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|. Density driven transitions

Non-analytic change in a conserved density
(spin) driven by changes in chemical
potential (magnetic field)



1.A Fermions with repulsive interactions
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1.A Fermions with repulsive interactions

Characteristics of this ‘trivial’ quantum critical point:

* No “order parameter”. “Topological” characterization in the
existence of the Fermi surface in one state.

e No transition at T > 0.

 Characteristic crossovers at T > 0, between quantum criticality,
and low T regimes.

o Strong T-dependent scaling in guantum critical regime, with
response functions scaling universally as a function of k?/T and
/T, where z Is the dynamic critical exponent.



1.A Fermions with repulsive interactions
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1.A Fermions with repulsive interactions

Characteristics of this ‘trivial’ quantum critical point:

RG flow characterizing guantum critical point:
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* d > 2 — Interactions are irrelevant. Critical theory is
the spinful free Fermi gas.

e d < 2 — universal fixed point interactions. In d=1
critical theory is the spinless free Fermi gas




1.B Bosons with repulsive interactions
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 Describes field-induced magnetization transitions in spin gap
compounds

e Critical theory in d =1 is also the spinless free Fermi gas.

* Properties of the dilute Bose gas in d >2 violate hyperscaling and
depend upon microscopic scattering length (Yang-Lee).
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1.C Fermions with attractive interactions
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Weak-coupling BEC of paired
BCS theory bound state

 Universal fixed-point is accessed by fine-tuning to a Feshbach
resonance.

 Density onset transition is described by free fermions for weak-
coupling, and by (nearly) free bosons for strong coupling. The
guantume-critical point between these behaviors is the Feshbach
resonance.

P. Nikolic and S. Sachdev cond-mat/0609106



1.C Fermions with attractive interactions
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1.C Fermions with attractive interactions
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Universal theory of gapless bosons
and fermions, with decay of boson
Into 2 fermions relevant ford <4

P. Nikolic and S. Sachdev cond-mat/0609106



1.C Fermions with attractive interactions
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Quantum critical point at u=0, v=0, forms the basis of a theory
which describes ultracold atom experiments, including the
transitions to FFLO and normal states with unbalanced densities

P. Nikolic and S. Sachdev cond-mat/0609106
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2.A. Magnetic quantum phase transitions in
“dimerized” Mott insulators:

Landau-Ginzburg-Wilson (LGW) theory:

Second-order phase transitions described by
fluctuations of an order parameter
assoclated with a broken symmetry




TICuCl,

M. Matsumoto, B. Normand, T.M. Rice, and M. Sigrist, cond-mat/0309440.



Coupl

ed Dimer Antiferromagnet
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1/2 spins on coupled dimers
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Weakly coupled dimers
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A closeto O Weakly coupled dimers
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wave vector Ag=(hk|} [r.lu.]

N. Cavadini, G. Heigold, W. Henggeler, A. Furrer,
H.-U. Gudel, K. Kramer and H. Mutka, Phys. Rev.
B 63 172414 (2001).
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FIG. 1. Measured neutron profiles in the a*c¢® plane of TICuCl;

for i=(1.350.0), #i=100,0,3.13) [rlu]. The spectrtum at T=15K



Coupled Dimer Antiferromagnet




Weakly dimerized square lattice

A close to 1
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A closeto 1 Weakly dimerized square lattice

I\

1, i, i, i, i+ i Excitations:

- ofial . ¥ 2 spin waves (magnons)
. :"" . ;o . 5p:\/Cx2px2+Cy2py2
Ground state has long-range spin density wave <(2> + 0

(Neel) order at wavevector K= (,m)
|

: : r S, :
spin density wave order parameter: ¢ =n. ?I , 1. =1 on two sublattices



TICuCl,

Neutron Diffraction Study of the Pressure-Induced Magnetic Ordering
in the Spin Gap System TICuCl;
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Gg. 3. Temperature dependence of the magnetic Bragg peak intensity for

@ = (1,0, —3) reflection measured at P = 1 .48 GPa in TICuCls.

J. Phys. Soc. Jpn 72, 1026 (2003)



Néel state
(p)#0

A, = 0.52337(3)
M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama,
Phys. Rev. B 65, 014407 (2002)
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L GW theory for qguantum criticality

Landau-Ginzburg-Wilson theory: write down an effective action
for the antiferromagnetic order parameter gg by expanding in powers
of gf) and its spatial and temporal derivatives, while preserving
all symmetries of the microscopic Hamiltonian

S, = jdzxdrE((vxgE)Z +5(0,0) +(4, —1)452%%(452)2}



2.A. Magnetic quantum phase transitions in
Mott insulators with S=1/2 per unit cell

Deconfined quantum criticality



Mott insulator with two S=1/2 spins per unit cell
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Mott insulator with one S=1/2 spin per unit cell



Mott insulator with one S=1/2 spin per unit cell

Ground state has Neel order with (Ip # 0



Mott insulator with one S=1/2 spin per unit cell

Destroy Neel order by perturbations which preserve full square
lattice symmetry e.g. second-neighbor or ring exchange.
The strength of this perturbation is measured by a coupling g.

Small g = ground state has Neel order with <g'o> £ 0

Large g = paramagnetic ground state with <g2> =0
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Mott insulator with one S=1/2 spin per unit cell

Possible large g paramagnetic ground state with <g'o> =0



Mott insulator with one S=1/2 spin per unit cell

‘Pbond

Possible large g paramagnetic ground state with <g'o> =0
Such a state breaks the symmetry of rotations by nz /2 about lattice sites,
and has (¥4 ) # 0, where W, , is the bond order parameter
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Mott insulator with one S=1/2 spin per unit cell

‘Pbond

Possible large g paramagnetic ground state with <g'o> =0
Such a state breaks the symmetry of rotations by nz /2 about lattice sites,
and has (¥4 ) # 0, where W, , is the bond order parameter
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Mott insulator with one S=1/2 spin per unit cell

\Pbond
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Possible large g paramagnetic ground state with <(p> =0
Another state breaking the symmetry of rotations by nz /2 about lattice sites,
which also has (W) # 0, where ¥, , is the bond order parameter
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Mott insulator with one S=1/2 spin per unit cell
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Mott insulator with one S=1/2 spin per unit cell
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Mott insulator with one S=1/2 spin per unit cell
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L GW theory of multiple order parameters
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Distinct symmetries of order parameters permit
couplings only between their energy densities



L GW theory of multiple order parameters
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Proposal of deconfined quantum criticality
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VBS order (¥, ) I Lﬂ

(associated with condensatlon of monopoles in A, ),
; , S =1/2 spinons z_, confined,
<(P> <Za6a,b’zﬂ> #0 S =1triplon excitations
? o

Second-order critical point described by

Neel order

. U 2 1 .
Seritical = /dQﬂfd’T [|(5p — Az’ + 1|20l + 5 (Izal*)” + 12 (0, A, — 0,A,)°

at its critical point r = r., where A, is non-compact

T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher, Science 303, 1490 (2004).



Theory of a second-order quantum phase transition
between Neel and VBS phases

At the guantum critical point:
e A, — A, +27 periodicity can be ignored
(Monopoles interfere destructively and are dangerously irrelevant).
e S=1/2 spinons z,,, with (£~ z;c;aﬂzﬂ, are globally
propagating degrees of freedom.

Second-order critical point described by emergent
fractionalized degrees of freedom (A, and z,, );
Order parameters (pand %, ) are “composites™

and of secondary importance




Confined spinons

o0 VBS
Monopole \
f It
ugacity Ay A
0 o—< > & U(1) spin
Neel S, s oo liquid
(Higgs) Deconfined spinons

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).
A. V. Chubukov, S. Sachdev, and J. Ye, Phys. Rev. B 49, 11919 (1994).
T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher, Science 303, 1490 (2004).
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The Kondo lattice

Local moments f_ Conduction electrons c_
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Number of f electrons per unit cell =n; =1
Number of c electrons per unit cell =n_



3.A. The heavy Fermi liquid (FL)

Hertz theory for the onset of spin
density wave order



The “large™ Fermi surface Is obtained in the limit of large Jy

The Fermi surface of heavy quasiparticles encloses a
volume which counts all electrons.

Fermi volume =1 + n,



Argument for the Fermi surface volume of the FL phase

Single ion Kondo effect implies J, — oo at low energies

B0+ 8

(¢ £l —cl f1)l0) f.1]0), S=1/2 hole

Fermi liquid of S=1/2 holes with hard-core repulsion

Fermi surface volume = —(density of holes) mod 2
=—(1-n,)=(1+n,)mod 2



LGW (Hertz) theory for QCP to SDW order

Write down effective action for SDW order parameter ¢

o fluctuations are damped
by mixing with fermionic
quasiparticles near the Fermi surface

glg(q,a))r(q2 +|oo|+ (i —JKC))+%jddrdr(g£2)2

dgdw
S —
Q j(zﬂ)d+l

Fluctuations of ¢ about ¢ =0= paramagnons

J. Mathon, Proc. R. Soc. London A, 306, 355 (1968); T.V. Ramakrishnan, Phys. Rev. B 10, 4014 (1974);
M. T. Beg 1, 1165 (1976).

G. G. Lon

T. Moriya No Mottnhess ):
: 7 . : ; ~REV, —7183 (1993).




3.B. The Fractionalized Fermi liquid
(FL*)

Phases and quantum critical points
characterized by gauge theory and
“topological’ excitations



Work in the regime with small J,., and consider
destruction of magnetic order by frustrating
(RKKY) exchange interactions between f moments

A spin liquid ground state with <g'p> = 0 and no broken lattice symmetries.

Such a state has emergent excitations described by a Z, or U(1) gauge theory

P. Fazekas and P.W. Anderson, Phil Mag 30, 23 (1974).
N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991);
X. G. Wen, Phys. Rev. B 44, 2664 (1991).



Influence of conduction electrons

Conduction electrons c_

Local moments f

| [

H = ZtijCiTO'CJ'O' +Z(JKCiLZI:O'o"CiO' .Sfi)+ZJH (I’ j)Slﬁ .Sfj

I<] <]

Determine the ground state of the quantum antiferromagnet defined by
J,, and then couple to conduction electrons by J,

Choose J,, so that ground state of antiferromagnet is
a Z,or U(1) spin liquid



Influence of conduction electrons

Conduction electrons c_

Local moments f_

At J, = 0 the conduction electrons form a Fermi surface on
their own with volume determined by n,_

Perturbation theory in J, is regular, and so this state will be stable for finite J,.

So volume of Fermi surface is determined by
(n.+n¢-1)= n(mod 2), and does not equal the Luttinger value.

The (U(1) or Z,) FL* state




A new phase: FL™

This phase preserves spin rotation invariance, and has a Fermi
surface of sharp electron-like quasiparticles.

The state has “topological order” and associated neutral excitations.
The topological order can be detected by the violation of Luttinger’s
Fermi surface volume. It can only appear in dimensions d > 1

2 % (2V°)d (Volume enclosed by Fermi surface)
7T

=(n, +n, —1)(mod 2)

Precursors: N. Andrei and P. Coleman, Phys. Rev. Lett. 62, 595 (1989).
Yu. Kagan, K. A. Kikoin, and N. V. Prokof'ev, Physica B 182, 201 (1992).
Q. Si, S. Rabello, K. Ingersent, and L. Smith, Nature 413, 804 (2001).
S. Burdin, D. R. Grempel, and A. Georges, Phys. Rev. B 66, 045111 (2002).
L. Balents and M. P. A. Fisher and C. Nayak, Phys. Rev. B 60, 1654, (1999);
T. Senthil and M.P.A. Fisher, Phys. Rev. B 62, 7850 (2000).



Phase diagram
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Phase diagram

Fractionalized Fermi liquid
with moments paired in a
spin liquid. Fermi surface
volume does not include
moments and is unequal to

the Luttinger value.
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Phase diagram
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with moments paired in a
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volume does not include
moments and is unequal to

the Luttinger value.

U(L) FL*
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“Heavy” Fermi liquid with
moments Kondo screened
by conduction electrons.
Fermi surface volume
equals the Luttinger value.

FL

(b) =0, Higgs Jy



Phase diagram

Fractionalized Fermi liquid

with moments paired in a “Heavy” Fermi liquid with
spin liquid. Fermi surface moments Kondo screened
volume does not include by conduction electrons.
moments and is unequal to Fermi surface volume
the Luttinger value. equals the Luttinger value.
U(l) FL* FL

T S T S ————
(b)=0, DGCWJKC (b)=0, Higgs  J

Sharp transition at T=0 in compact
U(1) gauge theory




Phase diagram

No transition for T>0 in compact U(1) gauge
N theory; compactness essential for this feature /

N Quantum ’
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U(l) FL* ‘S FL

(b)=0, DGCWJKC (b)=0, Higgs  J

Sharp transition at T=0 in compact
U(1) gauge theory




Deconfined criticality in the Kondo lattice ?

A I
- -
-

'l Teoh ™o Quantum -7 Teoh

i

. critical 7

FL

onfinement at
low energies

(b) =0, Higgs JK

Local moment magnetism: magnetism appears by spontaneous
polarization of f moments (c electrons remain spectators).
Distinct from SDW order in FL state. Includes Mottness




Deconfined criticality in the Kondo lattice ?
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<b> =0, Confinement at
low energies

U(1) FL* phase generates magnetism at energies much
lower than the critical energy of the FL to FL* transition

(b) =0, Higgs JK



Conclusions

Good experimental and theoretical progress in
understanding density-driven and LGW quantum
phase transitions.

Many interesting transitions of strongly correlated
materials associated with gauge or “topological’” order
parameters. Intimate connection with Luttinger
theorem and lattice commensuration effects.
Classification scheme ?

Many experiments on heavy fermions compounds and
cuprates remain mysterious — effects of disorder ?

Ultracold atoms offer new regime for studying many
quantum phase transitions.




