Emergent “light” and the high temperature superconductors

Pennsylvania State University
State College, January 21, 2016

Subir Sachdev

Talk online: sachdev.physics.harvard.edu
Maxwell's equations: 150 years of light

A century and a half ago, James Clerk Maxwell submitted a long paper to the Royal Society containing his famous equations. Inspired by Michael Faraday's experiments and insights, the equations unified electricity, magnetism and optics. Their far-reaching consequences for our civilisation, and our universe, are still being explored.

Jon Butterworth

Sunday 22 November 2015 08.38 GMT, The Guardian
Maxwell's equations: 150 years of light

A century and a half ago, James Clerk Maxwell submitted a long paper to the Royal Society containing his famous equations. Inspired by Michael Faraday's experiments and insights, the equations unified electricity, magnetism and optics. Their far-reaching consequences for our civilisation, and our universe, are still being explored

Jon Butterworth

Sunday 22 November 2015 08.38 GMT, The Guardian
Modern point-of-view:

Electromagnetic gauge fields are needed to describe the long-range quantum entanglement of the "vacuum".
Modern point-of-view:

Electromagnetic gauge fields are needed to describe the long-range quantum entanglement of the “vacuum”.

Electrons in crystals provide a new “vacuum”, and their interactions can naturally lead to quantum states which have long-range quantum entanglement, and require “emergent” gauge fields.
High temperature superconductors

CuO$_2$ plane

YBa$_2$Cu$_3$O$_{6+x}$
Figure: K. Fujita and J. C. Seamus Davis

$YBa_2Cu_3O_{6+x}$
Figure: K. Fujita and J. C. Seamus Davis
A conventional metal: the Fermi liquid
1. Emergent gauge fields and long-range entanglement in insulators
“Undoped” Anti-ferromagnet
Insulating spin liquid

\[\psi = (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) / \sqrt{2} \]

An insulator with emergent gauge fields: the first proposal of a quantum state with long-range entanglement

L. Pauling, Proceedings of the Royal Society London A 196, 343 (1949)
Insulating spin liquid

\[\frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right) \]

An insulator with emergent gauge fields: the first proposal of a quantum state with long-range entanglement

L. Pauling, Proceedings of the Royal Society London A 196, 343 (1949)
Insulating spin liquid

\[\frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \]

An insulator with emergent gauge fields: the first proposal of a quantum state with long-range entanglement

L. Pauling, Proceedings of the Royal Society London A 196, 343 (1949)
Insulating spin liquid

\[= (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) / \sqrt{2} \]

An insulator with emergent gauge fields: the first proposal of a quantum state with long-range entanglement

L. Pauling, Proceedings of the Royal Society London A 196, 343 (1949)
An insulator with emergent gauge fields: the first proposal of a quantum state with long-range entanglement

L. Pauling, Proceedings of the Royal Society London A 196, 343 (1949)
An insulator with emergent gauge fields: the first proposal of a quantum state with long-range entanglement

L. Pauling, Proceedings of the Royal Society London A 196, 343 (1949)
Ground state degeneracy

Place insulator on a torus;
Ground state degeneracy

Place insulator on a torus;

obtain “topological” states nearly degenerate with the ground state: number of dimers crossing red line is conserved modulo 2

D.J. Thouless, PRB 36, 7187 (1987)
Ground state degeneracy

\[\frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \]

D.J. Thouless, PRB 36, 7187 (1987)
Ground state degeneracy

\[\frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \]

Place insulator on a torus;

obtain “topological” states nearly degenerate with the ground state:

number of dimers crossing red line is conserved modulo 2

D.J. Thouless, PRB 36, 7187 (1987)
Ground state degeneracy

\[\psi = (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) / \sqrt{2} \]

Place insulator on a torus;

obtain “topological” states nearly degenerate with the ground state: number of dimers crossing red line is conserved modulo 2

D.J. Thouless, PRB 36, 7187 (1987)
Ground state degeneracy

\[\frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \]

Place insulator on a torus; obtain “topological” states nearly degenerate with the ground state: number of dimers crossing red line is conserved modulo 2

D.J. Thouless, PRB 36, 7187 (1987)
Ground state degeneracy

\[
\begin{align*}
= (|↑↓⟩ - |↓↑⟩) / \sqrt{2}
\end{align*}
\]

Place insulator on a torus;

obtain “topological” states nearly degenerate with the ground state:

number of dimers crossing red line is conserved modulo 2

D.J. Thouless, PRB 36, 7187 (1987)
Ground state degeneracy

\[\frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \]

Place insulator on a torus; obtain “topological” states nearly degenerate with the ground state: number of dimers crossing red line is conserved modulo 2

D.J. Thouless, PRB 36, 7187 (1987)
Ground state degeneracy

\[
\frac{(\uparrow \downarrow \downarrow \uparrow) - (\downarrow \uparrow \uparrow \downarrow)}{\sqrt{2}}
\]

Place insulator on a torus; obtain “topological” states nearly degenerate with the ground state: number of dimers crossing red line is conserved modulo 2.

D.J. Thouless, PRB 36, 7187 (1987)
Ground state degeneracy

\[\frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \]

- Place insulator on a torus;
- obtain “topological” states nearly degenerate with the ground state;
- number of dimers crossing red line is conserved modulo 2;
- D.J. Thouless, PRB 36, 7187 (1987)
Ground state degeneracy

\[\frac{|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle|}{\sqrt{2}} \]

Place insulator on a torus;

to change dimer number parity across red line, it is necessary to create a pair of unpaired spins and move them around the sample.

D.J. Thouless, PRB 36, 7187 (1987)
Ground state degeneracy

\[\frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right) \]

Place insulator on a torus;
to change dimer number parity across red line, it is necessary to create a pair of unpaired spins and move them around the sample.

D.J. Thouless, PRB 36, 7187 (1987)
Ground state degeneracy

\[\frac{(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)}{\sqrt{2}} \]

Place insulator on a torus;
to change dimer number parity across red line, it is necessary to create a pair of unpaired spins and move them around the sample.

D.J. Thouless, PRB 36, 7187 (1987)
Ground state degeneracy

\[\frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \]

Place insulator on a torus;

to change dimer number parity across red line, it is necessary to create a pair of unpaired spins and move them around the sample.

D.J. Thouless, PRB 36, 7187 (1987)
Ground state degeneracy

\[= (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) / \sqrt{2} \]

Place insulator on a torus;
to change dimer number parity across red line, it is necessary to create a pair of unpaired spins and move them around the sample.

D.J. Thouless, PRB 36, 7187 (1987)
Ground state degeneracy

Place insulator on a torus;
The sensitivity of the degeneracy to the global topology indicates long-range quantum entanglement

D.J. Thouless, PRB 36, 7187 (1987)
Ground state degeneracy

Place insulator on a torus;
The degenerate states are conjugate to the flux of an emergent gauge field piercing the cycles of the torus.

D.J. Thouless, PRB 36, 7187 (1987)
Emergent gauge fields

Local constraint on dimer number operators:

\[\hat{n}_1 + \hat{n}_2 + \hat{n}_3 + \hat{n}_4 = 1. \]

Identify dimer number with an ‘electric’ field, \(\hat{E}_{i\alpha} = (-1)^{i_x+i_y} \hat{n}_{i\alpha} \), \((\alpha = x, y) \); the constraint becomes ‘Gauss’s Law’:

\[\Delta_\alpha \hat{E}_{i\alpha} = (-1)^{i_x+i_y}. \]

The theory of the dimers is compact U(1) quantum electrodynamics in the presence of static background charges. The compact theory allows the analog of Dirac’s magnetic monopoles as tunneling events/excitations.

Emergent gauge fields

Including dimers connecting the same sublattice leads to a \mathbb{Z}_2 gauge theory in the presence of Berry phases of static background charges. This has a stable deconfined phase in 2+1 dimensions. By varying parameters it can undergo a confinement transition to a valence bond solid, described by a frustrated Ising model.

I. Emergent gauge fields and long-range entanglement in insulators
A conventional metal: the Fermi liquid

1. Emergent gauge fields and long-range entanglement in insulators

2. Theory of ordinary metals: Fermi liquids (FL)
 (a) Quasiparticles
 (b) Luttinger theorem for volume enclosed by Fermi surface
Ordinary metals: the Fermi liquid

- Fermi surface separates empty and occupied states in momentum space.

\[\text{Hall coefficient } R_H = \frac{1}{(\text{Fermi volume}) \times e} \]
Ordinary metals: the Fermi liquid

- Fermi surface separates empty and occupied states in momentum space.
- *Luttinger Theorem*: volume (area) enclosed by Fermi surface = the electron density.
Ordinary metals: the Fermi liquid

- Fermi surface separates empty and occupied states in momentum space.
- *Luttinger Theorem*: volume (area) enclosed by Fermi surface = the electron density.
- Hall co-efficient \(R_H = -1/((\text{Fermi volume}) \times e) \).
“Undoped” Anti-ferromagnet
Anti-ferromagnet with p holes per square
Anti-ferromagnet with p holes per square

But relative to the band insulator, there are $1 + p$ holes per square, and so a Fermi liquid has a Fermi surface of size $1 + p$.
Fermi liquid
Area enclosed by Fermi surface = $1 + \rho$

\[R_H = +1/((1 + p)e) \]
2. Pseudogap metal at low p
The PG regime behaves in many respects like a Fermi liquid, but with a Fermi surface size of p and not $1+p$.
The PG regime behaves in many respects like a Fermi liquid, but with a Fermi surface size of p and not $1+p$ e.g. Hall co-efficient $R_H = +1/(pe)$.
1. Emergent gauge fields and long-range entanglement in insulators

2. Theory of ordinary metals: Fermi liquids (FL)
 (a) Quasiparticles
 (b) Luttinger theorem for volume enclosed by Fermi surface

3. The FL* phase:
 Quasiparticles with a non-Luttinger volume, and emergent gauge fields
Anti-ferromagnet with p holes per square
Anti-ferromagnet with p holes per square

Can we get a Fermi surface of size p?
(and full square lattice symmetry)
Spin liquid with density \(p \) of spinless, charge +e “holons”. These can form a Fermi surface of size \(p \), but this is not visible in electron photo-emission.

\[
\Psi = \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right) / \sqrt{2}
\]
Spin liquid with density ρ of spinless, charge $+e$ “holons”. These can form a Fermi surface of size ρ, but this is not visible in electron photo-emission.

$$= (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) / \sqrt{2}$$

N. Read and B. Chakraborty, PRB 40, 7133 (1989)
Spin liquid with density p of spinless, charge $+e$ "holons". These can form a Fermi surface of size p, but this is not visible in electron photo-emission.

$$ = (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) / \sqrt{2}$$

N. Read and B. Chakraborty, PRB 40, 7133 (1989)
Spin liquid with density p of spinless, charge +e “holons”. These can form a Fermi surface of size p, but this is not visible in electron photo-emission.

$$= (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) / \sqrt{2}$$

N. Read and B. Chakraborty, PRB 40, 7133 (1989)
Spin liquid with density p of spinless, charge $+e$ “holons”. These can form a Fermi surface of size p, but this is not visible in electron photo-emission.

\[\frac{1}{p^2} = \frac{(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)}{\sqrt{2}} \]
Spin liquid with density \(p \) of spinless, charge +e “holons”. These can form a Fermi surface of size \(p \), but this is not visible in electron photo-emission.

\[
\psi = \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right) / \sqrt{2}
\]

N. Read and B. Chakraborty, PRB 40, 7133 (1989)
Spin liquid with density \(p \) of spinless, charge +e "holons". These can form a Fermi surface of size \(p \), but this is not visible in electron photo-emission

\[
= \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right)/\sqrt{2}
\]
Spin liquid with density p of spinless, charge $+e$ “holons”. These can form a Fermi surface of size p, but this is not visible in electron photo-emission.

$$\psi = (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)/\sqrt{2}$$
\[
\hat{E} = (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) / \sqrt{2}
\]
= (|↑↓⟩ - |↓↑⟩) / \sqrt{2}
\[
= \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right) / \sqrt{2}
\]
\[(\left| \uparrow\downarrow \right
angle - \left| \downarrow\uparrow \right
angle \right) / \sqrt{2}\]
\[= (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) / \sqrt{2} \]
= (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) / \sqrt{2}
\[
\frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)
\]
\[= \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right) / \sqrt{2} \]
FL*

\[
S = \frac{1}{2}, \text{charge} +e \text{fermionic dimers: form a Fermi surface of size } p \text{ visible in electron photo-emission}
\]

\[
= \frac{(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)}{\sqrt{2}}
\]

\[
= \frac{(|\uparrow\circ\rangle + |\circ\uparrow\rangle)}{\sqrt{2}}
\]

Mobile
S=1/2, charge +e fermionic dimers: form a Fermi surface of size \(p \) visible in electron photoemission

Mobile $S=1/2$, charge $+e$ fermionic dimers: form a Fermi surface of size p visible in electron photoemission.

\[= \frac{(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)}{\sqrt{2}} \]

\[= \frac{(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle)}{\sqrt{2}} \]

Mobile S=1/2, charge +e fermionic dimers: form a Fermi surface of size p visible in electron photo-emission

$\begin{align*}
\text{FL}^* &= \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right) / \sqrt{2} \\
\text{closed bond} &= \left(|\uparrow\circ\rangle + |\circ\uparrow\rangle \right) / \sqrt{2}
\end{align*}$

FL*

Mobile
S = 1/2, charge +e fermionic dimers: form a Fermi surface of size p visible in electron photo-emission

$| \uparrow \downarrow \rangle - | \downarrow \uparrow \rangle |_{/ \sqrt{2}}$

$| \uparrow \circ \rangle + | \circ \uparrow \rangle |_{/ \sqrt{2}}$

Mobile $S=1/2$, charge $+e$ fermionic dimers: form a Fermi surface of size p visible in electron photo-emission

$\frac{1}{\sqrt{2}} = (\left| \uparrow \downarrow \right\rangle - \left| \downarrow \uparrow \right\rangle) / \sqrt{2}$

$\frac{1}{\sqrt{2}} = (\left| \uparrow \circ \right\rangle + \left| \circ \uparrow \right\rangle) / \sqrt{2}$

Mobile $S=1/2$, charge $+e$ fermionic dimers: form a Fermi surface of size p visible in electron photo-emission.
FL*

Mobile
S=1/2, charge +e fermionic dimers: form a Fermi surface of size p visible in electron photo-emission

$\psi = (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)/\sqrt{2}$

$\psi' = (|\uparrow\circ\rangle + |\circ\uparrow\rangle)/\sqrt{2}$

Ground state degeneracy

Place FL* on a torus:
Place FL* on a torus: obtain “topological” states nearly degenerate with quasiparticle states: number of dimers crossing red line is conserved modulo 2

Place FL* on a torus:

obtain “topological” states nearly degenerate with quasiparticle states: number of dimers crossing red line is conserved modulo 2

\[
\begin{align*}
\text{2} & = (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) / \sqrt{2} \\
\text{2} & = (|\uparrow\circ\rangle + |\circ\uparrow\rangle) / \sqrt{2}
\end{align*}
\]

Place FL* on a torus:

obtain “topological” states nearly degenerate with quasiparticle states: number of dimers crossing red line is conserved modulo 2

\[\langle \uparrow \downarrow \rangle - \langle \downarrow \uparrow \rangle \approx \sqrt{2} \]

\[\langle \uparrow \circ \rangle + \langle \circ \uparrow \rangle \approx \sqrt{2} \]

Place FL* on a torus:

gain “topological” states nearly degenerate with quasiparticle states: number of dimers crossing red line is conserved modulo 2

\[\frac{\left| \uparrow \downarrow \right> - \left| \downarrow \uparrow \right>}{\sqrt{2}} \]

\[\frac{\left| \uparrow \circ \right> + \left| \circ \uparrow \right>}{\sqrt{2}} \]

Place FL* on a torus: obtain “topological” states nearly degenerate with quasiparticle states: number of dimers crossing red line is conserved modulo 2

\[\text{FL}^* \]

\[= (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) / \sqrt{2} \]

\[= (|\uparrow\circ\rangle + |\circ\uparrow\rangle) / \sqrt{2} \]

We have described a metal with:

- A Fermi surface of electrons enclosing volume p, and not the Luttinger volume of $1+p$
- Additional low energy quantum states on a torus not associated with quasiparticle excitations i.e. emergent gauge fields
We have described a metal with:

- A Fermi surface of electrons enclosing volume p, and not the Luttinger volume of $1+p$,
- Additional low energy quantum states on a torus not associated with quasiparticle excitations i.e. emergent gauge fields.

There is a general and fundamental relationship between these two characteristics.

Following the evolution of the quantum state under adiabatic insertion of a flux quantum leads to a non-perturbative argument for the volume enclosed by the Fermi surface.

1. Emergent gauge fields and long-range entanglement in insulators

2. Theory of ordinary metals: Fermi liquids (FL)
 (a) Quasiparticles
 (b) Luttinger theorem for volume enclosed by Fermi surface

3. The FL* phase:
 Quasiparticles with a non-Luttinger volume, and emergent gauge fields
1. Emergent gauge fields and long-range entanglement in insulators

2. Theory of ordinary metals: Fermi liquids (FL)
 (a) Quasiparticles
 (b) Luttinger theorem for volume enclosed by Fermi surface

3. The FL* phase:
 Quasiparticles with a non-Luttinger volume, and emergent gauge fields

4. The pseudogap metal of the cuprate superconductors
2. **Pseudogap metal at low p**

A new metal - FL*:
with electron-like quasiparticles on a Fermi surface of size p and emergent gauge fields

Recent evidence for pseudogap metal as FL*

- Density wave instabilities of FL* have wave vector and form-factors which agree with STM/X-ray observations in DW region (D. Chowdhury and S. Sachdev, PRB 90, 245136 (2014)).
Density wave (DW) order at low T and p
\[Q = (\pi/2, 0) \]

Legend:
- **PG**: Phase Goldstone
- **SM**: Superconducting Macroscopic
- **FL**: Fermi liquid
- **AF**: Antiferromagnet
- **DW**: Dimerized Wigner
- **dSC**: Dimerized Superconducting

Diagram: A color gradient map showing temperature and pressure phases, with region labels for PG, SM, FL, DW, and dSC + DW. A vector arrow indicates the transition from AF to dSC + DW at a specific temperature \(T^* \).
$Q = (\pi/2, 0)$
The high T FL* can help explain the “d-form factor density wave” observed at low T.

Recent evidence for pseudogap metal as FL*

- Density wave instabilities of FL* have wave vector and form-factors which agree with STM/X-ray observations in DW region (D. Chowdhury and S. Sachdev, PRB 90, 245136 (2014)).
Recent evidence for pseudogap metal as FL*

- Density wave instabilities of FL* have wave vector and form-factors which agree with STM/X-ray observations in DW region (D. Chowdhury and S. Sachdev, PRB 90, 245136 (2014)).

- T-independent positive Hall co-efficient, R_H, corresponding to carrier density p in the higher temperature pseudogap (Ando et al., PRL 92, 197001 (2004)) and in recent measurements at high fields, low T, and around $p \approx 0.16$ in YBCO (Proust-Taillefer-UBC collaboration, Badoux et al., arXiv:1511.08162).
Figure: K. Fujita and J. C. Seamus Davis

$\text{YBa}_2\text{Cu}_3\text{O}_{6+x}$
High field, low T measurements show a positive Hall co-efficient corresponding to carriers of density $1 + p$.

High field, low T measurements show a positive Hall co-efficient corresponding to carriers of density p. This is likely due to the presence of antiferromagnetic order.
High field, low T measurements show a positive Hall co-efficient corresponding to carriers of density p

Figure: K. Fujita and J. C. Seamus Davis
Recent evidence for pseudogap metal as FL*

Fig. 2 | Field dependence of the Hall coefficient in YBCO.

Hall coefficient of YBCO at various fixed temperatures, as indicated, plotted as \(R_H \) vs \(H / H_{vs} \), where \(H_{vs}(T) \) is the vortex-lattice melting field above which \(R_H \) becomes non-zero, for two dopings: \(p = 0.15 \) (top panel) and \(p = 0.16 \) (bottom panel).

Upon cooling, we see that \(R_H \) decreases and eventually becomes negative at \(p = 0.15 \), while it never drops at \(p = 0.16 \).
Recent evidence for pseudogap metal as FL*

Recent evidence for pseudogap metal as FL*

Recent evidence for pseudogap metal as FL*
We have described a metal with:

- A Fermi surface of electrons enclosing volume p, and not the Luttinger volume of $1+p$
- Additional low energy quantum states on a torus not associated with quasiparticle excitations i.e. emergent gauge fields
We have described a metal with:

- A Fermi surface of electrons enclosing volume p, and not the Luttinger volume of $1+p$
- Additional low energy quantum states on a torus not associated with quasiparticle excitations i.e. emergent gauge fields

There is a general and fundamental relationship between these two characteristics. Promising indications that such a metal describes the pseudogap of the cuprate superconductors.