Quantum criticality: where are we and where are we going ?

Subir Sachdev *Harvard University*

Talk online at http://sachdev.physics.harvard.edu

Outline

1. Density-driven phase transitions A. Fermions with repulsive interactions B. Bosons with repulsive interactions C. Fermions with attractive interactions Magnetic transitions of Mott insulators 2. A. Dimerized Mott insulators – Landau-Ginzburg-Wilson theory B. S=1/2 per unit cell: deconfined quantum criticality Transitions of the Kondo lattice 3. A. Large Fermi surfaces – Hertz theory B. Fractional Fermi liquids and gauge theory

I. Density driven transitions

Non-analytic change in a conserved density (spin) driven by changes in chemical potential (magnetic field)

$$H = \sum_{k} \left(\varepsilon_{k} - \mu \right) c_{k\sigma}^{\dagger} c_{k\sigma}$$

+ short-range repulsive interactions of strength *u*

Characteristics of this 'trivial' quantum critical point:

• No "order parameter". "Topological" characterization in the existence of the Fermi surface in one state.

• No transition at T > 0.

• Characteristic crossovers at T > 0, between quantum criticality, and low *T* regimes.

• Strong *T*-dependent scaling in quantum critical regime, with response functions scaling universally as a function of k^z/T and ω/T , where *z* is the dynamic critical exponent.

Characteristics of this 'trivial' quantum critical point:

Characteristics of this 'trivial' quantum critical point:

RG flow characterizing quantum critical point:

• d > 2 – interactions are irrelevant. Critical theory is the *spinful* free Fermi gas.

• d < 2 – universal fixed point interactions. In d=1 critical theory is the *spinless* free Fermi gas

• Describes field-induced magnetization transitions in spin gap compounds

• Critical theory in d = 1 is also the *spinless* free *Fermi* gas.

• Properties of the dilute Bose gas in d > 2 violate hyperscaling and depend upon microscopic scattering length (Yang-Lee).

• Universal fixed-point is accessed by *fine-tuning* to a Feshbach resonance.

• Density onset transition is described by free fermions for weakcoupling, and by (nearly) free bosons for strong coupling. The quantum-critical point between these behaviors is the Feshbach resonance.

1.C Fermions with attractive interactions

1.C Fermions with attractive interactions

1.C Fermions with attractive interactions

Quantum critical point at $\mu=0$, $\nu=0$, forms the basis of a theory which describes ultracold atom experiments, including the transitions to FFLO and normal states with unbalanced densities

Outline

1. Density-driven phase transitions A. Fermions with repulsive interactions B. Bosons with repulsive interactions C. Fermions with attractive interactions Magnetic transitions of Mott insulators 2. A. Dimerized Mott insulators – Landau-Ginzburg-Wilson theory B. S=1/2 per unit cell: deconfined quantum criticality Transitions of the Kondo lattice 3. A. Large Fermi surfaces – Hertz theory B. Fractional Fermi liquids and gauge theory

2.A. Magnetic quantum phase transitions in "dimerized" Mott insulators:

Landau-Ginzburg-Wilson (LGW) theory: Second-order phase transitions described by fluctuations of an order parameter associated with a broken symmetry

M. Matsumoto, B. Normand, T.M. Rice, and M. Sigrist, cond-mat/0309440.

Coupled Dimer Antiferromagnet

M. P. Gelfand, R. R. P. Singh, and D. A. Huse, *Phys. Rev. B* **40**, 10801-10809 (1989). N. Katoh and M. Imada, *J. Phys. Soc. Jpn.* **63**, 4529 (1994).

J. Tworzydlo, O. Y. Osman, C. N. A. van Duin, J. Zaanen, Phys. Rev. B 59, 115 (1999).

M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama, Phys. Rev. B 65, 014407 (2002).

S=1/2 spins on coupled dimers

 $\bigcirc = \frac{1}{\sqrt{2}} \left(\uparrow \downarrow \right) - \left| \downarrow \uparrow \right\rangle \right)$

 $\bigcirc = \frac{1}{\sqrt{2}} \left(\uparrow \downarrow \right) - \left| \downarrow \uparrow \right\rangle \right)$

 $\bigcirc = \frac{1}{\sqrt{2}} \left(\uparrow \downarrow \right) - \left| \downarrow \uparrow \right\rangle \right)$

 $\bigcirc = \frac{1}{\sqrt{2}} \left(\uparrow \downarrow \right) - \left| \downarrow \uparrow \right\rangle \right)$

 $\bigcirc = \frac{1}{\sqrt{2}} \left(\uparrow \downarrow \right) - \left| \downarrow \uparrow \right\rangle \right)$

Energy dispersion away from antiferromagnetic wavevector

 $\varepsilon_p = \Delta + \frac{c_x^2 p_x^2 + c_y^2 p_y^2}{2\Delta}$

 $\Delta \rightarrow \text{spin gap}$

FIG. 1. Measured neutron profiles in the a^*c^* plane of TlCuCl₃ for i = (1.35, 0, 0), ii = (0, 0, 3.15) [r.l.u]. The spectrum at T = 1.5 K

Coupled Dimer Antiferromagnet

Weakly dimerized square lattice

Weakly dimerized square lattice

TICuCl₃

Neutron Diffraction Study of the Pressure-Induced Magnetic Ordering in the Spin Gap System TlCuCl₃

Akira OOSAWA*, Masashi FUJISAWA1, Toyotaka OSAKABE, Kazuhisa KAKURAI and Hidekazu TANAKA2

Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 ¹Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo 152-8551 ²Research Center for Low Temperature Physics, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo 152-8551 (Received February 3, 2003)

Fig. 3. Temperature dependence of the magnetic Bragg peak intensity for Q = (1, 0, -3) reflection measured at P = 1.48 GPa in TlCuCl₃.

J. Phys. Soc. Jpn 72, 1026 (2003)

LGW theory for quantum criticality

Landau-Ginzburg-Wilson theory: write down an effective action for the antiferromagnetic order parameter $\stackrel{r}{\varphi}$ by expanding in powers of $\stackrel{r}{\varphi}$ and its spatial and temporal derivatives, while preserving all symmetries of the microscopic Hamiltonian

$$S_{\varphi} = \int d^2 x d\tau \left[\frac{1}{2} \left(\left(\nabla_x \stackrel{\mathbf{r}}{\varphi} \right)^2 + \frac{1}{c^2} \left(\partial_\tau \stackrel{\mathbf{r}}{\varphi} \right)^2 + \left(\lambda_c - \lambda \right) \stackrel{\mathbf{r}}{\varphi}^2 \right) + \frac{u}{4!} \left(\stackrel{\mathbf{r}}{\varphi}^2 \right)^2 \right]$$

2.A. Magnetic quantum phase transitions in Mott insulators with S=1/2 per unit cell

Deconfined quantum criticality

Mott insulator with two S=1/2 spins per unit cell

Mott insulator with one S=1/2 spin per unit cell

Mott insulator with one S=1/2 spin per unit cell

Ground state has Neel order with $\phi^{I} \neq 0$

Destroy Neel order by perturbations which preserve full square lattice symmetry *e.g.* second-neighbor or ring exchange. The strength of this perturbation is measured by a coupling *g*. Small $g \Rightarrow$ ground state has Neel order with $\langle \stackrel{r}{\varphi} \rangle \neq 0$ Large $g \Rightarrow$ paramagnetic ground state with $\langle \stackrel{r}{\varphi} \rangle = 0$

Destroy Neel order by perturbations which preserve full square lattice symmetry *e.g.* second-neighbor or ring exchange. The strength of this perturbation is measured by a coupling *g*. Small $g \Rightarrow$ ground state has Neel order with $\langle \stackrel{r}{\varphi} \rangle \neq 0$ Large $g \Rightarrow$ paramagnetic ground state with $\langle \stackrel{r}{\varphi} \rangle = 0$

Mott insulator with one S=1/2 spin per unit cell

Mott insulator with one S=1/2 spin per unit cell

Mott insulator with one S=1/2 spin per unit cell

Mott insulator with one S=1/2 spin per unit cell

Mott insulator with one S=1/2 spin per unit cell

LGW theory of multiple order parameters

$$F = F_{vbs} \left[\Psi_{vbs} \right] + F_{\varphi} \left[\phi \right] + F_{int}$$

$$F_{vbs} \left[\Psi_{vbs} \right] = r_1 \left| \Psi_{vbs} \right|^2 + u_1 \left| \Psi_{vbs} \right|^4 + L$$

$$F_{\varphi} \left[\phi \right] = r_2 \left| \phi \right|^2 + u_2 \left| \phi \right|^4 + L$$

$$F_{int} = v \left| \Psi_{vbs} \right|^2 \left| \phi \right|^2 + L$$

Distinct symmetries of order parameters permit couplings only between their energy densities

Proposal of deconfined quantum criticality

T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher, Science 303, 1490 (2004).

<u>Theory of a second-order quantum phase transition</u> <u>between Neel and VBS phases</u>

At the quantum critical point:

• $A_{\mu} \rightarrow A_{\mu} + 2\pi$ periodicity can be ignored

(Monopoles interfere destructively and are dangerously irrelevant).

• S=1/2 spinons z_{α} , with $\overset{\mathbf{r}}{\varphi} \sim z_{\alpha}^* \overset{\mathbf{r}}{\sigma}_{\alpha\beta} z_{\beta}$, are globally propagating degrees of freedom.

Second-order critical point described by emergent fractionalized degrees of freedom $(A_{\mu} and z_{\alpha})$; Order parameters (φ and Ψ_{vbs}) are "composites" and of secondary importance

N. Read and S. Sachdev, *Phys. Rev. Lett.* **62**, 1694 (1989).

A. V. Chubukov, S. Sachdev, and J. Ye, *Phys. Rev. B* 49, 11919 (1994).

T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher, *Science* **303**, 1490 (2004).

Outline

1. Density-driven phase transitions A. Fermions with repulsive interactions B. Bosons with repulsive interactions C. Fermions with attractive interactions Magnetic transitions of Mott insulators 2. A. Dimerized Mott insulators – Landau-Ginzburg-Wilson theory B. S=1/2 per unit cell: deconfined quantum criticality Transitions of the Kondo lattice 3. A. Large Fermi surfaces – Hertz theory B. Fractional Fermi liquids and gauge theory

The Kondo lattice

Local moments f_{σ} $H_{K} = \sum_{i < j} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + J_{K} \sum_{i} c_{i\sigma}^{\dagger} \tau_{\sigma\sigma'} c_{i\sigma} \cdot \frac{1}{S_{fi}} + J \sum_{\langle ij \rangle} \frac{1}{S_{fi}} \cdot \frac{1}{S_{fj}}$

Number of *f* electrons per unit cell = $n_f = 1$ Number of *c* electrons per unit cell = n_c

3.A. The heavy Fermi liquid (FL)

Hertz theory for the onset of spin density wave order The "large" Fermi surface is obtained in the limit of large J_K

The Fermi surface of heavy quasiparticles encloses a volume which counts *all* electrons.

Fermi volume = $1 + n_c$

Argument for the Fermi surface volume of the FL phase

Single ion Kondo effect implies $J_{K} \rightarrow \infty$ at low energies

Fermi liquid of S=1/2 holes with hard-core repulsion

Fermi surface volume = $-(\text{density of holes}) \mod 2$ = $-(1-n_c) = (1+n_c) \mod 2$

LGW (Hertz) theory for QCP to SDW order

Write down effective action for SDW order parameter ϕ

 $\oint \phi$ fluctuations are damped by mixing with fermionic quasiparticles near the Fermi surface

$$S_{\varphi} = \int \frac{d^{d}q d\omega}{\left(2\pi\right)^{d+1}} \Big| \overset{\mathbf{u}}{\varphi} \left(q,\omega\right) \Big|^{2} \left(q^{2} + \left|\omega\right| + \left(J_{K} - J_{Kc}\right)\right) + \frac{u}{4} \int d^{d}r d\tau \left(\overset{\mathbf{r}}{\varphi}^{2}\right)^{2}$$

Fluctuations of $\dot{\phi}$ about $\dot{\phi} = 0 \Rightarrow$ paramagnons

J. Mathon, *Proc. R. Soc. London* A, **306**, 355 (1968); T.V. Ramakrishnan, *Phys. Rev.* B **10**, 4014 (1974); M. T. Bea T. Moriya G. G. Lonzarich and L. Talleler, *J. Phys.* C **18**, 4539 (1985); A.J. Millis, *Phys. Kev.* B **48**, 7183 (1993).

3.B. The Fractionalized Fermi liquid (FL*)

Phases and quantum critical points characterized by gauge theory and "topological" excitations Work in the regime with small J_K , and consider destruction of magnetic order by frustrating (RKKY) exchange interactions between *f* moments

A <u>spin liquid</u> ground state with $\langle \phi \rangle = 0$ and no broken lattice symmetries. Such a state has emergent excitations described by a Z_2 or U(1) gauge theory

P. Fazekas and P.W. Anderson, *Phil Mag* 30, 23 (1974).
N. Read and S. Sachdev, *Phys. Rev. Lett.* 66, 1773 (1991);
X. G. Wen, *Phys. Rev.* B 44, 2664 (1991).

Influence of conduction electrons

Determine the ground state of the quantum antiferromagnet defined by J_H , and then couple to conduction electrons by J_K

Choose J_H so that ground state of antiferromagnet is a Z_2 or U(1) spin liquid

Influence of conduction electrons

Conduction electrons c_{σ}

Local moments f_{σ}

At $J_K = 0$ the conduction electrons form a Fermi surface on their own with volume determined by $n_{c.}$

Perturbation theory in J_K is regular, and so this state will be stable for finite J_K .

So volume of Fermi surface is determined by

 $(n_c+n_f-1)=n_c \pmod{2}$, and does not equal the Luttinger value.

The (U(1) or Z_2) FL* state

A new phase: FL*

This phase preserves spin rotation invariance, and has a Fermi surface of *sharp* electron-like quasiparticles.

The state has "*topological order*" and associated neutral excitations. The topological order can be detected by the violation of Luttinger's Fermi surface volume. It can only appear in dimensions d > 1

 $2 \times \frac{v_0}{(2\pi)^d}$ (Volume enclosed by Fermi surface)

$$= \left(n_f + n_c - 1\right) \pmod{2}$$

Precursors: N. Andrei and P. Coleman, *Phys. Rev. Lett.* 62, 595 (1989).
Yu. Kagan, K. A. Kikoin, and N. V. Prokof'ev, *Physica* B 182, 201 (1992).
Q. Si, S. Rabello, K. Ingersent, and L. Smith, *Nature* 413, 804 (2001).
S. Burdin, D. R. Grempel, and A. Georges, *Phys. Rev.* B 66, 045111 (2002).
L. Balents and M. P. A. Fisher and C. Nayak, *Phys. Rev.* B 60, 1654, (1999);
T. Senthil and M.P.A. Fisher, *Phys. Rev.* B 62, 7850 (2000).

Deconfined criticality in the Kondo lattice ?

Distinct from SDW order in FL state. Includes Mottness
Deconfined criticality in the Kondo lattice ?

U(1) FL* phase generates magnetism at energies much lower than the critical energy of the FL to FL* transition

Conclusions

- 1. Good experimental and theoretical progress in understanding density-driven and LGW quantum phase transitions.
- 2. Many interesting transitions of strongly correlated materials associated with gauge or "topological" order parameters. Intimate connection with Luttinger theorem and lattice commensuration effects. Classification scheme ?
- 3. Many experiments on heavy fermions compounds and cuprates remain mysterious effects of disorder ?
- 4. Ultracold atoms offer new regime for studying many quantum phase transitions.