Exploring quantum matter in the high temperature superconductors

Perimeter Institute, Waterloo
June 23, 2015

Subir Sachdev

Talk online: sachdev.physics.harvard.edu
Flavors of Quantum Matter
Flavors of Quantum Matter

A. Ordinary quantum matter

Independent electrons, or pairs of electrons
Flavors of Quantum Matter

A. Ordinary quantum matter
 Independent electrons, or pairs of electrons

B. Topological quantum matter
 Long-range quantum entanglement leads to sensitivity to spatial topology
Flavors of Quantum Matter

A. Ordinary quantum matter
 Independent electrons, or pairs of electrons

B. Topological quantum matter
 Long-range quantum entanglement leads to sensitivity to spatial topology

C. Quantum matter without quasiparticles
 Strange metals: infinite-range model maps to extremal charged black holes and yields Bekenstein-Hawking entropy
High temperature superconductors

\[\text{CuO}_2 \text{ plane} \]

\[\text{YBa}_2\text{Cu}_3\text{O}_{6+x} \]
“Undoped” Anti-ferromagnet
“Undoped” Anti-ferromagnet
Anti-ferromagnet with p holes per square
Anti-ferromagnet with p holes per square

But relative to the band insulator, there are $1 + p$ holes per square
Antiferromagnet

Figure: K. Fujita and J. C. Seamus Davis
High temperature Superconductor
Figure: K. Fujita and J. C. Seamus Davis

Conventional metal
Area enclosed by Fermi surface = $1 + p$
Ordinary quantum matter: the Fermi liquid (FL)

- Fermi surface separates empty and occupied states in momentum space.

\[
\text{Area enclosed by Fermi surface} = \text{total density of electrons (mod 2)} = 1 + \sqrt{p}.
\]

- Density of electrons can be continuously varied at zero temperature.

- Long-lived electron-like quasiparticle excitations near the Fermi surface: lifetime of quasiparticles \(\sim 1/T^2 \).
Ordinary quantum matter: the Fermi liquid (FL)

- Fermi surface separates empty and occupied states in momentum space.
- Area enclosed by Fermi surface = total density of electrons (mod 2) = 1 + p.
Ordinary quantum matter: the Fermi liquid (FL)

- Fermi surface separates empty and occupied states in momentum space.
- Area enclosed by Fermi surface = total density of electrons (mod 2) = $1+p$.
- Density of electrons can be continuously varied at zero temperature.
Ordinary quantum matter: the Fermi liquid (FL)

- Fermi surface separates empty and occupied states in momentum space.
- Area enclosed by Fermi surface = total density of electrons (mod 2) = $1+p$.
- Density of electrons can be continuously varied at zero temperature.
- Long-lived electron-like quasiparticle excitations near the Fermi surface: lifetime of quasiparticles $\sim 1/T^2$.
Figure: K. Fujita and J. C. Seamus Davis

Conventional metal
Area enclosed by Fermi surface = \(1 + \rho\)

“Fermi arcs” at low p
Strange metal

Metal without quasi-particles
Outline

1. The pseudogap metal
 Fermi liquid co-existing with topological order

2. The strange metal
 Metal without quasiparticles
 Infinite-range model: dual to extremal charged black holes and yields Bekenstein-Hawking entropy

“Fermi arcs” at low \(p \)
A new metal — a fractionalized Fermi liquid (FL*) — with electron-like quasiparticles on a Fermi surface of size p coexisting with topological order.

M. Punk, A. Allais, and S. Sachdev, arXiv:1501.00978
Evidence for Fermi surface of long-lived quasiparticles of density p

- Hall effect (Ando PRL 2004)
- Optical conductivity (van der Marel PNAS 2013)
- Magnetoresistance (Greven PRL 2014)
- Scanning Tunneling Microscopy (Seamus Davis, PNAS 2014):

 d-form factor density wave
Density wave (DW) order at low T and p
Identified as a predicted “d-form factor density wave”

Q = (π/2, 0)
Anti-ferromagnet with p holes per square

Note: relative to the fully-filled band insulator, there are $1+p$ holes per square
Fractionalized Fermi liquid (FL*)

\[| \uparrow \downarrow \rangle - | \downarrow \uparrow \rangle \]

Realizes a metal with a Fermi surface of area \(p \) co-existing with “topological order”

Realizes a metal with a Fermi surface of area ρ co-existing with "topological order"
Fractionalized Fermi liquid (FL*)

Realizes a metal with a Fermi surface of area p co-existing with “topological order”

A fermionic “dimer” describing a “bonding” orbital between two sites

Realizes a metal with a Fermi surface of area p co-existing with “topological order”

Fractionalized Fermi liquid (FL*)

\[|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \]

Realizes a metal with a Fermi surface of area p co-existing with "topological order"

Fractionalized Fermi liquid (FL*)

\[= |\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \]

Realizes a metal with a Fermi surface of area p co-existing with “topological order”

Fractionalized Fermi liquid (FL*)

\[= | \uparrow \downarrow \rangle - | \downarrow \uparrow \rangle \]

Realizes a metal with a Fermi surface of area \(p \) co-existing with “topological order”

Fractionalized Fermi liquid (FL*)

\[\left| \uparrow \downarrow \right\rangle - \left| \downarrow \uparrow \right\rangle \]

Realizes a metal with a Fermi surface of area p co-existing with “topological order”

Fractionalized Fermi liquid (FL*)

\[
\begin{align*}
\left| \uparrow \downarrow \right> - \left| \downarrow \uparrow \right>
\end{align*}
\]

Realizes a metal with a Fermi surface of area p co-existing with “topological order”

Fractionalized Fermi liquid (FL*)

\[\left| \uparrow \downarrow \right\rangle - \left| \downarrow \uparrow \right\rangle \]

Realizes a metal with a Fermi surface of area \(p \) co-existing with "topological order"

Fractionalized Fermi liquid (FL*)

\[| \uparrow \downarrow \rangle - | \downarrow \uparrow \rangle \]

Realizes a metal with a Fermi surface of area \(p \) co-existing with "topological order"

Fractionalized Fermi liquid (FL*)

\[= |↑↓⟩ - |↓↑⟩ \]

Realizes a metal with a Fermi surface of area \(p \) co-existing with "topological order"

Topological order

Place pseudogap metal on a torus;
Topological order

Place pseudogap metal on a torus;

obtain “topological” states nearly degenerate with the ground state:

cchange sign of every dimer across red line
Topological order

\[= |↑↓⟩ - |↓↑⟩ \]

Place pseudogap metal on a torus; obtain “topological” states nearly degenerate with the ground state: change sign of every dimer across red line.
Topological order

\[| \uparrow \downarrow \rangle - | \downarrow \uparrow \rangle \]

Place pseudogap metal on a torus; obtain “topological” states nearly degenerate with the ground state: change sign of every dimer across red line.
Topological order

$$|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle$$

Place pseudogap metal on a torus; obtain "topological" states nearly degenerate with the ground state: change sign of every dimer across red line.
Topological order

\[| \uparrow \downarrow \rangle - | \downarrow \uparrow \rangle \]

Place pseudogap metal on a torus;
obtain “topological” states nearly degenerate with the ground state:
change sign of every dimer across red line
Topological order

\[= | \uparrow \downarrow \rangle - | \downarrow \uparrow \rangle \]

Place pseudogap metal on a torus; to change overall sign, a pair of “spinons” have to be moved globally around a circumference of the torus.
Topological order

\[| \uparrow \downarrow \rangle - | \downarrow \uparrow \rangle \]

Place pseudogap metal on a torus; to change overall sign, a pair of “spinons” have to be moved globally around a circumference of the torus.
Topological order

\[= |\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \]

Place pseudogap metal on a torus; to change overall sign, a pair of “spinons” have to be moved globally around a circumference of the torus.
Topological order

\[= |↑↓⟩ - |↓↑⟩ \]

Place pseudogap metal on a torus; to change overall sign, a pair of “spinons” have to be moved globally around a circumference of the torus.
1. The pseudogap metal
 Fermi liquid co-existing with topological order

2. The strange metal
 Metal without quasiparticles
 Infinite-range model: dual to extremal charged black holes and yields Bekenstein-Hawking entropy
Many experimental indications of a quantum state which has:

- a continuously variable density at zero temperature,
- bulk excitations of arbitrarily low energy,
- and no long-lived quasiparticles.
\[H = \frac{1}{(2N)^{3/2}} \sum_{i,j,k,\ell=1}^{N} J_{ij;kl} c_i^\dagger c_j^\dagger c_k c_\ell \]

\[Q = \frac{1}{N} \sum_i \langle c_i^\dagger c_i \rangle. \]

An infinite-range model of a strange metal

A. Kitaev, unpublished

S. Sachdev, arXiv:1506.05111
\[H = \frac{1}{(2N)^{3/2}} \sum_{i,j,k,\ell=1}^{N} J_{ij;\ell} c_i^\dagger c_j^\dagger c_k c_\ell \]

\[Q = \frac{1}{N} \sum_i \langle c_i^\dagger c_i \rangle. \]

Local fermion density of states

\[\rho(\omega) \sim \begin{cases}
\omega^{-1/2}, & \omega > 0 \\
e^{-2\pi\epsilon |\omega|^{-1/2}}, & \omega < 0
\end{cases} \]

\[H = \frac{1}{(2N)^{3/2}} \sum_{i,j,k,\ell=1}^{N} J_{ij;kl} c_i^\dagger c_j c_k c_\ell \]

\[c_i c_j + c_j c_i = 0 \]
\[c_i c_j^\dagger + c_j^\dagger c_i = \delta_{ij} \]
\[J_{ij;kl} \text{ independent random numbers} \]

\[Q = \frac{1}{N} \sum_i \langle c_i^\dagger c_i \rangle. \]

Local fermion density of states
\[\rho(\omega) \sim \begin{cases} \omega^{-1/2}, & \omega > 0 \\ e^{-2\pi \mathcal{E}} |\omega|^{-1/2}, & \omega < 0. \end{cases} \]

Known ‘equation of state’ determines \(\mathcal{E} \) as a function of \(Q \)
\[Q = \frac{1}{4} \left(3 - \tanh(2\pi \mathcal{E}) \right) - \frac{1}{\pi} \tan^{-1} \left(e^{2\pi \mathcal{E}} \right) \]

A. Georges, O. Parcollet, and S. Sachdev
\[H = \frac{1}{(2N)^{3/2}} \sum_{i,j,k,\ell=1}^{N} J_{ij;\ell} c_i^\dagger c_j^\dagger c_k c_\ell \]

\[\mathcal{Q} = \frac{1}{N} \sum_i \langle c_i^\dagger c_i \rangle. \]

Local fermion density of states

\[\rho(\omega) \sim \begin{cases} \omega^{-1/2}, & \omega > 0 \\
 e^{-2\pi\epsilon |\omega|^{-1/2}}, & \omega < 0. \end{cases} \]

Known ‘equation of state’ determines \(\mathcal{E} \) as a function of \(\mathcal{Q} \)

\[\frac{\partial \mathcal{S}}{\partial \mathcal{Q}} = 2\pi \mathcal{E} \]

O. Parcollet, A. Georges, G. Kotliar, and A. Sengupta

A. Georges, O. Parcollet, and S. Sachdev
\[H = \frac{1}{(2N)^{3/2}} \sum_{i,j,k,\ell=1}^{N} J_{ij; k\ell} c_i^\dagger c_j^\dagger c_k c_{\ell} \]

\[Q = \frac{1}{N} \sum_{i} \langle c_i^\dagger c_i \rangle. \]

Local fermion density of states

\[\rho(\omega) \sim \begin{cases} \omega^{-1/2}, & \omega > 0 \\ e^{-2\pi E} |\omega|^{-1/2}, & \omega < 0. \end{cases} \]

Known ‘equation of state’ determines \(\mathcal{E} \) as a function of \(Q \)

Microscopic zero temperature entropy density, \(S \), obeys

\[\frac{\partial S}{\partial Q} = 2\pi \mathcal{E} \]
$H = \frac{1}{(2N)^{3/2}} \sum_{i,j,k,\ell=1}^{N} J_{i;j,k;\ell} c_i^\dagger c_j^\dagger c_k c_\ell$
\[H = \frac{1}{(2N)^{3/2}} \sum_{i,j,k,\ell=1}^{N} J_{i;j,k;\ell} c_i^\dagger c_j^\dagger c_k c_\ell \]

\[Q = \frac{1}{N} \sum_i \langle c_i^\dagger c_i \rangle. \]

Local fermion density of states

\[\rho(\omega) \sim \begin{cases} \omega^{-1/2}, & \omega > 0 \\ e^{-2\pi\varepsilon}|\omega|^{-1/2}, & \omega < 0. \end{cases} \]

Known ‘equation of state’ determines \(\mathcal{E} \) as a function of \(Q \)

Microscopic zero temperature entropy density, \(S \), obeys

\[\frac{\partial S}{\partial Q} = 2\pi\varepsilon \]

Einstein-Maxwell theory + cosmological constant

Horizon area \(A_h \):

\[\text{AdS}_2 \times R^d \]

\[ds^2 = (d\xi^2 - dt^2)/\xi^2 + d\vec{x}^2 \]

Gauge field: \(A = (\mathcal{E}/\zeta)dt \)

\[\mathcal{L} = \bar{\psi} \Gamma^\alpha D_\alpha \psi + m\bar{\psi}\psi \]

Local fermion density of states

\[\rho(\omega) \sim \begin{cases} \omega^{-1/2}, & \omega > 0 \\ e^{-2\pi\varepsilon}|\omega|^{-1/2}, & \omega < 0. \end{cases} \]

T. Faulkner, Hong Liu, J. McGreevy, and D. Vegh

$H = \frac{1}{(2N)^{3/2}} \sum_{i,j,k,\ell=1}^{N} J_{ij;kl} c_i^{\dagger} c_j^{\dagger} c_k c_{\ell}$

$Q = \frac{1}{N} \sum_i \langle c_i^{\dagger} c_i \rangle$.

Local fermion density of states
\[
\rho(\omega) \sim \begin{cases}
\omega^{-1/2}, & \omega > 0 \\
e^{-2\pi\mathcal{E}|\omega|^{-1/2}}, & \omega < 0.
\end{cases}
\]

Known ‘equation of state’ determines \mathcal{E} as a function of Q.

Microscopic zero temperature entropy density, S, obeys
\[
\frac{\partial S}{\partial Q} = 2\pi\mathcal{E}
\]

Einstein-Maxwell theory + cosmological constant

Horizon area A_h;
AdS$_2 \times R^d$
\[
ds^2 = (d\zeta^2 - dt^2)/\zeta^2 + d\vec{x}^2
\]

Gauge field: $A = (\mathcal{E}/\zeta)dt$

\[
\zeta = \infty
\]

\[
\mathcal{L} = \bar{\psi}\Gamma^\alpha D_\alpha \psi + m\bar{\psi}\psi
\]

Local fermion density of states
\[
\rho(\omega) \sim \begin{cases}
\omega^{-1/2}, & \omega > 0 \\
e^{-2\pi\mathcal{E}|\omega|^{-1/2}}, & \omega < 0.
\end{cases}
\]

‘Equation of state’ relating \mathcal{E} and Q depends upon the geometry of spacetime far from the AdS$_2$

Eliminate r_0 between
\[
Q = \frac{r_0^{d-1}\sqrt{2d [(d-1)R^2 + (d+1)r_0^2]}}{\kappa^2 g_F}
\]
\[
\mathcal{E} = \frac{g_F r_0 \sqrt{2d [(d-1)R^2 + (d+1)r_0^2]}}{2 [(d-1)^2R^2 + d(d+1)r_0^2]}
\]

S. Sachdev, arXiv:1506.05111
\[H = \frac{1}{(2N)^{3/2}} \sum_{i,j,k,\ell=1}^{N} J_{ij;\ell} c_i^\dagger c_j^\dagger c_k c_\ell \]

\[Q = \frac{1}{N} \sum_i \langle c_i^\dagger c_i \rangle. \]

Local fermion density of states
\[\rho(\omega) \sim \begin{cases} \omega^{-1/2}, & \omega > 0 \\ e^{-2\pi \mathcal{E}} |\omega|^{-1/2}, & \omega < 0. \end{cases} \]

Known ‘equation of state’ determines \(\mathcal{E} \) as a function of \(Q \)

Microscopic zero temperature entropy density, \(S \), obeys
\[\frac{\partial S}{\partial Q} = 2\pi \mathcal{E} \]

\[\mathcal{L} = \bar{\psi} \Gamma^\alpha D_\alpha \psi + m \bar{\psi} \psi \]

Local fermion density of states
\[\rho(\omega) \sim \begin{cases} \omega^{-1/2}, & \omega > 0 \\ e^{-2\pi \mathcal{E}} |\omega|^{-1/2}, & \omega < 0. \end{cases} \]

‘Equation of state’ relating \(\mathcal{E} \) and \(Q \) depends upon the geometry of spacetime far from the AdS\(_2\)

Black hole thermodynamics (classical GR) yields
\[\frac{1}{\mathcal{A}_b} \frac{\partial \mathcal{A}_h}{\partial Q} = 8\pi G_N \mathcal{E} \]

\[H = \frac{1}{(2N)^{3/2}} \sum_{i,j,k,\ell=1}^{N} J_{ij; k\ell} c^\dagger_i c^\dagger_j c_k c_\ell \]

\[Q = \frac{1}{N} \sum_i \langle c^\dagger_i c_i \rangle. \]

Local fermion density of states

\[\rho(\omega) \sim \begin{cases} \omega^{-1/2}, \omega > 0 \\ e^{-2\pi \varepsilon |\omega|^{-1/2}}, \omega < 0. \end{cases} \]

Known ‘equation of state’ determines \(\mathcal{E} \) as a function of \(Q \)

Microscopic zero temperature entropy density, \(S \), obeys

\[\frac{\partial S}{\partial Q} = 2\pi \mathcal{E} \]

Einstein-Maxwell theory + cosmological constant

Horizon area \(A_h \);

\(\text{AdS}_2 \times R^d \)

\[ds^2 = (d\zeta^2 - dt^2)/\zeta^2 + d\vec{x}^2 \]

Gauge field: \(A = (\mathcal{E}/\zeta)dt \)

\[\zeta = \infty \]

\[\mathcal{L} = \bar{\psi} \Gamma^\alpha D_\alpha \psi + m \bar{\psi} \psi \]

\[\rho(\omega) \sim \begin{cases} \omega^{-1/2} , \omega > 0 \\ e^{-2\pi \varepsilon |\omega|^{-1/2}}, \omega < 0. \end{cases} \]

‘Equation of state’ relating \(\mathcal{E} \) and \(Q \) depends upon the geometry of spacetime far from the AdS_2

Black hole thermodynamics (classical GR) yields

\[S = \frac{A_h}{4G_N A_b} \]

\[\frac{1}{A_b} \frac{\partial A_h}{\partial Q} = 8\pi G_N \mathcal{E} \]

S. Sachdev, arXiv:1506.05111
Figure: K. Fujita and J. C. Seamus Davis

- Pseudogap
- Strange metal

Diagram showing phase transitions in a material under varying temperature (T) and density (ρ) conditions.
1. The pseudogap metal

 Fermi liquid co-existing with topological order

2. The strange metal

 Metal without quasiparticles

 Infinite-range model: dual to extremal charged black holes and yields

 Bekenstein-Hawking entropy