critical point

II. Paramagnetic states of quantum antiferromagnets:
 (A) Confinement of spinons and bond order
 (B) Spin liquids with deconfined spinons: \(Z_2 \) and \(U(1) \) gauge theories

III. A new phase: a fractionalized Fermi liquid (FL*)

IV. Extended phase diagram and its critical points

V. Conclusions
Ground states of quantum antiferromagnets

Begin with magnetically ordered states, and consider quantum transitions which restore spin rotation invariance

Two classes of ordered states:

(α) Collinear spins

\[
\langle \vec{S}(r) \rangle \propto \overline{N} \cos(\vec{Q} \cdot \vec{r})
\]

\[
\vec{Q} = (\pi, \pi); \; \overline{N}^2 = 1
\]

(β) Non-collinear spins

\[
\langle \vec{S}(r) \rangle \propto \overline{N}_1 \cos(\vec{Q} \cdot \vec{r}) + \overline{N}_2 \sin(\vec{Q} \cdot \vec{r})
\]

\[
\vec{Q} = \left(\frac{4\pi}{3}, \frac{4\pi}{\sqrt{3}} \right); \; \overline{N}_1^2 = \overline{N}_2^2 = 1; \; \overline{N}_1 \cdot \overline{N}_2 = 0
\]
(α) **Collinear spins, Berry phases, and bond-order**

\[S=1/2 \text{ antiferromagnet on a bipartite lattice} \]

\[H = \sum_{i<j} J_{ij} \vec{S}_i \cdot \vec{S}_j \]

Include Berry phases after discretizing coherent state path integral on a cubic lattice in spacetime

\[Z = \prod_a \int dn_a \delta \left(n_a^2 - 1 \right) \exp \left(\frac{1}{g} \sum_{a,\mu} n_a \cdot n_{a+\mu} - \frac{i}{2} \sum_a \eta_a A_{a\tau} \right) \]

\(\eta_a \rightarrow \pm 1 \) on two sublattices;

\(n_a \sim \eta_a \hat{S}_a \rightarrow \text{Neel order parameter;} \]

\(A_{a\mu} \rightarrow \text{oriented area of spherical triangle} \)

formed by \(n_a, n_{a+\mu} \), and an arbitrary reference point \(n_0 \).
Small $g \rightarrow$ Spin-wave theory about Neel state receives minor modifications from Berry phases.

Large $g \rightarrow$ Berry phases are crucial in determining structure of "quantum-disordered" phase with $\langle n_a \rangle = 0$

Integrate out n_a to obtain effective action for $A_{a\mu}$

Change in choice of n_0 is like a "gauge transformation"

$$A_{a\mu} \rightarrow A_{a\mu} - \gamma_{a+\mu} + \gamma_a$$

(γ_a is the oriented area of the spherical triangle formed by n_a and the two choices for n_0).

The area of the triangle is uncertain modulo 4π, and the action is invariant under

$$A_{a\mu} \rightarrow A_{a\mu} + 4\pi$$

These principles strongly constrain the effective action for $A_{a\mu}$
Simplest large \(g \) effective action for the \(A_{a\mu} \)

\[
Z = \prod_{a,\mu} \int dA_{a\mu} \exp \left(-\frac{1}{2e^2} \sum \cos \left(\frac{1}{2} \varepsilon_{\mu\nu\lambda} \Delta_{\nu} A_{a\lambda} \right) - \frac{i}{2} \sum_{a} \eta_{a} A_{a\tau} \right)
\]

with \(e^2 \sim g^2 \)

This is compact QED in \(d+1 \) dimensions with Berry phases.

This theory can be reliably analyzed by a duality mapping.

(I) \(d=2 \):
The gauge theory is always in a confining phase. There is an energy gap and the ground state has bond order (induced by the Berry phases).

(II) \(d=3 \):
An additional Coulomb phase is also possible. There are deconfined spinons which are minimally coupled to a gapless U(1) photon.

Paramagnetic states with $\langle S_j \rangle = 0$

Bond order and confined spinons

\[= \frac{1}{\sqrt{2}} \left(\left| \uparrow \downarrow \right\rangle - \left| \downarrow \uparrow \right\rangle \right) \]

$S=1/2$ spinons are confined by a linear potential into a $S=1$ spin exciton

Confinement is required $U(1)$ paramagnets in $d=2$
β. Noncollinear spins

\[
\langle S_j \rangle = N_1 \cos(\vec{K} \cdot \vec{r}_j) + N_2 \sin(\vec{K} \cdot \vec{r}_j)
\]

\[
\vec{K} = \left(\frac{3\pi}{4}, \pi \right) ;
\]

\[
N_2^2 = N_1^2 , N_1 \cdot N_2 = 0
\]

Solve constraints by expressing \(N_{1,2} \) in terms of two complex numbers \(z_\uparrow, z_\downarrow \)

\[
N_1 + iN_2 = \begin{pmatrix}
 z_\downarrow^2 - z_\uparrow^2 \\
 i(z_\downarrow^2 + z_\uparrow^2) \\
 2z_\uparrow z_\downarrow
\end{pmatrix}
\]

Order in ground state specified by a spinor \((z_\uparrow, z_\downarrow) \) (modulo an overall sign).

This spinor could become a \(S=1/2 \) spinon in a quantum "disordered" state.

Order parameter space: \(S_3/Z_2 \)

Physical observables are invariant under the \(Z_2 \) gauge transformation \(z_a \rightarrow \pm z_a \)
β. Noncollinear spins

Paramagnetic state \(\langle \vec{S}_j \rangle = 0 \)

Vortices associated with \(\pi_1(S_3/Z_2) = \mathbb{Z}_2 \) \((\text{visons})\)

Such vortices (visons) can also be defined in the phase in which spins are "quantum disordered". A \(\mathbb{Z}_2 \) spin liquid with deconfined spinons must have \textit{visons suppressed}

Model effective action and phase diagram

\[S = -J \sum_{\langle ij \rangle} \sigma_{ij} \bar{z}_\alpha z_{\alpha j} + \text{h.c.} - K \prod \sigma_{ij} \]

\[\sigma_{ij} \rightarrow Z_2 \text{ gauge field} \]

First order transition

Magnetically ordered

Confined spinons

Free spinons and topological order

Outline

I. Kondo lattice models
 Doniach’s phase diagram and its quantum critical point

II. Paramagnetic states of quantum antiferromagnets:
 (A) Confinement of spinons and bond order
 (B) Spin liquids with deconfined spinons: \(Z_2 \) and U(1) gauge theories

III. A new phase: a fractionalized Fermi liquid (FL*)

IV. Extended phase diagram and its critical points

V. Conclusions
III. **Doping spin liquids**

Reconsider Doniach phase diagram

It is more convenient to analyze the Kondo-Heiseberg model:

\[
H = \sum_{i<j} t_{ij} c_{i\sigma}^\dagger c_{j\sigma} + \sum_i \left(J_K c_{i\sigma}^\dagger \tau_{\sigma\sigma} c_{i\sigma} \cdot \mathbf{S}_i \right) + \sum_{i<j} J_H (i, j) \mathbf{S}_i \cdot \mathbf{S}_j
\]

Work in the regime \(J_H > J_K \)

Determine the ground state of the quantum antiferromagnet defined by \(J_H \), and then couple to conduction electrons by \(J_K \)

Choose \(J_H \) so that ground state of antiferromagnet is a spin liquid
State of conduction electrons

At $J_K = 0$ the conduction electrons form a Fermi surface on their own with volume determined by n_c

Perturbation theory in J_K is regular, and topological order is robust, and so this state will be stable for finite J_K

So volume of Fermi surface is determined by $(n_T - 1) = n_c \pmod{2}$, and Luttinger’s theorem is violated.

The FL* state
III. Doping spin liquids

A likely possibility:

Added electrons do not fractionalize, but retain their bare quantum numbers. Spinon, photon, and vison states of the insulator survive unscathed.

There is a Fermi surface of sharp electron-like quasiparticles, enclosing a volume determined by the dopant electron alone.

This is a “Fermi liquid” state which violates Luttinger’s theorem

A Fractionalized Fermi Liquid (FL*)

T. Senthil, S. Sachdev, and M. Vojta, cond-mat/0209144
III. A new phase: FL*

This phase preserves spin rotation invariance, and has a Fermi surface of *sharp* electron-like quasiparticles.

The state has “*topological order*” and associated neutral excitations. The topological order can be easily detected by the violation of Luttinger’s theorem. It can only appear in dimensions $d > 1$

$$2 \times \frac{\nu_0}{(2\pi)^d} \left(\text{Volume enclosed by Fermi surface} \right) = (n_T - 1) \pmod{2}$$

Outline

I. Kondo lattice models
 Doniach’s phase diagram and its quantum critical point

II. Paramagnetic states of quantum antiferromagnets:
 (A) Confinement of spinons and bond order
 (B) Spin liquids with deconfined spinons: Z_2 and $U(1)$ gauge theories

III. A new phase: a fractionalized Fermi liquid (FL*)

IV. Extended phase diagram and its critical points

V. Conclusions
IV. Extended $T=0$ phase diagram for the Kondo lattice

Quantum criticality associated with the onset of topological order – described by interacting gauge theory. (Speaking loosely – T_K vanishes along this line)

- * phases have spinons with Z_2 ($d=2,3$) or U(1) ($d=3$) gauge charges, and associated gauge fields.
- Fermi surface volume does not distinguish SDW and SDW* phases.
Because of strong gauge fluctuations, U(1)-FL* may be unstable to U(1)-SDW* at low temperatures on certain lattices. Quantum criticality dominated by a $T=0$ FL-FL* transition.
Superconductivity is generic between FL and \(Z_2 \) FL* phases.

- Magnetic frustration

\(J_K / t \)

\(Z_2 \) fractionalization

Hertz Gaussian paramagnon theory

- Superconductivity is generic between FL and \(Z_2 \) FL* phases.
Pairing of spinons in small Fermi surface state induces superconductivity at the confinement transition.

Small Fermi surface state can also exhibit a second-order metamagnetic transition in an applied magnetic field, associated with vanishing of a spinon gap.
Conclusions

• New phase diagram as a paradigm for clean metals with local moments.
• Topologically ordered (*)& phases lead to novel quantum criticality.
• New FL* allows easy detection of topological order by Fermi surface volume

![Phase Diagram]

- FL*
- SDW*
- FL
- SDW

Magnetic frustration

J_K/t