Stringing together the quantum phases of matter

Princeton University, July 25, 26, 2012

Subir Sachdev

Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World
arXiv:1203.4565

Talk online at sachdev.physics.harvard.edu
“Complex entangled” states of quantum matter, not adiabatically connected to independent particle states

Gapped quantum matter
 \(Z_2\) Spin liquids, quantum Hall states

Conformal quantum matter
 Graphene, ultracold atoms, antiferromagnets

Compressible quantum matter
 Strange metals, Bose metals
“Complex entangled” states of quantum matter, \textit{not} adiabatically connected to independent particle states.

\textbf{Gapped quantum matter}\n\hline
\textit{Z}_2 \text{ Spin liquids, quantum Hall states}

\textbf{Conformal quantum matter}\n\hline
\textit{Graphene, ultracold atoms, antiferromagnets}

\textbf{Compressible quantum matter}\n\hline
\textit{Strange metals, Bose metals}
“Complex entangled” states of quantum matter, \textit{not} adiabatically connected to independent particle states

Gapped quantum matter
\[Z_2 \text{ Spin liquids, quantum Hall states} \]

Conformal quantum matter
\[\text{Graphene, ultracold atoms, antiferromagnets} \]

Compressible quantum matter
\[\text{Strange metals, Bose metals} \]
“Complex entangled” states of quantum matter, not adiabatically connected to independent particle states

Gapped quantum matter
- Z_2 Spin liquids, quantum Hall states

Conformal quantum matter
- Graphene, ultracold atoms, antiferromagnets

Compressible quantum matter
- Strange metals, Bose metals

Topological field theory

Conformal field theory

?
“Complex entangled” states of quantum matter,
not adiabatically connected to independent particle states

Gapped quantum matter
\[\mathbb{Z}_2 \text{ Spin liquids, quantum Hall states} \]

Conformal quantum matter
Graphene, ultracold atoms, antiferromagnets

Compressible quantum matter
Strange metals, Bose metals
Conformal quantum matter

A. Field theory:
 Honeycomb lattice
 Hubbard model

B. Gauge-gravity duality
Conformal quantum matter

A. Field theory:
 Honeycomb lattice
 Hubbard model

B. Gauge-gravity duality
Honeycomb lattice
(describes graphene after adding long-range Coulomb interactions)

\[H = -t \sum_{\langle ij \rangle} c^\dagger_{i\alpha} c_{j\alpha} + U \sum_i \left(n_{i\uparrow} - \frac{1}{2} \right) \left(n_{i\downarrow} - \frac{1}{2} \right) \]
Semi-metal with massless Dirac fermions at small U/t
We define the Fourier transform of the fermions by

\[c_A(k) = \sum_r c_A(r) e^{-ik \cdot r} \] \hspace{1cm} (4)

and similarly for \(c_B \). \(A \) and \(B \) are sublattice indices. The hopping Hamiltonian is

\[H_0 = -t \sum_{\langle ij \rangle} \left(c_{Ai\alpha}^\dagger c_{Bj\alpha} + c_{Bj\alpha}^\dagger c_{Ai\alpha} \right) \] \hspace{1cm} (5)

where \(\alpha \) is a spin index. If we introduce Pauli matrices \(\tau^a \) in sublattice space (\(a = x, y, z \)), this Hamiltonian can be written as

\[H_0 = \int \frac{d^2k}{4\pi^2} c^\dagger(k) \left[-t \left(\cos(k \cdot e_1) + \cos(k \cdot e_2) + \cos(k \cdot e_3) \right) \tau^x
+ t \left(\sin(k \cdot e_1) + \sin(k \cdot e_2) + \sin(k \cdot e_3) \right) \tau^y \right] c(k) \] \hspace{1cm} (6)

The low energy excitations of this Hamiltonian are near \(k \approx \pm Q_1 \).
In terms of the fields near Q_1 and $-Q_1$, we define

\[
\begin{align*}
\psi_{A1\alpha}(k) &= c_{A\alpha}(Q_1 + k) \\
\psi_{A2\alpha}(k) &= c_{A\alpha}(-Q_1 + k) \\
\psi_{B1\alpha}(k) &= c_{B\alpha}(Q_1 + k) \\
\psi_{B2\alpha}(k) &= c_{B\alpha}(-Q_1 + k)
\end{align*}
\]

(7)

We consider Ψ to be a 8 component vector, and introduce Pauli matrices ρ^a which act in the 1, 2 valley space. Then the Hamiltonian is

\[
H_0 = \int \frac{d^2 k}{4\pi^2} \psi^\dagger(k) \left(\nu \tau^y k_x + \nu \tau^x \rho^z k_y \right) \psi(k),
\]

(8)

where $\nu = 3t/2$; below we set $\nu = 1$. Now define $\overline{\psi} = \psi^\dagger \rho^z \tau^z$. Then we can write the imaginary time Lagrangian as

\[
L_0 = -i \overline{\psi} (\omega \gamma_0 + k_x \gamma_1 + k_y \gamma_2) \psi
\]

(9)

where

\[
\gamma_0 = -\rho^z \tau^z \quad \gamma_1 = \rho^z \tau^x \quad \gamma_2 = -\tau^y
\]

(10)
Exercise: Observe that \mathcal{L}_0 is invariant under the scaling transformation $x' = xe^{-\ell}$ and $\tau' = \tau e^{-\ell}$. Write the Hubbard interaction U in terms of the Dirac fermions, and show that it has the tree-level scaling transformation $U' = U e^{-\ell}$. So argue that all short-range interactions are *irrelevant* in the Dirac semi-metal phase.
The theory of free Dirac fermions is invariant under conformal transformations of spacetime. This is a realization of a simple conformal field theory in 2+1 dimensions: a CFT3.
The Hubbard Model at large U

$$H = - \sum_{i,j} t_{ij} c_{i\alpha}^\dagger c_{j\alpha} + U \sum_i \left(n_{i\uparrow} - \frac{1}{2} \right) \left(n_{i\downarrow} - \frac{1}{2} \right) - \mu \sum_i c_{i\alpha}^\dagger c_{i\alpha}$$

In the limit of large U, and at a density of one particle per site, this maps onto the Heisenberg antiferromagnet

$$H_{AF} = \sum_{i<j} J_{ij} S_i^a S_j^a$$

where $a = x, y, z$,

$$S_i^a = \frac{1}{2} c_{i\alpha}^a \sigma_{\alpha\beta}^a c_{i\beta},$$

with σ^a the Pauli matrices and

$$J_{ij} = \frac{4t_{ij}^2}{U}$$
Dirac semi-metal

Insulating antiferromagnet with Neel order
Antiferromagnetism

We use the operator equation (valid on each site i):

$$ U \left(n_{\uparrow} - \frac{1}{2} \right) \left(n_{\downarrow} - \frac{1}{2} \right) = -\frac{2U}{3} S^{a2} + \frac{U}{4} \quad (11) $$

Then we decouple the interaction via

$$ \exp \left(\frac{2U}{3} \sum_i \int d\tau S^a_{i2} \right) = \int \mathcal{D} J^a_i(\tau) \exp \left(-\sum_i \int d\tau \left[\frac{3}{8U} J^a_{i2} - J^a_i S^a_i \right] \right) \quad (12) $$

We now integrate out the fermions, and look for the saddle point of the resulting effective action for J^a_i.

Long wavelength fluctuations about this saddle point are described by a field theory of the Néel order parameter, φ^a, coupled to the Dirac fermions in the **Gross-Neveu** model.

$$ \mathcal{L} = \overline{\Psi} \gamma_\mu \partial_\mu \Psi + \frac{1}{2} \left[(\partial_\mu \varphi^a)^2 + s \varphi^{a2} \right] + \frac{U}{24} (\varphi^{a2})^2 - \lambda \varphi^a \overline{\Psi} \rho^z \sigma^a \Psi $$

Dirac semi-metal

\[\langle \varphi^a \rangle = 0 \]

Insulating antiferromagnet with Neel order

\[\langle \varphi^a \rangle \neq 0 \]
At the quantum critical point, the non-linear couplings λ and u in the Gross-Neveu model reach non-zero fixed-point values under the renormalization group flow. The critical theory is an interacting CFT3.
Dirac semi-metal

\[\langle \varphi^a \rangle = 0 \]

Insulating antiferromagnet with Neel order

\[\langle \varphi^a \rangle \neq 0 \]

Free CFT3

Interacting CFT3 with many-body entanglement
Electron Green’s function for the interacting CFT3

\[G(k, \omega) = \left\langle \psi(k, \omega); \psi^\dagger(k, \omega) \right\rangle \sim \frac{i\omega + \nu k_x \tau^y + \nu k_y \tau^x \rho^z}{(\omega^2 + \nu^2 k_x^2 + \nu^2 k_y^2)^{1-\eta/2}} \]

where \(\eta > 0 \) is the \textit{anomalous dimension} of the fermion. Note that this leads to a fermion spectral density which has no quasiparticle pole: thus the quantum critical point has no well-defined quasiparticle excitations.
$\text{Im}G(k, \omega)$
Quantum phase transition described by a strongly-coupled conformal field theory without well-defined quasiparticles
The conserved electrical current is

\[J_\mu = -i\bar{\Psi}\gamma_\mu\Psi. \]

Let us compute its two-point correlator, \(K_{\mu\nu}(k) \) at a spacetime momentum \(k_\mu \) at \(T = 0 \). At leading order, this is given by a one fermion loop diagram which evaluates to

\[
K_{\mu\nu}(k) = \int \frac{d^3 p}{8\pi^3} \frac{\text{Tr} \left[\gamma_\mu (i\gamma_\lambda p_\lambda + m\rho^z\sigma^z)\gamma_\nu (i\gamma_\delta (k_\delta + p_\delta) + m\rho^z\sigma^z) \right]}{(p^2 + m^2)((p + k)^2 + m^2)} = -\frac{2}{\pi} \left(\delta_{\mu\nu} - \frac{k_\mu k_\nu}{k^2} \right) \int_0^1 dx \frac{k^2 x(1-x)}{\sqrt{m^2 + k^2 x(1-x)}},
\]

where the mass \(m = 0 \) in the semi-metal and at the quantum critical point, while \(m = |\lambda N_0| \) in the insulator. Note that the current correlation is purely transverse, and this follows from the requirement of current conservation

\[k_\mu K_{\mu\nu} = 0. \]
Of particular interest to us is the K_{00} component, after analytic continuation to Minkowski space where the spacetime momentum k_μ is replaced by (ω, k). The conductivity is obtained from this correlator via the Kubo formula

$$\sigma(\omega) = \lim_{k \to 0} -\frac{i\omega}{k^2} K_{00}(\omega, k).$$

(4)

In the insulator, where $m > 0$, analysis of the integrand in Eq. (2) shows that the spectral weight of the density correlator has a gap of $2m$ at $k = 0$, and the conductivity in Eq. (4) vanishes. These properties are as expected in any insulator.

In the metal, and at the critical point, where $m = 0$, the fermionic spectrum is gapless, and so is that of the charge correlator. The density correlator in Eq. (2) and the conductivity in Eq. (4) evaluate to the simple universal results

$$K_{00}(\omega, k) = \frac{1}{4} \frac{k^2}{\sqrt{k^2 - \omega^2}}$$

$$\sigma(\omega) = 1/4.$$

(5)

Going beyond one-loop, we find no change in these results in the
semi-metal to all orders in perturbation theory. At the quantum critical point, there are no anomalous dimensions for the conserved current, but the amplitude does change yielding

\[K_{00}(\omega, k) = \mathcal{K} \frac{k^2}{\sqrt{k^2 - \omega^2}} \]

\[\sigma(\omega) = \mathcal{K}, \]

(6)

where \(\mathcal{K} \) is a universal number dependent only upon the universality class of the quantum critical point. The value of the \(\mathcal{K} \) for the Gross-Neveu model is not known exactly, but can be estimated by computations in the \((3 - d)\) or \(1/N\) expansions.

Also note \(K_{\mu\nu} = \mathcal{K}|k| \left(\delta_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^2} \right) \)
Dirac semi-metal

\[\langle \varphi^a \rangle = 0 \]

Insulating antiferromagnet with Neel order

\[\langle \varphi^a \rangle \neq 0 \]

Free CFT3

Interacting CFT3 with long-range entanglement
Dirac semi-metal

\[\langle \varphi^a \rangle = 0 \]

Insulating antiferromagnet with Neel order

\[\langle \varphi^a \rangle \neq 0 \]

\[\sigma(\omega) = \frac{\pi e^2}{2\hbar} \]

\[\sigma(\omega) = \frac{\kappa e^2}{\hbar} \]
Phase diagram at non-zero temperatures

- **Quantum critical**
- **Insulator with thermally excited spin waves**
- **Semi-metal**

Néel order

Wednesday, August 1, 12
Phase diagram at non-zero temperatures

$\sigma(\omega \gg T) = \frac{\pi e^2}{2h}$

Insulator with thermally excited spin waves

Quantum critical

Semi-metal

Néel order
Insulator with thermally excited spin waves

Quantum critical

Semi-metal

Phase diagram at non-zero temperatures

$\sigma(\omega \gg T) = \frac{\pi e^2}{2\hbar}$

$\sigma(\omega \gg T) = \frac{\kappa e^2}{\hbar}$
Optical conductivity of graphene

Optical conductivity of graphene

Undoped graphene

Non-zero temperatures

At the quantum-critical point at one-loop order, we can set \(m = 0 \), and then repeat the computation in Eq. (2) at \(T > 0 \). This only requires replacing the integral over the loop frequency by a summation over the Matsubara frequencies, which are quantized by odd multiples of \(\pi T \). Such a computation, via Eq. (4) leads to the conductivity

\[
\text{Re}[\sigma(\omega)] = (2T \ln 2) \delta(\omega) + \frac{1}{4} \tanh \left(\frac{|\omega|}{4T} \right);
\]

the imaginary part of \(\sigma(\omega) \) is the Hilbert transform of \(\text{Re}[\sigma(\omega)] - 1/4 \). Note that this reduces to Eq. (5) in the limit \(\omega \gg T \). However, the most important new feature of Eq. (7) arises for \(\omega \ll T \), where we find a delta function at zero frequency in the real part. Thus the d.c. conductivity is infinite at this order, arising from the collisionless transport of thermally excited carriers.
Electrical transport in a free CFT3 for $T > 0$

\[\sigma \sim T \delta(\omega) \]
Particle hole symmetry: current carrying state has zero momentum, and collisions can relax current to zero.
Electrical transport for a (weakly) interacting CFT3

\[\sigma(\omega, T) = \frac{e^2}{\hbar} \sum \left(\frac{\hbar \omega}{k_B T} \right) ; \quad \Sigma \to \text{a universal function} \]

Electrical transport for a (weakly) interacting CFT3

\[\sigma(\omega, T) = \frac{e^2}{\hbar} \sum \left(\frac{\hbar \omega}{k_B T} \right) ; \quad \Sigma \rightarrow \text{a universal function} \]

\[\mathcal{O}(u^*)^2, \]
where \(u^* \) is the fixed point interaction

Electrical transport for a (weakly) interacting CFT3

\[\sigma(\omega, T) = \frac{e^2}{\hbar} \sum \left(\frac{\hbar \omega}{k_B T} \right) ; \quad \Sigma \rightarrow \text{a universal function} \]

\[\mathcal{O}(1/(u^*)^2) \]

\[\mathcal{O}((u^*)^2), \]
where \(u^* \) is the fixed point interaction

Electrical transport for a (weakly) interacting CFT3

\[\sigma(\omega, T) = \frac{e^2}{\hbar} \sum \left(\frac{\hbar \omega}{k_B T} \right) ; \quad \Sigma \to \text{a universal function} \]

\[\mathcal{O}(1/(u^*)^2) \]

\[\mathcal{O}((u^*)^2), \]

where \(u^* \) is the fixed point interaction

Electrical transport for a (weakly) interacting CFT3

\[
\sigma(\omega, T) = \frac{e^2}{\hbar} \sum \left(\frac{\hbar \omega}{k_B T} \right) ; \quad \Sigma \rightarrow \text{a universal function}
\]

\(\mathcal{O}(1/(u^*)^2) \)

\[\text{Re}[\sigma(\omega)] \]

\[\frac{\hbar \omega}{k_B T} \]

Needed:

a method for computing the d.c. conductivity of interacting CFT3s (including that of pure graphene!)

Quantum critical transport

Quantum “nearly perfect fluid” with shortest possible equilibration time, τ_{eq}

\[
\tau_{\text{eq}} = C \frac{\hbar}{k_B T}
\]

where C is a universal constant

Quantum critical transport

Quantum “nearly perfect fluid” with shortest possible equilibration time, τ_{eq}

$$\tau_{\text{eq}} = C \frac{\hbar}{k_B T}$$

where C is a universal constant

Quantum critical transport

Quantum “nearly perfect fluid” with shortest possible equilibration time, τ_{eq}

$$\tau_{\text{eq}} = C \frac{\hbar}{k_B T}$$

where C is a universal constant

Zaanen: Planckian dissipation

Quantum critical transport

Transport coefficients not determined by collision rate, but by universal constants of nature

\[\sigma = \frac{Q^2}{\hbar} \times [\text{Universal constant } O(1)] \]

(Q is the “charge” of one particle)

Quantum critical transport

Transport co-oefficients not determined by collision rate, but by universal constants of nature

Momentum transport

\[\frac{\eta}{s} \equiv \frac{\text{viscosity}}{\text{entropy density}} \]

\[= \frac{\hbar}{k_B} \times [\text{Universal constant } O(1)] \]

Conformal quantum matter

A. Field theory:
 Honeycomb lattice
 Hubbard model

B. Gauge-gravity duality
Conformal quantum matter

A. Field theory:
 Honeycomb lattice
 Hubbard model

B. Gauge-gravity duality
Field theories in $d + 1$ spacetime dimensions are characterized by couplings g which obey the renormalization group equation

$$u \frac{dg}{du} = \beta(g)$$

where u is the energy scale. The RG equation is \textit{local} in energy scale, \textit{i.e.} the RHS does not depend upon u.
Key idea: ⇒ Implement \(r \) as an extra dimension, and map to a local theory in \(d + 2 \) spacetime dimensions.
For a relativistic CFT in d spatial dimensions, the metric in the holographic space is uniquely fixed by demanding the following scale transformation $(i = 1 \ldots d)$

$$x_i \rightarrow \zeta x_i \ , \ t \rightarrow \zeta t \ , \ ds \rightarrow ds$$
For a relativistic CFT in d spatial dimensions, the metric in the holographic space is uniquely fixed by demanding the following scale transformation

$$(i = 1 \ldots d)$$

$$x_i \rightarrow \zeta x_i \quad , \quad t \rightarrow \zeta t \quad , \quad ds \rightarrow ds$$

This gives the unique metric

$$ds^2 = \frac{1}{r^2} \left(-dt^2 + dr^2 + dx_i^2 \right)$$

Reparametrization invariance in r has been used to the prefactor of dx_i^2 equal to $1/r^2$. This fixes $r \rightarrow \zeta r$ under the scale transformation. This is the metric of the space AdS_{d+2}.

Wednesday, August 1, 12
AdS/CFT correspondence

AdS\(_{d+2}\) \[\mathbb{R}^{d,1}\]

Minkowski

CFT\(_{d+1}\)
AdS/CFT correspondence
This emergent spacetime is a solution of Einstein gravity with a negative cosmological constant

\[
S_E = \int d^4x \sqrt{-g} \left[\frac{1}{2\kappa^2} \left(R + \frac{6}{L^2} \right) \right]
\]
Consider a CFT in D space-time dimensions with a scalar operator $O(x)$ with scaling dimension Δ. This is presumed to be equivalent to a dual gravity theory on AdS$_{D+1}$ with action S_{bulk}. The CFT and the bulk theory are related by the GKPW ansatz

\[\left. \int \mathcal{D}\phi \exp(-S_{\text{bulk}}) \right|_{\text{bdy}} = \left\langle \exp\left(\int d^D x \phi_0(x)O(x) \right) \right\rangle_{\text{CFT}} \]

where the boundary condition is

\[\lim_{r \to 0} \phi(x, r) = r^{D-\Delta} \phi_0(x). \]
AdS/CFT correspondence at zero temperature

Consider a CFT in \(D \) space-time dimensions with a scalar operator \(O(\mathbf{x}) \) with scaling dimension \(\Delta \). This is presumed to be equivalent to a dual gravity theory on \(\text{AdS}_{D+1} \) with action \(S_{\text{bulk}} \). The CFT and the bulk theory are related by the GKPW ansatz

\[
\int \mathcal{D}\phi \exp \left(-S_{\text{bulk}} \right) \bigg|_{\text{bdy}} = \left\langle \exp \left(\int d^D x \phi_0(\mathbf{x})O(\mathbf{x}) \right) \right\rangle_{\text{CFT}}
\]

where the boundary condition is

\[
\lim_{r \to 0} \phi(\mathbf{x}, r) = r^{D-\Delta} \phi_0(\mathbf{x}).
\]

We consider the simplest case of a single scalar field, where the bulk action is

\[
S_{\text{bulk}} = \frac{1}{2} \int d^{D+1}x \sqrt{g} \left[g^{ab} \partial_a \phi \partial_b \phi + m^2 \phi^2 \right]
\]

where \(g_{ab} \) is the \(\text{AdS}_{D+1} \) metric (we are working with a Euclidean signature, and \(a, b \) extend over \(D + 1 \) dimensions) and \(g = \det(g_{ab}) \). After Fourier transforming space-time co-ordinates to momenta \(k \), the saddle-point equation for \(\phi(k, r) \) is

\[
-r^{D-1} \frac{d}{dr} \left(\frac{1}{r^{D-1}} \frac{d\phi}{dr} \right) + \left(k^2 + \frac{m^2}{r^2} \right) \phi = 0.
\]
This equation has two solutions as $r \to 0$, with $\phi \sim r^\Delta$ or $\phi \sim r^{D-\Delta}$ where

\[
\Delta = \frac{D}{2} \pm \sqrt{\frac{D^2}{4} + m^2}.
\]

We will choose the positive sign in the manipulations below, but the final results hold for both signs. The complete solution of the saddle-point equation with the needed boundary condition can be written as

\[
\phi(k, r) = G_{\text{bulk-bdy}}(k, r) \phi_0(k)
\]

where

\[
G_{\text{bulk-bdy}}(k, r) = \frac{2^{1-\Delta+D/2}}{\Gamma(\Delta - D/2)} r^{D/2} K_{\Delta-D/2}(kr)
\]

where $K_{\Delta-D/2}$ is a modified Bessel function.

Next, it is useful to obtain the bulk-bulk Green’s function by inverting the operator in the equation of motion. A standard computation yields

\[
G_{\text{bulk-bulk}}(k, r_1, r_2) = (r_1 r_2)^{D/2} I_{\Delta-D/2}(kr_<) K_{\Delta-D/2}(kr_>)
\]

where $r_<$ ($r_>$) is the smaller (larger) or $r_{1,2}$. This bulk-bulk Green’s function is evaluated in the absence of any sources on the boundary, and so we have to impose
the boundary condition $\phi(k, r) \sim r^\Delta$ as $r \to 0$ in solving the saddle-point equation. The utility of this bulk-bulk Green’s function is that it now allows us to extend our results to include interactions in S_{bulk} by the usual Feynman graph expansion. We can account for the presence of the boundary source $\phi_0(k)$ in the CFT by imagining there is a corresponding bulk source field $J_0(k, r)$ which is localized at very small values of r. Then this bulk source field will generate a bulk $\phi(k, r)$ via the propagator $G_{\text{bulk-bulk}}$. We now note that

$$\lim_{r_2 \to 0} G_{\text{bulk-bulk}}(k, r_1, r_2) = \frac{r_2^\Delta}{(2\Delta - D)} G_{\text{bulk-bdy}}(k, r_1).$$

This is a key relation which shows us that functional derivatives of the full action w.r.t. $J_0(k, r)$ (which yield bulk-bulk correlation functions) are the same as functional derivatives w.r.t. $\phi_0(k)$ (which yield correlators of the CFT). This yields the second statement of the equivalence between the bulk and boundary theories

$$\langle O(x_1) \ldots O(x_n) \rangle_{\text{CFT}} = Z^n \lim_{r \to 0} r_1^{-\Delta} \ldots r_n^{-\Delta} \langle \phi(x_1, r_1) \ldots \phi(x_n, r_n) \rangle_{\text{bulk}}$$

where the “wave function renormalization” factor $Z = (2\Delta - D)$. Note that this relationship holds for arbitrary bulk actions, and permits full quantum fluctuations in the bulk theory. Also, both correlators are evaluated in the absence of external sources; for the bulk theory this means that we have the boundary condition...
\(\phi(k, r) \sim r^\Delta\) as \(r \to 0\). From this general relation we can evaluate the two-point correlator of the CFT for the case of a bulk Gaussian action:

\[
\langle O(k)O(-k) \rangle_{\text{CFT}} = Z^2 \lim_{r \to 0} (r)^{-2\Delta} G_{\text{bulk-bulk}}(k, r, r)
\]

\[
= \lim_{r \to 0} (2\Delta - D)r^{-(2\Delta - D)} - (2\Delta - D) \left(\frac{k}{r}\right)^{2\Delta - D} \frac{\Gamma(1 - \Delta + D/2)}{\Gamma(1 + \Delta - D/2)}
\]

The first term is divergent, but it is independent of \(k\): so it does not contribute to the long-distance correlations of the CFT, and can be dropped. The second term has the singular dependence \(\sim k^{2\Delta - D}\), which is just as expected for a field with scaling dimension \(\Delta\), for the Fourier transformation yields

\[
\langle O(x_1)O(x_2) \rangle_{\text{CFT}} \sim |x_1 - x_2|^{-2\Delta}.
\]
The final formulation of the bulk-boundary correspondence appears by using the above relations for arbitrary multi-point correlators in the absence of a source, to make a statement for the one-point function in the presence of a source, working to all orders in the source and all bulk interactions. As we noted earlier, the CFT source $\phi_0(k)$ can be simulated by a source $J_0(k, r)$ which is localized near the boundary but acts on the bulk theory. Because of the identity above between the source-free correlators, we can conclude that $\langle O(x) \rangle$ equals $Z \lim_{r \to 0} r^{-\Delta} \langle \phi(x, r) \rangle$. However, we have to remember that the source $J_0(k, r)$ is actually realized by a boundary condition on $\phi(x, r)$, and so the complete statement is

$$\lim_{r \to 0} \langle \phi(x, r) \rangle = r^{D-\Delta} \phi_0(x) + \frac{r^\Delta}{Z} \langle O(x) \rangle,$$

in the presence of the source $\phi_0(x)$. Note that this result is not just linear response, and holds to all orders in the source; it also allows for arbitrary bulk interactions and quantum fluctuations. It can be checked that it is indeed obeyed by the correlators above of the Gaussian theory. This relationship is frequently used in practice, because it is often straightforward to implement, especially when we are using the classical saddle-point approximation for the bulk theory. Then we simply have to extract the subleading behavior in $\phi(x, r)$ as $r \to 0$ to extract the full non-linear response function to the perturbation $\phi_0(x)$ to the CFT.
A similar analysis can be applied to operators of the CFT with non-zero Lorentz spin. Of particular interest to are correlators of a conserved current, J_μ, associated with a global ‘flavor’ symmetry, and the conserved stress energy tensor $T_{\mu\nu}$.

We couple the conserved current to a source a_μ and so are interested in evaluating

$$Z(a_\mu) = \left\langle \exp \left(\int d^D x \, a_\mu(x) J_\mu(x) \right) \right\rangle_{\text{CFT}}.$$

The conservation law $\partial_\mu J_\mu = 0$ now implies that this partition function is invariant under the gauge transformation $a_\mu \rightarrow a_\mu + \partial_\mu \alpha$. So the bulk field dual to a (say) U(1) conserved current J_μ is a U(1) gauge field, which we denote $A_a(x, r)$. We assume the gauge field has a Maxwell action

$$S_M = \frac{1}{4g_M^2} \int d^{D+1} x \sqrt{g} F_{ab} F^{ab}$$

plus other possible gauge couplings to the bulk fields. By an analysis very similar to the scalar field, we can establish the following bulk-boundary correspondences

$$\lim_{r \to 0} \langle A_\mu(x, r) \rangle = a_\mu(x) + r^{D-2} \langle J_\mu(x) \rangle / Z g_M^{-2}$$

$$\lim_{r \to 0} \langle A_r(x, r) \rangle = 0$$

$$\langle J_\mu(x_1) \ldots J_\nu(x_n) \rangle_{\text{CFT}} = (Z g_M^{-2})^n \lim_{r \to 0} r_1^{2-D} \ldots r_n^{2-D} \langle A_\mu(x_1, r_1) \ldots A_\nu(x_n, r_n) \rangle_{\text{bulk}}$$
with $Z = D - 2$. Working with only the Maxwell action these relations yield

$$
\langle J_\mu(k)J_\nu(k) \rangle_{\text{CFT}} = \frac{(D - 2)}{g_M^2} \frac{\Gamma(2 - D/2)}{\Gamma(D/2)} \left(\frac{k}{2} \right)^{D-2} \left(\delta_{\mu\nu} - \frac{k_\mu k_\nu}{k^2} \right)
$$

This is precisely the expected form for the correlator of a conserved current in a CFT in D space-time dimensions. For the case $D = 3$ it has the expected form

$$
\langle J_\mu(k)J_\nu(k) \rangle_{\text{CFT}} = \mathcal{K} k \left(\delta_{\mu\nu} - \frac{k_\mu k_\nu}{k^2} \right)
$$

with

$$
\mathcal{K} = \frac{1}{g_M^2}.
$$
A similar analysis can be applied to the stress-energy tensor of the CFT, $T_{\mu\nu}$. Its conjugate field must be a spin-2 field which is invariant under gauge transformations: it is natural to identify this with the metric of the bulk theory. Now the needed partition function is

$$Z(\chi_{\mu\nu}) = \left\langle \exp \left(\int d^D x \, \chi_{\mu\nu}(x) T_{\mu\nu}(x) \right) \right\rangle_{\text{CFT}}$$

and the source is related to the metric g_{ab} via

$$\lim_{r \to 0} g_{rr} = \frac{L^2}{r^2}$$
$$\lim_{r \to 0} g_{r\mu} = 0$$
$$\lim_{r \to 0} g_{\mu\nu} = \frac{L^2}{r^2} (\delta_{\mu\nu} + \chi_{\mu\nu})$$

The bulk-boundary correspondence is now given by

$$\langle T_{\mu\nu}(x_1) \ldots T_{\rho\sigma}(x_n) \rangle_{\text{CFT}} = \left(\frac{Z \, L^2}{\kappa^2} \right)^n \lim_{r \to 0} r_1^{-D} \ldots r_n^{-D} \langle \chi_{\mu\nu}(x_1, r_1) \ldots \chi_{\rho\sigma}(x_n, r_n) \rangle_{\text{bulk}}$$
with $Z = D$. Applying this prescription to the Einstein action, we obtain in $D = 3$

$$\langle T_{\mu\nu}(k)T_{\rho\sigma}(-k)\rangle_{\text{CFT}} = C_T |k|^3 \left(\delta_{\mu\rho} \delta_{\nu\sigma} + \delta_{\nu\rho} \delta_{\mu\sigma} - \delta_{\mu\nu} \delta_{\rho\sigma} + \delta_{\mu\nu} \frac{k_\rho k_\sigma}{k^2} + \delta_{\rho\sigma} \frac{k_\mu k_\nu}{k^2}
ight.$$\n
$$\left. - \delta_{\mu\rho} \frac{k_\nu k_\sigma}{k^2} - \delta_{\nu\rho} \frac{k_\mu k_\sigma}{k^2} - \delta_{\mu\sigma} \frac{k_\nu k_\rho}{k^2} - \delta_{\nu\sigma} \frac{k_\mu k_\rho}{k^2} + \frac{k_\mu k_\nu k_\rho k_\sigma}{k^4} \right)$$

This is the most-general form expected for any CFT, and the “central charge” is related to a dimensionless combination of the gravitational constant and the AdS radius

$$C_T \propto \frac{L^2}{2\kappa^2}.$$
AdS/CFT correspondence at zero temperature

So, to recapitulate, we have equated the correlators of the CFT3 to a bulk theory on AdS$_4$ with the Einstein-Hilbert action

$$S = \frac{1}{4g_M^2} \int d^4x \sqrt{g} F_{ab} F^{ab} + \int d^4x \sqrt{g} \left[-\frac{1}{2\kappa^2} \left(R + \frac{6}{L^2} \right) \right].$$

This action is characterized by two dimensionless parameters: g_M and L^2/κ^2. These parameters determine, respectively, the two-point correlators of a conserved U(1) current J_μ and the stress-energy tensor $T_{\mu\nu}$.

However, this action is non-linear, and it also implies non-zero multipoint correlators of these operators, even at tree-level in the bulk theory. For the simplest 3-point correlator, a lengthy computation from the bulk theory yields

$$\langle J_\mu(k_1)J_\nu(k_2)T_{\rho\sigma}(-k_1-k_2) \rangle \sim \frac{k_1k_2}{(k_1+k_2)^5} k_{1\mu}k_{1\nu}k_{1\rho}k_{1\sigma} + 175 \text{ terms}$$

with co-efficients determined by g_M and L^2/κ^2.

We can now compare this 3-point correlator with that obtained by direct computation on a CFT3. A general analysis of the constraints from conformal invariance (Osborn and Petkou, 1993) shows that this 3-point correlator is fully determined by the values \mathcal{K}, C_T, and one additional dimensionless constant which is characteristic of the CFT3.
To fix this additional constant by the bulk theory, we have to go beyond the Einstein-Maxwell action. This action is the simplest action with up to 2 derivatives of the bulk fields. So, in the spirit of effectively field theory, let us now include all terms up to 4 derivatives. We want to work in linear response for the conserved current, and so we exclude terms which have more than 2 powers of F_{ab}. Then, up to some field redefinitions, there turns out to be a unique 4 derivative term, and the extend action of the bulk theory now becomes

$$S_{\text{bulk}} = \frac{1}{g_M^2} \int d^4x \sqrt{g} \left[\frac{1}{4} F_{ab} F^{ab} + \gamma L^2 C_{abcd} F^{ab} F^{cd} \right] + \int d^4x \sqrt{g} \left[-\frac{1}{2\kappa^2} \left(R + \frac{6}{L^2} \right) \right]$$

where C_{abcd} is the Weyl tensor. Now we have a new dimensionless parameter, γ; stability constraints on this action restrict $|\gamma| < 1/12$. The Weyl tensor vanishes on the AdS metric, and consequently γ does not modify the previous results on the 2-point correlators of J_μ and $T_{\mu\nu}$. However, γ does change the structure of the 3-point correlator. We found that for a suitable choice of γ it is possible to reproduce the 3-point correlator of free conformal fields; we expect we can match the properties of any CFT3 for a suitable γ.

It is clear that similar results apply at higher orders: matching higher multipoint correlators of the CFT requires higher derivative terms in the effective bulk theory.
There is a family of solutions of Einstein gravity which describe non-zero temperatures.

\[
S = \int d^4x \sqrt{-g} \left[\frac{1}{2\kappa^2} \left(R + \frac{6}{L^2} \right) \right]
\]
There is a family of solutions of Einstein gravity which describe non-zero temperatures.

A $2+1$ dimensional system at its quantum critical point:

$$k_B T = \frac{3\hbar}{4\pi R}.$$
AdS/CFT correspondence at non-zero temperatures

AdS$_4$-Schwarzschild black-brane

$ds^2 = \left(\frac{L}{r}\right)^2 \left[\frac{dr^2}{f(r)} - f(r)dt^2 + dx^2 + dy^2 \right]$ with $f(r) = 1 - (r/R)^3$

A 2+1 dimensional system at its quantum critical point:

$k_B T = \frac{3\hbar}{4\pi R}$.
AdS/CFT correspondence at non-zero temperatures

AdS$_4$-Schwarzschild black-brane

A 2+1 dimensional system at its quantum critical point:

\[k_B T = \frac{3\hbar}{4\pi R}. \]

Black-brane at temperature of 2+1 dimensional quantum critical system

Beckenstein-Hawking entropy of black brane = entropy of CFT3

Wednesday, August 1, 12
AdS/CFT correspondence at non-zero temperatures

AdS$_4$-Schwarzschild black-brane

A 2+1 dimensional system at its quantum critical point:

$$k_B T = \frac{3\hbar}{4\pi R}.$$
At non-zero temperatures, we consider a Euclidean metric with a horizon at
\(r = R \):

\[
ds^2 = \left(\frac{L}{r} \right)^2 \left[\frac{dr^2}{f(r)} + f(r)d\tau^2 + dx^2 + dy^2 \right]
\]

with \(f(r) = 1 - (r/R)^3 \); note \(f(R) = 0 \). In the near horizon region we define
\(z = R - r \) and write this metric as

\[
ds^2 = \left(\frac{L}{R} \right)^2 \left[\frac{dz^2}{|f'(R)|z} + |f'(R)|z d\tau^2 + dx^2 + dy^2 \right]
\]

Now we introduce co-ordinates \(\rho = 2\sqrt{z/|f'(R)|} \) and \(\theta = 2\pi T \tau \), and then the metric is

\[
ds^2 = \left(\frac{L}{R} \right)^2 \left[d\rho^2 + \left(\frac{f'(R)}{4\pi T} \right)^2 \rho^2 d\theta^2 + dx^2 + dy^2 \right]
\]

Now if we choose the Hawking temperature

\[
T = \frac{|f'(R)|}{4\pi}
\]

then the spacetime is periodic under \(\tau \to \tau + 1/T \), and there is no singularity at
the horizon.
In Euclidean signature, all the correspondences between the bulk and boundary correlators remain exactly the same as before. We need only add the additional requirement that the bulk solutions remain integrable at the horizon.

However, it is often convenient to work directly in real time and frequencies, and obtain the corresponding response functions directly, rather than by analytic continuation. It can be shown that the process of analytic continuation translates into the requirement of *in-going waves* at the horizon. The only other change in the equations is due to the change in the metric from AdS$_4$ to AdS$_4$-Schwarzschild, via the factor $f(r)$.

In terms of the co-ordinate $u = r/R$, the equation for $A_x(u)$ in the presence of a probe oscillating at frequency ω is

$$A''_x + \frac{f'(3 - 2u^2\gamma f''') - 2u\gamma f(2f'' + uf''')}{f(3 - 2u^2\gamma f''')} A'_x + \frac{L^4 \omega^2}{R^2} \frac{1}{f^2} A_x = 0,$$

where the primes are derivatives w.r.t u. Solution of this equation, subject to the boundary conditions discussed earlier yields the conductivity.
AdS4 theory of electrical transport in a strongly interacting CFT3 for $T > 0$

Conductivity is independent of ω/T for $\gamma = 0$.
AdS4 theory of electrical transport in a strongly interacting CFT3 for $T > 0$

Consequence of self-duality of Maxwell theory in 3+1 dimensions

Conductivity is independent of ω/T for $\gamma = 0$.

Electrical transport in a free CFT3 for $T > 0$

$$\sim T \delta(\omega)$$

Complementary ω-dependent conductivity in the free theory
AdS$_4$ theory of “nearly perfect fluids”

The $\gamma > 0$ result has similarities to the quantum-Boltzmann result for transport of particle-like excitations.

AdS$_4$ theory of “nearly perfect fluids”

The $\gamma < 0$ result can be interpreted as the transport of vortex-like excitations

AdS$_4$ theory of “nearly perfect fluids”

The $\gamma = 0$ case is the exact result for the large N limit of SU(N) gauge theory with $\mathcal{N} = 8$ supersymmetry (the ABJM model). The ω-independence is a consequence of self-duality under particle-vortex duality (S-duality).

AdS$_4$ theory of “nearly perfect fluids”

Stability constraints on the effective theory ($|\gamma| < 1/12$) allow only a limited ω-dependence in the conductivity.

Traditional CMT

- Identify quasiparticles and their dispersions
Traditional CMT

- Identify quasiparticles and their dispersions
- Compute scattering matrix elements of quasiparticles (or of collective modes)
Traditional CMT

- Identify quasiparticles and their dispersions
- Compute scattering matrix elements of quasiparticles (or of collective modes)
- These parameters are input into a quantum Boltzmann equation
Traditional CMT

- Identify quasiparticles and their dispersions

- Compute scattering matrix elements of quasiparticles (or of collective modes)

- These parameters are input into a quantum Boltzmann equation

- Deduce dissipative and dynamic properties at non-zero temperatures
Traditional CMT

- Identify quasiparticles and their dispersions
- Compute scattering matrix elements of quasiparticles (or of collective modes)
- These parameters are input into a quantum Boltzmann equation
- Deduce dissipative and dynamic properties at non-zero temperatures

Planckian dissipation and gravity

- Start with strongly interacting CFT without particle- or wave-like excitations
Traditional CMT

- Identify quasiparticles and their dispersions
- Compute scattering matrix elements of quasiparticles (or of collective modes)
- These parameters are input into a quantum Boltzmann equation
- Deduce dissipative and dynamic properties at non-zero temperatures

Planckian dissipation and gravity

- Start with strongly interacting CFT without particle- or wave-like excitations
- Compute OPE co-efficients of operators of the CFT
Traditional CMT

- Identify quasiparticles and their dispersions
- Compute scattering matrix elements of quasiparticles (or of collective modes)
- These parameters are input into a quantum Boltzmann equation
- Deduce dissipative and dynamic properties at non-zero temperatures

Planckian dissipation and gravity

- Start with strongly interacting CFT without particle- or wave-like excitations
- Compute OPE co-efficients of operators of the CFT
- Relate OPE co-efficients to couplings of an effective gravitational theory on AdS
Traditional CMT

- Identify quasiparticles and their dispersions
- Compute scattering matrix elements of quasiparticles (or of collective modes)
- These parameters are input into a quantum Boltzmann equation
- Deduce dissipative and dynamic properties at non-zero temperatures

Planckian dissipation and gravity

- Start with strongly interacting CFT without particle- or wave-like excitations
- Compute OPE co-efficients of operators of the CFT
- Relate OPE co-efficients to couplings of an effective gravitational theory on AdS
- Solve Einstein-Maxwell-... equations, allowing for a horizon at non-zero temperatures.
Conclusions

Conformal quantum matter

New insights and solvable models for diffusion and transport of strongly interacting systems near quantum critical points
Conclusions

Conformal quantum matter

New insights and solvable models for diffusion and transport of strongly interacting systems near quantum critical points

The description is far removed from, and complementary to, that of the quantum Boltzmann equation which builds on the quasiparticle/vortex picture.
Conclusions

Conformal quantum matter

- New insights and solvable models for diffusion and transport of strongly interacting systems near quantum critical points
- The description is far removed from, and complementary to, that of the quantum Boltzmann equation which builds on the quasiparticle/vortex picture.
- Prospects for experimental tests of frequency-dependent, non-linear, and non-equilibrium transport
Title: Holographic Superfluids and the Dynamics of Symmetry Breaking

Authors: M. J. Bhaseen, Jerome P. Gauntlett, B. D. Simons, Julian Sonner, Toby Wiseman
(Submitted on 17 Jul 2012)

Abstract: We explore the far from equilibrium response of a holographic superfluid using the AdS/CFT correspondence. We establish the dynamical phase diagram corresponding to quantum quenches of the order parameter source field. We find three distinct regimes of behaviour that are related to the spectrum of black hole quasi-normal modes. These correspond to damped oscillations of the order parameter, and over-damped approaches to the superfluid and normal states. The presence of three regimes, which includes an emergent dynamical temperature scale, is argued to be a generic feature of time-reversal invariant systems that display continuous symmetry breaking.

Comments: 6 pages, 4 figures
Subjects: High Energy Physics - Theory (hep-th); Strongly Correlated Electrons (cond-mat.str-el)
Cite as: arXiv:1207.4194v1 [hep-th]
“Complex entangled” states of quantum matter, not adiabatically connected to independent particle states

Gapped quantum matter
 Z_2 Spin liquids, quantum Hall states

Conformal quantum matter
 Graphene, ultracold atoms, antiferromagnets

Compressible quantum matter
 Strange metals, Bose metals
“Complex entangled” states of quantum matter, \textit{not} adiabatically connected to independent particle states

\begin{itemize}
 \item \textbf{Gapped quantum matter} \\
 \mathbb{Z}_2 Spin liquids, quantum Hall states
 \item \textbf{Conformal quantum matter} \\
 Graphene, ultracold atoms, antiferromagnets
 \item \textbf{Compressible quantum matter} \\
 Strange metals, Bose metals
\end{itemize}
Compressible quantum matter

A. Field theory:
 Condensed matter classification

B. Gauge-gravity duality
Compressible quantum matter

A. Field theory:
Condensed matter classification

B. Gauge-gravity duality
Compressible quantum matter

- Consider an infinite, continuum, translationally-invariant quantum system with a globally conserved U(1) charge Q (the “electron density”) in spatial dimension $d > 1$.
Compressible quantum matter

- Consider an infinite, continuum, translationally-invariant quantum system with a globally conserved U(1) charge Q (the “electron density”) in spatial dimension $d > 1$.

- Describe zero temperature phases where $d \langle Q \rangle / d\mu \neq 0$, where μ (the “chemical potential”) which changes the Hamiltonian, H, to $H - \mu Q$.
The only compressible phase of traditional condensed matter physics which does not break the translational or $U(1)$ symmetries is the Landau Fermi liquid.
The Fermi liquid

\[\mathcal{L} = f^\dagger \left(\partial_\tau - \frac{\nabla^2}{2m} - \mu \right) f \]
+ 4 Fermi terms

- Fermi wavevector obeys the Luttinger relation \(k_F^{d} \sim Q \), the fermion density

Wednesday, August 1, 12
The Fermi liquid

\[\mathcal{L} = f^\dagger \left(\partial_\tau - \frac{\nabla^2}{2m} - \mu \right) f \]

+ 4 Fermi terms

- Fermi wavevector obeys the Luttinger relation \(k_{F}^d \sim Q \), the fermion density

- Sharp particle and hole of excitations near the Fermi surface with energy \(\omega \sim |q|^z \), with dynamic exponent \(z = 1 \).
The Fermi liquid

\[\mathcal{L} = f^\dagger \left(\partial_\tau - \frac{\nabla^2}{2m} - \mu \right) f + 4 \text{ Fermi terms} \]

- Fermi wavevector obeys the Luttinger relation \(k_F^d \sim Q \), the fermion density
- Sharp particle and hole of excitations near the Fermi surface with energy \(\omega \sim |q|^z \), with dynamic exponent \(z = 1 \).
- The phase space density of fermions is effectively one-dimensional, so the entropy density \(S \sim T^{(d-\theta)/z} \) with violation of hyperscaling exponent \(\theta = d - 1 \).
Consider a model of interacting bosons, b, whose density is $Q = b^\dagger b$ is conserved. We want a ground state which does not break any symmetries (and so solids and superfluids are excluded). The only known possibilities are:
Consider a model of interacting bosons, b, whose density is $Q = b^\dagger b$ is conserved. We want a ground state which does not break any symmetries (and so solids and superfluids are excluded). The only known possibilities are:

- **FL:** The bosons forms a bound state, c, with some spectator fermions, and there is a Fermi liquid of the fermionic c molecules.

\[
A_c = \langle Q \rangle
\]

\[
Q = b^\dagger b
\]

Fermi liquid

We have bosons, \(b \), and spectator fermions, \(s \), interacting via an attractive interaction \(u \):

\[
\mathcal{L} = b^\dagger \left(\partial_\tau - \frac{\nabla^2}{2m} - \mu \right) b + s^\dagger \left(\partial_\tau - \frac{\nabla^2}{2m_s} - \mu_s \right) s - u b^\dagger b s^\dagger s
\]

This theory has two conserved U(1) charges

\[
Q = b^\dagger b \quad , \quad Q_s = s^\dagger s
\]

We can decouple the quartic term by a fermonic field, \(c \), and write

\[
\mathcal{L} = b^\dagger \left(\partial_\tau - \frac{\nabla^2}{2m} - \mu \right) b + s^\dagger \left(\partial_\tau - \frac{\nabla^2}{2m_s} - \mu_s \right) s + \frac{1}{u} c^\dagger c - c^\dagger b s - s^\dagger b^\dagger c
\]

Depending upon parameters, one or both of the \(f \) or \(s \) fermions can acquire Fermi surfaces. Naturally the \(b \) bosons cannot have Fermi surfaces, although they may condense. Provided the \(b \) don’t condense, two Luttinger constraints, associated with the 2 U(1) charges, can be established on the areas enclosed by the Fermi surfaces:

\[
\langle Q \rangle = A_c \quad , \quad \langle Q_s \rangle = A_c + A_s
\]

Consider a model of interacting bosons, b, whose density is $Q = b^\dagger b$ is conserved. We want a ground state which does not break any symmetries (and so solids and superfluids are excluded). The only known possibilities are:

- **FL**: The bosons forms a bound state, c, with some spectator fermions, and there is a Fermi liquid of the fermionic c molecules.

\[A_c \]

\[Q = b^\dagger b \]

\[A_c = \langle Q \rangle \]

Consider a model of interacting bosons, \(b \), whose density is \(Q = b^\dagger b \) is conserved. We want a ground state which does not break any symmetries (and so solids and superfluids are excluded). The only known possibilities are:

- **NFL**, the non-Fermi liquid *Bose metal*. The boson fractionalizes into (say) 2 fermions, \(f_1 \) and \(f_2 \), each of which forms a Fermi surface. Both fermions necessarily couple to an emergent gauge field, and so the Fermi surfaces are “hidden”.

\[
Q = b^\dagger b
\]

\[
A_f = \langle Q \rangle
\]

Bose Metal

For suitable interactions, we can have the boson, b, *fractionalize* into two fermions $f_{1,2}$:

$$ b \rightarrow f_1 f_2 $$

This implies the effective theory for $f_{1,2}$ is invariant under the U(1) gauge transformation

$$ f_1 \rightarrow f_1 e^{i\theta(x,\tau)} , \quad f_2 \rightarrow f_2 e^{-i\theta(x,\tau)} $$

Consequently, the effective theory of the Bose metal has an emergent gauge field A_μ and has the structure

$$ \mathcal{L} = f_1^\dagger \left(\partial_\tau - iA_\tau - \frac{(\nabla - iA)^2}{2m} - \mu \right) f_1 + f_2^\dagger \left(\partial_\tau + iA_\tau - \frac{(\nabla + iA)^2}{2m} - \mu \right) f_2 $$

The gauge-dependent $f_{1,2}$ Green’s functions have Fermi surfaces obeying $A_f = \langle Q \rangle$. However, these Fermi surfaces are not directly observable because it is gauge-dependent. Nevertheless, gauge-independent operators, such as b or $b^\dagger b$, will exhibit *Friedel oscillations* associated with fermions scattering across these hidden Fermi surfaces.
Bose Metal

The integrable $S = 1/2$ Heisenberg chain

$$H = J \sum_i \vec{S}_i \cdot \vec{S}_j$$

provides a nice example of a Bose metal. Spin correlations of this model decay as

$$\langle \vec{S}_i \cdot \vec{S}_j \rangle \sim \frac{(-1)^{i-j}}{|i-j|}$$

Writing $S^+ = b_i^\dagger$, we can also re-interpret this model as one of hard-core bosons with nearest-neighbor interactions.

However, let us write $\vec{S} = f_\alpha^\dagger \vec{\sigma}_{\alpha\beta} f_\beta$, where f_\uparrow and f_\downarrow are the ‘hidden’ gauge-charged fermions. The fermions obey the constraints

$$f_\alpha^\dagger f_\alpha = 1 \quad , \quad \varepsilon_{\alpha\beta} f_\alpha f_\beta = 0$$

on each site. These constraints are imposed by a SU(2) gauge field.

Initially ignoring the gauge field, both fermions are at half-filling, and so have Fermi wavevectors at $k_F = \pm \pi/2$. The low-energy theory consists of excitations across these Fermi surfaces coupled to an emergent SU(2) gauge field.

In this interpretation, the oscillatory spin correlation of the antiferromagnet above is a Friedel oscillation of the hidden Fermi surfaces at wavevector $2k_F = \pi$.
Consider a model of interacting bosons, b, whose density is $Q = b^\dagger b$ is conserved. We want a ground state which does not break any symmetries (and so solids and superfluids are excluded). The only known possibilities are:

- **NFL**, the non-Fermi liquid *Bose metal*. The boson fractionalizes into (say) 2 fermions, f_1 and f_2, each of which forms a Fermi surface. Both fermions necessarily couple to an emergent gauge field, and so the Fermi surfaces are “hidden”.

\[
\begin{align*}
Q &= b^\dagger b \\
A_f &= \langle Q \rangle
\end{align*}
\]

Consider a model of interacting bosons, b, whose density is $Q = b^\dagger b$ is conserved. We want a ground state which does not break any symmetries (and so solids and superfluids are excluded). The only known possibilities are:

- **FL** Partially fractionalized state, with co-existence of visible and hidden Fermi surfaces.

\[Q = b^\dagger b \]
\[A_c + A_f = \langle Q \rangle \]

Fractionalized Fermi liquid

The bosons, b, fractionalize into fermions f_1 and f_2, and the spectator fermions, s, are also present.

$$\mathcal{L} = f_1^\dagger \left(\partial_\tau - iA_\tau - \frac{\nabla^2 - iA}{2m} - \mu \right) f_1 + f_2^\dagger \left(\partial_\tau + iA_\tau - \frac{\nabla^2 + iA}{2m} - \mu \right) f_2$$

$$+ s^\dagger \left(\partial_\tau - \frac{\nabla^2}{2m_s} - \mu_s \right) s + \frac{1}{u} c^\dagger c - c^\dagger f_1 f_2 s - s^\dagger f_2 f_1^\dagger c$$

Now the Luttinger constraints are

$$\langle Q \rangle = A_c + A_f \quad , \quad \langle Q_s \rangle = A_c + A_s$$

where recall that $Q = b^\dagger b$ and $Q_s = s^\dagger s$.

Analogous phases arise in Kondo lattice models, where c and s are conduction electron Fermi surfaces, and $f_{1,2}$ are spinon Fermi surfaces associated with the local moments.

Consider a model of interacting bosons, b, whose density is $Q = b^\dagger b$ is conserved. We want a ground state which does not break any symmetries (and so solids and superfluids are excluded). The only known possibilities are:

- **FL*** Partially fractionalized state, with co-existence of visible and hidden Fermi surfaces.

\[Q = b^\dagger b \]
\[A_c + A_f = \langle Q \rangle \]

The Fermi liquid is characterized by:

- $k_F^d \sim Q$, the fermion density

- Sharp fermionic excitations near Fermi surface with $\omega \sim |q|^z$, and $z = 1$.

- Entropy density $S \sim T^{(d-\theta)/z}$ with violation of hyperscaling exponent $\theta = d - 1$.

Wednesday, August 1, 12
- FL Fermi liquid
 - $k_F^d \sim Q$, the fermion density
 - Sharp fermionic excitations near Fermi surface with $\omega \sim |q|^z$, and $z = 1$.
 - Entropy density $S \sim T^{(d-\theta)/z}$ with violation of hyperscaling exponent $\theta = d - 1$.

- NFL Bose metal
 - Hidden Fermi surface with $k_F^d \sim Q$.

FL Fermi liquid

• $k_F^{d/2} \sim Q$, the fermion density

• Sharp fermionic excitations near Fermi surface with $\omega \sim |q|^z$, and $z = 1$.

• Entropy density $S \sim T^{(d-\theta)/z}$ with violation of hyperscaling exponent $\theta = d - 1$.

NFL Bose metal

• Hidden Fermi surface with $k_F^{d/2} \sim Q$.

• Diffuse fermionic excitations with $z = 3/2$ to three loops.

\begin{itemize}
 \item $k_F^d \sim Q$, the fermion density
 \item Sharp fermionic excitations near Fermi surface with $\omega \sim |q|^z$, and $z = 1$.
 \item Entropy density $S \sim T^{(d-\theta)/z}$ with violation of hyperscaling exponent $\theta = d - 1$.
\end{itemize}

\begin{itemize}
 \item Hidden Fermi surface with $k_F^d \sim Q$.
 \item Diffuse fermionic excitations with $z = 3/2$ to three loops.
 \item $S \sim T^{(d-\theta)/z}$ with $\theta = d - 1$.
\end{itemize}
A fluctuation at wavevector \vec{q} couples most efficiently to fermions near $\pm \vec{k}_0$.

\vec{A} fluctuation at wavevector \vec{q} couples most efficiently to fermions near $\pm \vec{k}_0$.
Field theory of hidden Fermi surfaces

- \vec{A} fluctuation at wavevector \vec{q} couples most efficiently to fermions near $\pm \vec{k}_0$.

- Expand fermion kinetic energy at wavevectors about $\pm \vec{k}_0$. In Landau gauge $\vec{A} = (a, 0)$.

Wednesday, August 1, 12
\[\mathcal{L}[\psi_\pm, a] = \]
\[\psi_+^\dagger \left(\partial_\tau - i \partial_x - \partial_y^2 \right) \psi_+ + \psi_-^\dagger \left(\partial_\tau + i \partial_x - \partial_y^2 \right) \psi_- \]
\[-a \left(\psi_+^\dagger \psi_+ - \psi_-^\dagger \psi_- \right) + \frac{1}{2g^2} \left(\partial_y a \right)^2 \]

Field theory of hidden Fermi surfaces

\[\mathcal{L} = \psi_+^\dagger \left(\partial_\tau - i \partial_x - \partial_y^2 \right) \psi_+ + \psi_-^\dagger \left(\partial_\tau + i \partial_x - \partial_y^2 \right) \psi_- \]
\[- a \left(\psi_+^\dagger \psi_+ - \psi_-^\dagger \psi_- \right) + \frac{1}{2g^2} (\partial_y a)^2 \]

One loop self-energy with \(N_f \) fermion flavors:

\[D(\vec{q}, \omega) = N_f \int \frac{d^2 k}{4\pi^2} \frac{d\Omega}{2\pi} \frac{1}{\left[-i(\Omega + \omega) + k_x + q_x + (k_y + q_y)^2 \right] \left[-i\Omega - k_x + k_y^2 \right]} \]
\[= \frac{N_f}{4\pi} \frac{|\omega|}{|q_y|} \]

Landau-damping
Electron self-energy at order $1/N_f$:

$$
\Sigma(\vec{k}, \Omega) = -\frac{1}{N_f} \int \frac{d^2q}{4\pi^2} \frac{d\omega}{2\pi} \frac{1}{[-i(\omega + \Omega) + k_x + q_x + (k_y + q_y)^2]} \left[\frac{q_y^2}{g^2} + \frac{\omega}{|q_y|} \right] = -i \frac{2}{\sqrt{3}N_f} \left(\frac{g^2}{4\pi} \right)^{2/3} \text{sgn}(\Omega)|\Omega|^{2/3}
$$
Field theory of hidden Fermi surfaces

\[\mathcal{L} = \psi_+^\dagger \left(\partial_\tau - i \partial_x - \partial_y^2 \right) \psi_+ + \psi_-^\dagger \left(\partial_\tau + i \partial_x - \partial_y^2 \right) \psi_- \\
- a \left(\psi_+^\dagger \psi_+ - \psi_-^\dagger \psi_- \right) + \frac{1}{2g^2} \left(\partial_y a \right)^2 \]

Schematic form of \(a \) and fermion Green’s functions

\[D(\vec{q}, \omega) = \frac{1/\mathcal{N}_f}{q_y^2 + \frac{\omega}{|q_y|}} \quad , \quad G_f(\vec{q}, \omega) = \frac{1}{q_x + q_y^2 - i \text{sgn}(\omega)|\omega|^{2/3}/\mathcal{N}_f} \]

In both cases \(q_x \sim q_y^2 \sim \omega^{1/z} \), with \(z = 3/2 \). Note that the bare term \(\sim \omega \) in \(G_f^{-1} \) is irrelevant.

Strongly-coupled theory without quasiparticles.
Field theory of hidden Fermi surfaces

\[\mathcal{L} = \psi_+^\dagger (\partial_\tau - i\partial_x - \partial_y^2) \psi_+ + \psi_-^\dagger (\partial_\tau + i\partial_x - \partial_y^2) \psi_- - a \left(\psi_+^\dagger \psi_+ - \psi_-^\dagger \psi_- \right) + \frac{1}{2g^2} (\partial_y a)^2 \]

Simple scaling argument for \(z = 3/2 \).
Field theory of hidden Fermi surfaces

\[\mathcal{L}_{\text{scaling}} = \psi_+^\dagger (-i\partial_x - \partial_y^2) \psi_+ + \psi_-^\dagger (+i\partial_x - \partial_y^2) \psi_- - g a \left(\psi_+^\dagger \psi_+ - \psi_-^\dagger \psi_- \right) + (\partial_y a)^2 \]

Simple scaling argument for \(z = 3/2 \).
Simple scaling argument for \(z = 3/2 \).

Under the rescaling \(x \to x/s \), \(y \to y/s^{1/2} \), and \(\tau \to \tau/s^z \), we find invariance provided

\[
\phi \to \phi s^{(2z+1)/4} \\
\psi \to \psi s^{(2z+1)/4} \\
g \to g s^{(3-2z)/4}
\]

So the action is invariant provided \(z = 3/2 \).
Schematic form of a and fermion Green’s functions

\[
D(\vec{q}, \omega) = \frac{1/N_f}{q_x^2 + \frac{|\omega|}{q_y}} \quad , \quad G_f(\vec{q}, \omega) = \frac{1}{q_x + q_y^2 - i\text{sgn}(\omega)|\omega|^{2/3}/N_f} \]

In both cases $q_x \sim q_y^2 \sim \omega^{1/z}$, with $z = 3/2$. Note that the bare term $\sim \omega$ in G_f^{-1} is irrelevant.

Strongly-coupled theory without quasiparticles.
The $1/N_f$ expansion is not determined by counting fermion loops, because of infrared singularities created by the Fermi surface. The $|\omega|^{2/3}/N_f$ fermion self-energy leads to additional powers of N_f, and a breakdown in the loop expansion.
All planar graphs of ψ_+ alone are as important as the leading term

Graph mixing ψ_+ and ψ_- is $O\left(N^{3/2}\right)$ (instead of $O\left(N\right)$), violating genus expansion

Sung-Sik Lee, Physical Review B 80, 165102 (2009)
• $k_F^d \sim Q$, the fermion density

• Sharp fermionic excitations near Fermi surface with $\omega \sim |q|^z$, and $z = 1$.

• Entropy density $\mathcal{S} \sim T^{(d-\theta)/z}$ with violation of hyperscaling exponent $\theta = d - 1$.

• Hidden Fermi surface with $k_F^d \sim Q$.

• Diffuse fermionic excitations with $z = 3/2$ to three loops.

• $\mathcal{S} \sim T^{(d-\theta)/z}$ with $\theta = d - 1$.

Wednesday, August 1, 12
Compressible quantum matter

the cond-mat perspective

- Fermi liquid (FL): the entire charge Q is contained within visible Fermi surfaces.

- Bose metal (NFL): the entire charge Q is contained within hidden Fermi surfaces of gauge-charged fermions.

- Fractionalized Fermi liquid (FL*): the charge Q is divided between visible and hidden Fermi surfaces.
Compressible quantum matter

A. Field theory:

Condensed matter classification

B. Gauge-gravity duality
Compressible quantum matter

A. Field theory:
Condensed matter classification

B. Gauge-gravity duality
Begin with a CFT
Holographic representation: AdS_4

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2\kappa^2} \left(R + \frac{6}{L^2} \right) \right]$$

A 2+1 dimensional CFT at $T=0$
Holographic representation: AdS$_4$

\[ds^2 = \left(\frac{L}{r} \right)^2 \left[\frac{dr^2}{f(r)} - f(r) dt^2 + dx^2 + dy^2 \right] \]

with \(f(r) = 1 \)

A 2+1 dimensional CFT at \(T=0 \)
Apply a chemical potential

\[\mu > 0 \]
Holographic theory of a compressible state

To leading order in a gradient expansion, charge transport in an infinite set of strongly-interacting CFT3s can be described by Einstein-Maxwell gravity/electrodynamics on AdS$_4$-Schwarzschild

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2\kappa^2} \left(R + \frac{6}{L^2} \right) - \frac{1}{4g_M^2} F_{ab} F^{ab} \right]$$

At non-zero chemical potential we simply require $A_t(r \to 0, \vec{x}, t) = \mu$.
The Maxwell-Einstein theory of the applied chemical potential yields a AdS$_4$-Reissner-Nordström black-brane

$\mathcal{E}_r = \langle Q \rangle$

$S = \int d^4x \sqrt{-g} \left[\frac{1}{2\kappa^2} \left(R + \frac{6}{L^2} \right) - \frac{1}{4g_M^2} F_{ab} F^{ab} \right]$

The Maxwell-Einstein theory of the applied chemical potential yields a AdS$_4$-Reissner-Nordström black-brane

$E_r = \langle Q \rangle$

$ds^2 = \left(\frac{L}{r} \right)^2 \left[\frac{dr^2}{f(r)} - f(r)dt^2 + dx^2 + dy^2 \right]$

with $f(r) = \left(1 - \frac{r}{R} \right)^2 \left(1 + \frac{2r}{R} + \frac{3r^2}{R^2} \right)$ and $R = \frac{\sqrt{6} L g M}{\kappa \mu}$, and $A_t = \mu \left(1 - \frac{r}{R} \right)$

The Maxwell-Einstein theory of the applied chemical potential yields a AdS$_4$-Reissner-Nordström black-brane

At $T = 0$, we obtain an extremal black-brane, with a near-horizon (IR) metric of AdS$_2 \times R^2$

$$ds^2 = \frac{L^2}{6} \left(\frac{-dt^2 + dr^2}{r^2} \right) + dx^2 + dy^2$$

Features of $\text{AdS}_2 \times R^2$

- Has non-zero entropy density at $T = 0$. This can be fixed by adding “dilaton” fields, which correspond to relevant operators on the boundary CFT (see later).
Features of AdS$_2 \times R^2$

- Has non-zero entropy density at $T = 0$. This can be fixed by adding “dilaton” fields, which correspond to relevant operators on the boundary CFT (see later).

- Describes a compressible phase at zero temperature.

So what is the fate of the Luttinger theorem? The bulk electric flux extending to the horizon at infinity measures the density, Q, contained in hidden Fermi surfaces of gauge-charged particles (‘quarks’).

Title: Friedel oscillations and horizon charge in 1D holographic liquids

Authors: Thomas Faulkner, Nabil Iqbal
(Submitted on 17 Jul 2012)

Abstract: In many-body fermionic systems at finite density correlation functions of the density operator exhibit Friedel oscillations at a wavevector that is twice the Fermi momentum. We demonstrate the existence of such Friedel oscillations in a 3d gravity dual to a compressible finite-density state in a (1+1) dimensional field theory. The bulk dynamics is provided by a Maxwell U(1) gauge theory and all the charge is behind a bulk horizon. The bulk gauge theory is compact and so there exist magnetic monopole tunneling events. We compute the effect of these monopoles on holographic density-density correlation functions and demonstrate that they cause Friedel oscillations at a wavevector that directly counts the charge behind the bulk horizon. If the magnetic monopoles are taken to saturate the bulk Dirac quantization condition then the observed Fermi momentum exactly agrees with that predicted by Luttinger's theorem, suggesting some Fermi surface structure associated with the charged horizon. The mechanism is generic and will apply to any charged horizon in three dimensions. Along the way we clarify some aspects of the holographic interpretation of Maxwell electromagnetism in three bulk dimensions and show that perturbations about the charged BTZ black hole exhibit a hydrodynamic sound mode at low temperature.

Comments: 59 pages, 5 figures
Subjects: High Energy Physics - Theory (hep-th); Strongly Correlated Electrons (cond-mat.str-el)
Report number: NSF-KITP-12-122
Cite as: arXiv:1207.4208v1 [hep-th]
Abstract: In many-body fermionic systems at finite density correlation functions of the density operator exhibit Friedel oscillations at a wavevector that is twice the Fermi momentum. We demonstrate the existence of such Friedel oscillations in a 3d gravity dual to a compressible finite-density state in a (1+1) dimensional field theory. The bulk dynamics is provided by a Maxwell U(1) gauge theory and all the charge is behind a bulk horizon. The bulk gauge theory is compact and so there exist magnetic monopole tunneling events. We compute the effect of these monopoles on holographic density-density correlation functions and demonstrate that they cause Friedel oscillations at a wavevector that directly counts the charge behind the bulk horizon. If the magnetic monopoles are taken to saturate the bulk Dirac quantization condition then the observed Fermi momentum exactly agrees with that predicted by Luttinger's theorem, suggesting some Fermi surface structure associated with the charged horizon. The mechanism is generic and will apply to any charged horizon in three dimensions. Along the way we clarify some aspects of the holographic interpretation of Maxwell electromagnetism in three bulk dimensions and show that perturbations about the charged BTZ black hole exhibit a hydrodynamic sound mode at low temperature.
Holographic theory of a non-Fermi liquid (NFL)

Hidden Fermi surfaces of “quarks”

This is a “bosonization” of the hidden Fermi surface
Holographic theory of a non-Fermi liquid (NFL)

Hidden Fermi surfaces of “quarks”

Electric flux

$\mathcal{E}_r = Q$

Fully fractionalized state has all the electric flux exiting to the horizon at $r = \infty$
Holographic theory of a compressible state

Add a fermonic field ψ to the bulk effective action, carrying the U(1) charge of the bulk gauge field: consequently, this field corresponds to a boundary fermion which carries charge Q, but is neutral w.r.t to any gauge fields in the boundary theory. We refer to such fermions as *mesinos*.

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2\kappa^2} \left(R + \frac{6}{L^2} \right) - \frac{1}{4g_M^2} F_{ab}F^{ab} + i(\bar{\psi}\Gamma^M D_M\psi + m\bar{\psi}\psi) \right]$$

For a finite density state, we impose the boundary condition $A_t(r \to 0) = \mu$. Procedure to solve the bulk theory:

1. Assume some reasonable form for the electric potential $A_t(r)$ and the metric $g_{\mu\nu}(r)$.
2. Solve Dirac equation for fermions in this background.
3. Occupy negative energy fermions states.
4. Compute the U(1) density and $T_{\mu\nu}$ of the occupied states.
5. Use Poisson’s equation and Einstein’s equations to recompute $A_t(r)$ and the metric $g_{\mu\nu}(r)$.
6. Return to step 2.
Holographic theory of a fractionalized-Fermi liquid (FL*)

A state with partial fractionalization, and partial electric flux exiting horizon

These are spectators, and are expected to have well-defined quasiparticle excitations.
Confining geometry leads to a state which has all the properties of a Landau Fermi liquid.

Visible Fermi surfaces of “mesinos”

\[\mathcal{E}_r = 0 \]

\[\mathcal{E}_r = Q \]

S. Sachdev, Physical Review D 84, 066009 (2011)
Gauss Law in the bulk \(
\Rightarrow
\) Luttinger theorem on the boundary

S. Sachdev, Physical Review D 84, 066009 (2011)
Compressible quantum matter

the holographic perspective

- Fermi liquid (FL): the entire charge Q is contained in the bulk, and there is no electric flux leaking to infinity.

- Bose metal (NFL): All the electric flux leaks to infinity, and this is linked to hidden Fermi surface of gauge-charged ‘quarks’.

- Fractionalized Fermi liquid (FL*): Part of the electric flux leaks to infinity, and remainder is within visible Fermi surfaces in the bulk.
Compressible quantum matter

the cond-mat perspective

- **Fermi liquid (FL):** the entire charge Q is contained within visible Fermi surfaces.
- **Bose metal (NFL):** the entire charge Q is contained within hidden Fermi surfaces of gauge-charged fermions.
- **Fractionalized Fermi liquid (FL*):** the charge Q is divided between visible and hidden Fermi surfaces.
Entanglement, holography, and the quantum phases of matter

Princeton University, July 26, 2012

Subir Sachdev

sachdev.physics.harvard.edu
“Complex entangled” states of quantum matter, not adiabatically connected to independent particle states

Gapped quantum matter
Spin liquids, quantum Hall states

Conformal quantum matter
Graphene, ultracold atoms, antiferromagnets

Compressible quantum matter
Strange metals, Bose metals
\[|\Psi\rangle \Rightarrow \text{Ground state of entire system,} \]
\[\rho = |\Psi\rangle\langle\Psi| \]

\[\rho_A = \text{Tr}_B \rho = \text{density matrix of region } A \]

Entanglement entropy

\[S_E = -\text{Tr} (\rho_A \ln \rho_A) \]

Gapped quantum matter
Band insulators

An even number of electrons per unit cell
Entanglement entropy of a band insulator

\[S_E = aP - b \exp(-cP) \]

where \(P \) is the surface area (perimeter) of the boundary between A and B.
Kagome antiferromagnet

\[H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j \]
Quantum “disordered” state with exponentially decaying spin correlations.

Kagome antiferromagnet

non-collinear Néel state
Kagome antiferromagnet: \mathbb{Z}_2 spin liquid

Entangled quantum state:
A stable “\mathbb{Z}_2 spin liquid”. The excitations carry ‘electric’ and ‘magnetic’ charges of an emergent \mathbb{Z}_2 gauge field.

non-collinear Néel state

The \mathbb{Z}_2 spin liquid was introduced in
Mott insulator: Kagome antiferromagnet

\[H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j \]

P. Fazekas and P. W. Anderson,
Mott insulator: Kagome antiferromagnet

\[H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j \]

\[\bullet \quad \bullet = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \]

Mott insulator: Kagome antiferromagnet

\[H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j \]

\[\psi = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \]

Mott insulator: Kagome antiferromagnet

\[H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j \]

Mott insulator: Kagome antiferromagnet

\[H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j \]

\[\bigcirc \bigcirc = \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right) \]

Mott insulator: Kagome antiferromagnet

$$H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j$$

$$\bullet \bullet = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$

Mott insulator: Kagome antiferromagnet

\[H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j \]

\[
\bigcirc \bigcirc = \frac{1}{\sqrt{2}} \left(\left| \uparrow \downarrow \right> - \left| \downarrow \uparrow \right> \right)
\]

Mott insulator: Kagome antiferromagnet

Alternative view

Pick a reference configuration

D. Rokhsar and S. Kivelson,
Mott insulator: Kagome antiferromagnet

A nearby configuration

Mott insulator: Kagome antiferromagnet

Alternative view

Difference: a closed loop

Mott insulator: Kagome antiferromagnet

Alternative view

Ground state: sum over closed loops

D. Rokhsar and S. Kivelson,
Mott insulator: Kagome antiferromagnet

Alternative view

Ground state: sum over closed loops

D. Rokhsar and S. Kivelson,
Mott insulator: Kagome antiferromagnet

Alternative view

Ground state: sum over closed loops

Mott insulator: Kagome antiferromagnet

Alternative view

Ground state: sum over closed loops

Entanglement in the Z_2 spin liquid

Sum over closed loops: only an even number of links cross the boundary between A and B
Entanglement in the Z_2 spin liquid

$$S_E = aP - \ln(2)$$

where P is the surface area (perimeter) of the boundary between A and B.

Kagome antiferromagnet

Strong numerical evidence for a \mathbb{Z}_2 spin liquid

Simeng Yan, D.A. Huse, and S. R. White,

Hong-Chen Jiang, Z. Wang, and L. Balents,
arXiv:1205.4289

S. Depenbrock, I. P. McCulloch, and U. Schollwoeck,
arXiv:1205.4858
Evidence for spinons
Young Lee,
APS meeting, March 2012
http://meetings.aps.org/link/BAPS.2012.MAR.H8.5

ZnCu$_3$(OH)$_6$Cl$_2$ (also called Herbertsmithite)
Conformal quantum matter
Dirac semi-metal

$$\langle \varphi^a \rangle = 0$$

Insulating antiferromagnet with Neel order

$$\langle \varphi^a \rangle \neq 0$$

Free CFT3

Interacting CFT3 with long-range entanglement
Entanglement entropy obeys $S_E = aP - \gamma$, where γ is a shape-dependent universal number associated with the CFT3.
AdS/CFT correspondence

AdS$_4$

$\mathbb{R}^{2,1}$

Minkowski

CFT$_3$

r
AdS/CFT correspondence

AdS_4 \hspace{1cm} $R^{2,1}$

Minkowski

\cdots

r

CFT$_3$
AdS/CFT correspondence

Associate entanglement entropy with an observer in the enclosed spacetime region, who cannot observe “outside” : i.e. the region is surrounded by an imaginary horizon.

The entropy of this region is bounded by its surface area (Bekenstein-Hawking-’t Hooft-Susskind)

AdS/CFT correspondence

Minimal surface area measures entanglement entropy

Tensor network representation of entanglement at quantum critical point

Tensor network representation of entanglement at quantum critical point

Entanglement entropy = Number of links on optimal surface intersecting minimal number of links.

Brian Swingle, arXiv:0905.1317
Entanglement entropy = Number of links on optimal surface intersecting minimal number of links.

Emergent direction of AdS_{d+2}

Tensor network representation of entanglement at quantum critical point
Computation of minimal surface area yields

\[S_E = aP - \gamma, \]

where \(\gamma \) is a shape-dependent universal number.

AdS/CFT correspondence

AdS$_3$ \hspace{2cm} $R^{1,1}$ Minkowski

- Computation of minimal surface area, or direct computation in CFT2, yield $S_E = (c/6) \ln P$, where c is the central charge.

Compressible quantum matter
Logarithmic violation of “area law”: \[S_E = \frac{1}{12} (k_F P) \ln(k_F P) \]

for a circular Fermi surface with Fermi momentum \(k_F \), where \(P \) is the perimeter of region A with an arbitrary smooth shape.

- $k_F^d \sim Q$, the fermion density

- Sharp fermionic excitations near Fermi surface with $\omega \sim |q|^z$, and $z = 1$.

- Entropy density $S \sim T^{(d-\theta)/z}$ with violation of hyperscaling exponent $\theta = d - 1$.

- Hidden Fermi surface with $k_F^d \sim Q$.

- Diffuse fermionic excitations with $z = 3/2$ to three loops.

- $S \sim T^{(d-\theta)/z}$ with $\theta = d - 1$.
FL Fermi liquid

- \(k_F^d \sim Q \), the fermion density
- Sharp fermionic excitations near Fermi surface with \(\omega \sim |q|^z \), and \(z = 1 \).
- Entropy density \(S \sim T^{(d-\theta)/z} \) with violation of hyperscaling exponent \(\theta = d - 1 \).
- Entanglement entropy \(S_E \sim k_F^{d-1} P \ln P \).

NFL Bose metal

- **Hidden Fermi surface with** \(k_F^d \sim Q \).
- Diffuse fermionic excitations with \(z = 3/2 \) to three loops.
- \(S \sim T^{(d-\theta)/z} \) with \(\theta = d - 1 \).
\[k_F^d \sim Q, \text{ the fermion density} \]

\[\text{Sharp fermionic excitations near Fermi surface with } \omega \sim |q|^z, \text{ and } z = 1. \]

\[\text{Entropy density } S \sim T^{(d-\theta)/z} \text{ with violation of hyperscaling exponent } \theta = d - 1. \]

\[\text{Entanglement entropy } S_E \sim k_F^{d-1} P \ln P. \]
Holography
Consider the metric which transforms under rescaling as

\[
\begin{align*}
x_i & \rightarrow \zeta x_i \\
t & \rightarrow \zeta^z t \\
ds & \rightarrow \zeta^{\theta/d} ds.
\end{align*}
\]

This identifies \(z \) as the dynamic critical exponent (\(z = 1 \) for “relativistic” quantum critical points).

\(\theta \) is the violation of hyperscaling exponent.
Consider the metric which transforms under rescaling as

\[x_i \rightarrow \zeta x_i \]
\[t \rightarrow \zeta^z t \]
\[ds \rightarrow \zeta^{\theta/d} ds. \]

This identifies \(z \) as the dynamic critical exponent (\(z = 1 \) for “relativistic” quantum critical points).

\(\theta \) is the violation of hyperscaling exponent.

The most general choice of such a metric is

\[
\begin{align*}
ds^2 &= \frac{1}{r^2} \left(-\frac{dt^2}{r^{2d(z-1)/(d-\theta)}} + r^{2\theta/(d-\theta)} dr^2 + dx_i^2 \right)
\end{align*}
\]

We have used reparametrization invariance in \(r \) to choose so that it scales as \(r \rightarrow \zeta^{(d-\theta)/d} r \).

At $T > 0$, there is a “black-brane” at $r = r_h$.

The Beckenstein-Hawking entropy of the black-brane is the thermal entropy of the quantum system $r = 0$.

The entropy density, S, is proportional to the “area” of the horizon, and so $S \sim r_h^{-d}$.
At $T > 0$, there is a “black-brane” at $r = r_h$.

The Beckenstein-Hawking entropy of the black-brane is the thermal entropy of the quantum system $r = 0$.

The entropy density, S, is proportional to the “area” of the horizon, and so $S \sim r_h^{-d}$

Under rescaling $r \rightarrow \zeta^{(d-\theta)/d} r$, and the temperature $T \sim t^{-1}$, and so

$$S \sim T^{(d-\theta)/z} = T^{d_{\text{eff}}/z}$$

where $\theta = d - d_{\text{eff}}$ measures “dimension deficit” in the phase space of low energy degrees of a freedom.
\[ds^2 = \frac{1}{r^2} \left(-\frac{dt^2}{r^2d(z-1)/(d-\theta)} + r^{2\theta/(d-\theta)} dr^2 + dx_i^2 \right) \]

At \(T > 0 \), there is a horizon, and computation of its Bekenstein-Hawking entropy shows

\[S \sim T^{(d-\theta)/z}. \]

So \(\theta \) is indeed the violation of hyperscaling exponent as claimed. For a compressible quantum state we should therefore \textit{choose} \(\theta = d - 1 \). No additional choices will be made, and all subsequent results are consequences of the assumption of the existence of a holographic dual.

The null energy condition (stability condition for gravity) yields a new inequality

\[z \geq 1 + \frac{\theta}{d} \]

In \(d = 2 \), this implies \(z \geq 3/2 \). So the lower bound is precisely the value obtained from the field theory.

Holography of strange metals

\[
ds^2 = \frac{1}{r^2} \left(-\frac{dt^2}{r^2 d(z-1)/(d-\theta)} + r^{2\theta/(d-\theta)} dr^2 + dx_i^2 \right)
\]

\[
\theta = d - 1
\]

Application of the Ryu-Takayanagi minimal area formula to a dual Einstein-Maxwell-dilaton theory yields

\[
S_E \sim Q^{(d-1)/d} P \ln P
\]

with a co-efficient independent of UV details and of the shape of the entangling region. These properties are just as expected for a circular Fermi surface with \(Q \sim k_F^d \).

Holographic theory of a non-Fermi liquid (NFL)

Add a relevant “dilaton” field

\[\mathcal{S} = \int d^{d+2}x \sqrt{-g} \left[\frac{1}{2\kappa^2} \left(R - 2(\nabla \Phi)^2 - \frac{V(\Phi)}{L^2} \right) - \frac{Z(\Phi)}{4e^2} F_{ab} F^{ab} \right] \]

with \(Z(\Phi) = Z_0 e^{\alpha \Phi} \), \(V(\Phi) = -V_0 e^{-\beta \Phi} \), as \(\Phi \to \infty \).

Holographic theory of a non-Fermi liquid (NFL)

Add a relevant “dilaton” field

\[\mathcal{E}_r = \langle Q \rangle \]

\[\mathcal{E}_r = \langle Q \rangle \]

Leads to metric

\[ds^2 = L^2 \left(-f(r)dt^2 + g(r)dr^2 + \frac{dx^2 + dy^2}{r^2} \right) \]

with \(f(r) \sim r^{-\gamma} \), \(g(r) \sim r^\delta \), \(\Phi(r) \sim \ln(r) \) as \(r \to \infty \).

Holographic theory of a non-Fermi liquid (NFL)

\[ds^2 = \frac{1}{r^2} \left(-\frac{dt^2}{r^2 d(z-1)/(d-\theta)} + \frac{r^{2\theta}/(d-\theta)}{dr^2} + dx_i^2 \right) \]

The \(r \to \infty \) metric has the above form with

\[
\begin{align*}
\theta &= \frac{d^2 \beta}{\alpha + (d-1)\beta} \\
z &= 1 + \frac{\theta}{d} + \frac{8(d(d-\theta) + \theta)^2}{d^2(d-\theta)\alpha^2}.
\end{align*}
\]

Note \(z \geq 1 + \theta/d \).

In the present theory, we have to choose \(\alpha \) or \(\beta \) so that \(\theta = d - 1 \).

Needed: a dynamical quantum analysis which automatically selects this value of \(\theta \).
Conclusions

Gapped quantum matter

Numerical and experimental observation of a spin liquid on the kagome lattice. Likely a \mathbb{Z}_2 spin liquid.
Conclusions

Conformal quantum matter

Numerical and experimental observation in coupled-dimer antiferromagnets, and at the superfluid-insulator transition of bosons in optical lattices.
Conclusions

Compressible quantum matter

Holographic theory yields models of non-Fermi liquids (NFL), fractionalized Fermi liquids (FL*), and Fermi liquids (FL), in close correspondence with the phases expected from field theory.
Thank you!