Deconfined quantum criticality

*Science* 303, 1490 (2004); *Physical Review B* 70, 144407 (2004), 71, 144508 and 71, 144509 (2005), cond-mat/0502002

Leon Balents (UCSB)
Lorenz Bartosch (Harvard)
Anton Burkov (Harvard)
Matthew Fisher (UCSB)
Subir Sachdev (Harvard)
Krishnendu Sengupta (HRI, India)
T. Senthil (MIT and IISc)
Ashvin Vishwanath (Berkeley)

Talk online at http://sachdev.physics.harvard.edu
Outline

I. Magnetic quantum phase transitions in “dimerized” Mott insulators:  
   *Landau-Ginzburg-Wilson (LGW) theory*

II. Magnetic quantum phase transitions of Mott insulators on the square lattice  
   A. *Breakdown of LGW theory*  
   B. *Berry phases*  
   C. *Spinor formulation and deconfined criticality*
I. Magnetic quantum phase transitions in “dimerized” Mott insulators:

Landau-Ginzburg-Wilson (LGW) theory:
Second-order phase transitions described by fluctuations of an order parameter associated with a broken symmetry
TlCuCl$_3$

M. Matsumoto, B. Normand, T.M. Rice, and M. Sigrist, cond-mat/0309440.
Coupled Dimer Antiferromagnet


*S*=1/2 spins on coupled dimers

\[
H = \sum_{\langle ij \rangle} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j
\]

\[
0 \leq \lambda \leq 1
\]
$\lambda$ close to 0  Weakly coupled dimers
$\lambda$ close to 0

Weakly coupled dimers

$\left( \uparrow \downarrow \right) - \left| \downarrow \uparrow \right\rangle$

Paramagnetic ground state

$\left\langle \vec{S}_i \right\rangle = 0$
$\lambda$ close to 0

Weakly coupled dimers

$\begin{align*}
\downarrow\uparrow - \uparrow\downarrow &= 2 \\
\end{align*}$

Excitation:

$S=1$ quasiparticle

$\frac{1}{\sqrt{2}} \left( \left| \uparrow\downarrow \right\rangle - \left| \downarrow\uparrow \right\rangle \right)$
λ close to 0

Weakly coupled dimers

\[ \frac{1}{\sqrt{2}} (|↑↓⟩ - |↓↑⟩) \]

Excitation:
\( S=1 \) quasiparticle
λ close to 0

Weakly coupled dimers

\[ \begin{pmatrix} \uparrow \downarrow - \downarrow \uparrow \end{pmatrix} = \frac{1}{\sqrt{2}} \left( \begin{pmatrix} \uparrow \downarrow \end{pmatrix} - \begin{pmatrix} \downarrow \uparrow \end{pmatrix} \right) \]

Excitation:

S=1 quasiparticle
\( \lambda \) close to 0

Weakly coupled dimers

\[ \downarrow \uparrow - \uparrow \downarrow = 2 \]

Excitation:
\[ S=1 \text{ quasiparticle} \]

\[ \rho = \frac{1}{\sqrt{2}} (|\uparrow \downarrow\rangle - |\downarrow \uparrow\rangle) \]
\[ \lambda \text{ close to 0} \]

Weakly coupled dimers

\[ \downarrow \uparrow - \uparrow \downarrow = 2 \]

Excitation:

\[ S=1 \text{ quasiparticle} \]

\[ = \frac{1}{\sqrt{2}} \left( |\uparrow \downarrow \rangle - |\downarrow \uparrow \rangle \right) \]
\[ \lambda \text{ close to 0} \]

Weakly coupled dimers

Energy dispersion away from antiferromagnetic wavevector

\[ \varepsilon_p = \Delta + \frac{c_x^2 p_x^2 + c_y^2 p_y^2}{2\Delta} \]

\[ \Delta \rightarrow \text{spin gap} \]

Excitation: \( S=1 \) quasiparticle

\[ = \frac{1}{\sqrt{2}} \left( |\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right) \]
TlCuCl$_3$


FIG. 1. Measured neutron profiles in the $a^*c^*$ plane of TlCuCl$_3$ for $i=(1.35,0,0)$, $ii=(0,0,3.15)$ [r.l.u]. The spectrum at $T=1.5$ K.
Coupled Dimer Antiferromagnet
$\lambda$ close to 1  
Weakly dimerized square lattice
Weakly dimerized square lattice

Excitations:
2 spin waves (magnons)

$$\epsilon_p = \sqrt{c_x^2 p_x^2 + c_y^2 p_y^2}$$

Ground state has long-range spin density wave (Néel) order at wavevector $K = (\pi, \pi)$

spin density wave order parameter: $\bar{\phi} = \eta_i \frac{\vec{S}_i}{S}$; $\eta_i = \pm 1$ on two sublattices
TlCuCl$_3$

Neutron Diffraction Study of the Pressure-Induced Magnetic Ordering in the Spin Gap System TlCuCl$_3$

Akira OOSAWA$^*$, Masashi FUJISAWA$^1$, Toyotaka OSAKABE, Kazuhisa KAKURAI and Hidekazu TANAKA$^2$

Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195
$^1$Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo 152-8551
$^2$Research Center for Low Temperature Physics, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo 152-8551

(Received February 3, 2003)

Fig. 3. Temperature dependence of the magnetic Bragg peak intensity for $Q = (1,0,-3)$ reflection measured at $P = 1.48$ GPa in TlCuCl$_3$. 

\[ \lambda_c = 0.52337(3) \]
M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama, 

T=0

\[ \langle \tilde{\phi} \rangle \neq 0 \]
Néel state

\[ \langle \tilde{\phi} \rangle = 0 \]
Quantum paramagnet

Pressure in TlCuCl\(_3\)

**LGW theory for quantum criticality**

Landau-Ginzburg-Wilson theory: write down an effective action for the antiferromagnetic order parameter $\bar{\phi}$ by expanding in powers of $\bar{\phi}$ and its spatial and temporal derivatives, while preserving all symmetries of the microscopic Hamiltonian.

$$S_{\phi} = \int d^2 x d\tau \left[ \frac{1}{2} \left( (\nabla_x \bar{\phi})^2 + c^2 (\partial_\tau \bar{\phi})^2 + (\lambda_c - \lambda) \bar{\phi}^2 \right) + \frac{u}{4!} (\bar{\phi}^2)^2 \right]$$

LGW theory for quantum criticality

Landau-Ginzburg-Wilson theory: write down an effective action for the antiferromagnetic order parameter $\bar{\phi}$ by expanding in powers of $\bar{\phi}$ and its spatial and temporal derivatives, while preserving all symmetries of the microscopic Hamiltonian.

$$S_{\phi} = \int d^2x d\tau \left[ \frac{1}{2} \left( (\nabla_x \bar{\phi})^2 + c^2 (\partial_\tau \bar{\phi})^2 + (\lambda_c - \lambda) \bar{\phi}^2 \right) + \frac{u}{4!} (\bar{\phi}^2)^2 \right]$$


For $\lambda < \lambda_c$, oscillations of $\bar{\phi}$ about $\bar{\phi} = 0$ constitute the triplon excitation.

I. Magnetic quantum phase transitions in “dimerized” Mott insulators: 
   \textit{Landau-Ginzburg-Wilson (LGW) theory}

II. Magnetic quantum phase transitions of Mott insulators on the square lattice
   \begin{enumerate}
   \item \textit{Breakdown of LGW theory}
   \item \textit{Berry phases}
   \item \textit{Spinor formulation and deconfined criticality}
   \end{enumerate}
II. Magnetic quantum phase transitions of Mott insulators on the square lattice:

A. Breakdown of LGW theory
Ground state has long-range Néel order

Order parameter \( \tilde{\phi} = \eta_i \tilde{S}_i \)

\( \eta_i = \pm 1 \) on two sublattices

\[ \langle \tilde{\phi} \rangle \neq 0 \]
Square lattice antiferromagnet

\[ H = \sum_{\langle ij \rangle} J_{ij} \vec{S}_i \cdot \vec{S}_j \quad ; \quad \vec{S}_i \Rightarrow \text{spin operator with } S=1/2 \]

Destroy Neel order by perturbations which preserve full square lattice symmetry e.g. second-neighbor or ring exchange.

What is the state with \( \langle \phi \rangle = 0 \) ?
Square lattice antiferromagnet

\[ H = \sum_{\langle ij \rangle} J_{ij} \vec{S}_i \cdot \vec{S}_j \quad ; \quad \vec{S}_i \Rightarrow \text{spin operator with } S=1/2 \]

Destroy Neel order by perturbations which preserve full square lattice symmetry e.g. second-neighbor or ring exchange.

What is the state with \( \langle \phi \rangle = 0 \) ?
LGW theory for quantum criticality

Landau-Ginzburg-Wilson theory: write down an effective action for the antiferromagnetic order parameter $\bar{\phi}$ by expanding in powers of $\bar{\phi}$ and its spatial and temporal derivatives, while preserving all symmetries of the microscopic Hamiltonian

$$S_\varphi = \int d^2x d\tau \left[ \frac{1}{2} \left( (\nabla_x \bar{\phi})^2 + c^2 (\partial_\tau \bar{\phi})^2 + r \bar{\phi}^2 \right) + \frac{u}{4!} (\bar{\phi}^2)^2 \right]$$

The ground state for $r > 0$ has no broken symmetry and a gapped $S=1$ quasiparticle excitation (oscillations of $\bar{\phi}$ about $\bar{\phi} = 0$)
Problem: there is no state with a gapped, stable $S=1$ quasiparticle and no broken symmetries
Problem: there is no state with a gapped, stable $S=1$ quasiparticle and no broken symmetries.

“Liquid” of valence bonds has fractionalized $S=1/2$ excitations.
Problem: there is no state with a gapped, stable $S=1$ quasiparticle and no broken symmetries

“Liquid” of valence bonds has fractionalized $S=1/2$ excitations
Problem: there is no state with a gapped, stable $S=1$ quasiparticle and no broken symmetries

“Liquid” of valence bonds has fractionalized $S=1/2$ excitations
Problem: there is no state with a gapped, stable $S=1$ quasiparticle and no broken symmetries

“Liquid” of valence bonds has fractionalized $S=1/2$ excitations
Problem: there is no state with a gapped, stable $S=1$ quasiparticle and no broken symmetries

“Liquid” of valence bonds has fractionalized $S=1/2$ excitations
Problem: there is no state with a gapped, stable $S=1$ quasiparticle and no broken symmetries

“Liquid” of valence bonds has fractionalized $S=1/2$ excitations
Another possible state, with $\langle \phi \rangle = 0$, is the valence bond solid (VBS)
Another possible state, with $\langle \tilde{\phi} \rangle = 0$, is the valence bond solid (VBS)

Such a state breaks the symmetry of rotations by $n\pi / 2$ about lattice sites, and has $\langle \Psi_{\text{vbs}} \rangle \neq 0$, where $\Psi_{\text{vbs}}$ is the VBS order parameter.

$$\Psi_{\text{vbs}}(i) = \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j e^{i \arctan(r_j - r_i)}$$
Another possible state, with $\langle \tilde{\phi} \rangle = 0$, is the valence bond solid (VBS)

Such a state breaks the symmetry of rotations by $n\pi / 2$ about lattice sites, and has $\langle \Psi_{\text{vbs}} \rangle \neq 0$, where $\Psi_{\text{vbs}}$ is the VBS order parameter

$$
\Psi_{\text{vbs}} (i) = \sum_{\langle ij \rangle} \tilde{S}_i \cdot \tilde{S}_j e^{i \arctan(r_j - r_i)}
$$
Another possible state, with $\langle \bar{\phi} \rangle = 0$, is the valence bond solid (VBS)

Such a state breaks the symmetry of rotations by $n\pi / 2$ about lattice sites, and has $\langle \Psi_{\text{vbs}} \rangle \neq 0$, where $\Psi_{\text{vbs}}$ is the VBS order parameter.

$$\Psi_{\text{vbs}} (i) = \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j e^{i \arctan (r_j - r_i)}$$
Another possible state, with $\langle \tilde{\phi} \rangle = 0$, is the valence bond solid (VBS)

Such a state breaks the symmetry of rotations by $n\pi / 2$ about lattice sites, and has $\langle \Psi_{vbs} \rangle \neq 0$, where $\Psi_{vbs}$ is the VBS order parameter

$$\Psi_{vbs}(i) = \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j e^{i \arctan(r_j - r_i)}$$
Another possible state, with $\langle \tilde{\phi} \rangle = 0$, is the valence bond solid (VBS).

Such a state breaks the symmetry of rotations by $n\pi / 2$ about lattice sites, and has $\langle \Psi_{vbs} \rangle \neq 0$, where $\Psi_{vbs}$ is the VBS order parameter.

$$\Psi_{vbs}(i) = \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j e^{i \arctan(r_j - r_i)}$$
Another possible state, with $\langle \vec{\phi} \rangle = 0$, is the valence bond solid (VBS)

Such a state breaks the symmetry of rotations by $n\pi/2$ about lattice sites, and has $\langle \Psi_{\text{vbs}} \rangle \neq 0$, where $\Psi_{\text{vbs}}$ is the VBS order parameter

$$\Psi_{\text{vbs}}(i) = \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j e^{i \arctan(r_j - r_i)}$$
Another possible state, with $\langle \phi \rangle = 0$, is the valence bond solid (VBS)

\[
\Psi = \sum_{G} \Psi_{vbs} \phi_{G} \phi_{vbs}(j)
\]

Such a state breaks the symmetry of rotations by $n\pi / 2$ about lattice sites, and has $\langle \Psi_{vbs} \rangle \neq 0$, where $\Psi_{vbs}$ is the VBS order parameter.

\[
\Psi_{vbs}(i) = \sum_{\langle ij \rangle} \vec{S}_{i} \cdot \vec{S}_{j} e^{i\arctan(r_{j} - r_{i})}
\]
Another possible state, with $\langle \phi \rangle = 0$, is the valence bond solid (VBS)

Such a state breaks the symmetry of rotations by $n\pi/2$ about lattice sites, and has $\langle \Psi_{vbs} \rangle \neq 0$, where $\Psi_{vbs}$ is the VBS order parameter

$$\Psi_{vbs}(i) = \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j e^{i\arctan(r_j - r_i)}$$
Another possible state, with $\langle \vec{\phi} \rangle = 0$, is the valence bond solid (VBS)

Such a state breaks the symmetry of rotations by $n\pi / 2$ about lattice sites, and has $\langle \Psi_{\text{vbs}} \rangle \neq 0$, where $\Psi_{\text{vbs}}$ is the VBS order parameter

$$\Psi_{\text{vbs}}(i) = \sum_{\langle ji \rangle} \vec{S}_i \cdot \vec{S}_j e^{i\arctan(r_j - r_i)}$$
Another possible state, with $\langle \tilde{\phi} \rangle = 0$, is the valence bond solid (VBS)

Such a state breaks the symmetry of rotations by $n\pi / 2$ about lattice sites, and has $\langle \Psi_{vbs} \rangle \neq 0$, where $\Psi_{vbs}$ is the VBS order parameter

$$\Psi_{vbs} (i) = \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j e^{i \arctan(r_j - r_i)}$$
The VBS state does have a stable $S=1$ quasiparticle excitation

$$\langle \Psi_{vbs} \rangle \neq 0, \quad \langle \phi \rangle = 0$$
The VBS state does have a stable $S=1$ quasiparticle excitation

$$\langle \Psi_{vbs} \rangle \neq 0, \quad \langle \bar{\phi} \rangle = 0$$
The VBS state does have a stable $S=1$ quasiparticle excitation

$$\langle \Psi_{vbs} \rangle \neq 0, \quad \langle \phi \rangle = 0$$
The VBS state does have a stable $S=1$ quasiparticle excitation

$$\langle \Psi_{\text{vbs}} \rangle \neq 0, \quad \langle \phi \rangle = 0$$
The VBS state does have a stable $S=1$ quasiparticle excitation

$$\langle \Psi_{vbs} \rangle \neq 0, \quad \langle \phi \rangle = 0$$
The VBS state does have a stable $S=1$ quasiparticle excitation

$$\langle \Psi_{vbs} \rangle \neq 0, \quad \langle \phi \rangle = 0$$
LGW theory of multiple order parameters

\[ F = F_{\text{vbs}} \left[ \Psi_{\text{vbs}} \right] + F_{\phi} \left[ \phi \right] + F_{\text{int}} \]

\[ F_{\text{vbs}} \left[ \Psi_{\text{vbs}} \right] = r_1 \left| \Psi_{\text{vbs}} \right|^2 + u_1 \left| \Psi_{\text{vbs}} \right|^4 + \cdots \]

\[ F_{\phi} \left[ \phi \right] = r_2 \left| \phi \right|^2 + u_2 \left| \phi \right|^4 + \cdots \]

\[ F_{\text{int}} = \nu \left| \Psi_{\text{vbs}} \right|^2 \left| \phi \right|^2 + \cdots \]

Distinct symmetries of order parameters permit couplings only between their energy densities
LGW theory of multiple order parameters

First order transition

Neel order \[ \langle \tilde{\phi} \rangle \]

VBS order \[ \langle \Psi_{vbs} \rangle \]

Coexistence

"disordered"

Neel order \[ \langle \tilde{\phi} \rangle \]

VBS order \[ \langle \Psi_{vbs} \rangle \]
LGW theory of multiple order parameters

First order transition

Neel order

VBS order

Coexistence

Neel order

VBS order

"disordered"

Neel order

VBS order
Outline

I. Magnetic quantum phase transitions in “dimerized” Mott insulators:
   *Landau-Ginzburg-Wilson (LGW) theory*

II. Magnetic quantum phase transitions of Mott insulators on the square lattice
   A. Breakdown of LGW theory
   B. Berry phases
   C. Spinor formulation and deconfined criticality
II. Magnetic quantum phase transitions of Mott insulators on the square lattice:

B. Berry phases
Quantum theory for destruction of Neel order

Ingredient missing from LGW theory:
Spin Berry Phases

$e^{iSA}$
Quantum theory for destruction of Neel order

Ingredient missing from LGW theory:
Spin Berry Phases

$$e^{iSA}$$
Quantum theory for destruction of Neel order
Quantum theory for destruction of Neel order

Discretize imaginary time: path integral is over fields on the sites of a cubic lattice of points $a$
Quantum theory for destruction of Neel order

Discretize imaginary time: path integral is over fields on the sites of a cubic lattice of points \( a \)

Recall \( \vec{\phi}_a = 2\eta_a \vec{S}_a \rightarrow \vec{\phi} = (0,0,1) \) in classical Neel state;

\( \eta_a \rightarrow \pm 1 \) on two square sublattices;

\[
(\mu = x, y, \tau)
\]
Quantum theory for destruction of Neel order

Discretize imaginary time: path integral is over fields on the sites of a cubic lattice of points \( a \)

Recall \( \phi_a = 2 \eta_a \vec{S}_a \rightarrow \phi_a = (0,0,1) \) in classical Neel state;

\( \eta_a \rightarrow \pm 1 \) on two square sublattices ;

\( A_{a\mu} \rightarrow \text{half} \) oriented area of spherical triangle

formed by \( \phi_a, \phi_{a+\mu}, \) and an arbitrary reference point \( \phi_0 \)
Quantum theory for destruction of Neel order

Discretize imaginary time: path integral is over fields on the sites of a cubic lattice of points $a$

Recall $\vec{\phi}_a = 2\eta_a \vec{S}_a \rightarrow \vec{\phi}_a = (0,0,1)$ in classical Neel state;

$\eta_a \rightarrow \pm 1$ on two square sublattices;

$A_{a\mu} \rightarrow$ half oriented area of spherical triangle formed by $\vec{\phi}_a$, $\vec{\phi}_{a+\mu}$, and an arbitrary reference point $\vec{\phi}_0$
Quantum theory for destruction of Neel order

Discretize imaginary time: path integral is over fields on the sites of a cubic lattice of points \( a \)

Recall \( \vec{\phi}_a = 2\eta_a \vec{S}_a \rightarrow \vec{\phi}_a = (0,0,1) \) in classical Neel state;

\( \eta_a \rightarrow \pm 1 \) on two square sublattices;

\( A_{a\mu} \rightarrow \text{half} \) oriented area of spherical triangle formed by \( \vec{\phi}_a, \vec{\phi}_{a+\mu}, \) and an arbitrary reference point \( \vec{\phi}_0 \)
Quantum theory for destruction of Neel order

Discretize imaginary time: path integral is over fields on the sites of a cubic lattice of points $a$

Recall $\phi_a = 2\eta_a S_a \rightarrow \phi_a = (0,0,1)$ in classical Neel state;

$\eta_a \rightarrow \pm 1$ on two square sublattices;

$A_{a\mu} \rightarrow \text{half}$ oriented area of spherical triangle formed by $\phi_a$, $\phi_{a+\mu}$, and an arbitrary reference point $\phi_0$
Quantum theory for destruction of Neel order

Discretize imaginary time: path integral is over fields on the sites of a cubic lattice of points $a$

Recall $\vec{\phi}_a = 2\eta_a S_a \rightarrow \vec{\phi}_a = (0,0,1)$ in classical Neel state;

$\eta_a \rightarrow \pm 1$ on two square sublattices;

$A_{a\mu} \rightarrow \text{half oriented area of spherical triangle}$ formed by $\vec{\phi}_a$, $\vec{\phi}_{a+\mu}$, and an arbitrary reference point $\vec{\phi}_0$

\[2A_{a\mu} \rightarrow 2A_{a\mu} - \gamma_{a+\mu} + \gamma_a\]

Change in choice of $\vec{\phi}_0$ is like a “gauge transformation”
Quantum theory for destruction of Neel order

Discretize imaginary time: path integral is over fields on the sites of a cubic lattice of points \( a \)

Recall \( \vec{\phi}_a = 2\eta_a \vec{S}_a \rightarrow \vec{\phi}_a = (0,0,1) \) in classical Neel state;
\( \eta_a \rightarrow \pm 1 \) on two square sublattices;
\( A_{a\mu} \rightarrow \text{half} \) oriented area of spherical triangle formed by \( \vec{\phi}_a, \vec{\phi}_{a+\mu}, \) and an arbitrary reference point \( \vec{\phi}_0 \)

\[
2A_{a\mu} \rightarrow 2A_{a\mu} - \gamma_{a+\mu} + \gamma_a
\]

Change in choice of \( \vec{\phi}_0 \) is like a “gauge transformation”

The area of the triangle is uncertain modulo \( 4\pi \), and the action has to be invariant under \( A_{a\mu} \rightarrow A_{a\mu} + 2\pi \)
Quantum theory for destruction of Neel order

Ingredient missing from LGW theory: Spin Berry Phases

\[ \exp \left( i \sum_a \eta_a A_{a \tau} \right) \]

Sum of Berry phases of all spins on the square lattice.
Quantum theory for destruction of Neel order

Partition function on cubic lattice

\[ Z = \prod_a \int d\vec{\phi}_a \delta (\vec{\phi}_a^2 - 1) \exp \left( \frac{1}{g} \sum_{a,\mu} \vec{\phi}_a \cdot \vec{\phi}_{a+\mu} \right) \]

LGW theory: weights in partition function are those of a classical ferromagnet at a “temperature” \( g \)

Small \( g \) \( \Rightarrow \) ground state has Neel order with \( \langle \vec{\phi} \rangle \neq 0 \)

Large \( g \) \( \Rightarrow \) paramagnetic ground state with \( \langle \vec{\phi} \rangle = 0 \)
Quantum theory for destruction of Neel order

Partition function on cubic lattice

\[ Z = \prod_a \int d\tilde{\phi}_a \delta(\tilde{\phi}^2_a - 1) \exp \left( \frac{1}{g} \sum_{a,\mu} \tilde{\phi}_a \cdot \tilde{\phi}_{a+\mu} + i \sum_a \eta_a A_{a\tau} \right) \]

Modulus of weights in partition function: those of a classical ferromagnet at a “temperature” \( g \)

Small \( g \Rightarrow \) ground state has Neel order with \( \langle \tilde{\phi} \rangle \neq 0 \)

Large \( g \Rightarrow \) paramagnetic ground state with \( \langle \tilde{\phi} \rangle = 0 \)

Berry phases lead to large cancellations between different time histories \( \Rightarrow \) need an effective action for \( A_{a\mu} \) at large \( g \)

Outline

I. Magnetic quantum phase transitions in “dimerized” Mott insulators:
   *Landau-Ginzburg-Wilson (LGW) theory*

II. Magnetic quantum phase transitions of Mott insulators on the square lattice
   A. Breakdown of LGW theory
   B. Berry phases
   C. Spinor formulation and deconfined criticality
II. Magnetic quantum phase transitions of Mott insulators on the square lattice:

C. Spinor formulation and deconfined criticality
Quantum theory for destruction of Neel order

Partition function on cubic lattice

\[ Z = \prod_a \int d\Phi_a \delta(\Phi_a^2 - 1) \exp \left( \frac{1}{g} \sum_{a,\mu} \Phi_a \cdot \Phi_{a+\mu} + i \sum_a \eta_a A_{a\tau} \right) \]

Rewrite partition function in terms of spinors \( z_{a\alpha} \),
with \( \alpha = \uparrow, \downarrow \) and

\[ \Phi_a = z^*_{a\alpha} \sigma_{\alpha\beta} z_{a\beta} \]

Quantum theory for destruction of Neel order

Partition function on cubic lattice

\[ Z = \prod_a \int d\tilde{\phi}_a \delta(\tilde{\phi}_a^2 - 1) \exp \left( \frac{1}{g} \sum_{a,\mu} \tilde{\phi}_a \cdot \tilde{\phi}_{a+\mu} + i \sum_a \eta_a A_{a\tau} \right) \]

Rewrite partition function in terms of spinors \( z_{a\alpha} \), with \( \alpha = \uparrow, \downarrow \) and

\[ \tilde{\phi}_a = z_{a\alpha}^* \sigma_{\alpha\beta} z_{a\beta} \]

Remarkable identity from spherical trigonometry

\[ \text{Arg} \left[ z_{a\alpha}^* z_{a+\mu,\alpha} \right] = A_{a\mu} \]

Quantum theory for destruction of Neel order

Partition function on cubic lattice

\[ Z = \prod_a \int d\phi_a \, \delta(\phi_a^2 - 1) \exp \left( \frac{1}{g} \sum_{a,\mu} \phi_a \cdot \phi_{a+\mu} + i \sum_a \eta_a A_{a\tau} \right) \]

Partition function expressed as a gauge theory of spinor degrees of freedom

\[ Z \approx \prod_a \int dz_{a\alpha} \, dA_{a\mu} \, \delta \left( |z_{a\alpha}|^2 - 1 \right) \]

\[ \times \exp \left( \frac{1}{g} \sum_{a,\mu} z^*_{a\alpha} e^{iA_{a\mu}} z_{a+\mu,\alpha} + i \sum_a \eta_a A_{a\tau} \right) \]

Large $g$ effective action for the $A_{a\mu}$ after integrating $z_{\alpha\mu}$

$$Z = \prod_{a,\mu} \int dA_{a\mu} \exp \left( \frac{1}{2e^2} \sum \cos(\Delta_{\mu} A_{av} - \Delta_{\nu} A_{a\mu}) - i \sum \eta_a A_{a\tau} \right)$$

with $e^2 \sim g^2$

This is compact QED in 3 spacetime dimensions with static charges $\pm 1$ on two sublattices.

This theory can be reliably analyzed by a duality mapping.

The gauge theory is in a **confining** phase, and there is VBS order in the ground state. (Proliferation of monopoles in the presence of Berry phases).

---

\[ Z \approx \prod_a \int d z_{a\alpha} d A_{a\mu} \delta \left( |z_{a\alpha}|^2 - 1 \right) \exp \left( \frac{1}{g} \sum_{a,\mu} z_{a\alpha}^* e^{i A_{a\mu}} z_{a+\mu,\alpha} + i \sum_a \eta_a A_{a\tau} \right) \]

Neel order
\[ \langle \tilde{\phi} \rangle \neq 0 \]

VBS order
\[ \langle \Psi_{vbs} \rangle \neq 0 \]
Not present in LGW theory of \( \tilde{\phi} \) order
Ordering by quantum fluctuations
\[ Z \approx \prod_a \int d\bar{z}_{a\alpha} dA_{a\mu} \delta \left( |z_{a\alpha}|^2 - 1 \right) \exp \left\{ \frac{1}{g} \sum_{a,\mu} z^*_{a\alpha} e^{iA_{a\mu}} z_{a+\mu,\alpha} + i \sum_a \eta_a A_{a\tau} \right\} \]

**Neel order**

\[ \langle \tilde{\phi} \rangle \neq 0 \]

**VBS order**

\[ \langle \Psi_{\text{vbs}} \rangle \neq 0 \]

Not present in LGW theory of \( \tilde{\phi} \) order
**Theory of a second-order quantum phase transition between Neel and VBS phases**

At the quantum critical point:

- \( A_\mu \to A_\mu + 2\pi \) periodicity can be ignored
  (Monopoles interfere destructively and are dangerously irrelevant).
- \( S=1/2 \) spinons \( z_\alpha \), with \( \bar{\phi} \sim z_\alpha^* \bar{\sigma}_\alpha \beta z_\beta \), are globally propagating degrees of freedom.

---

**Second-order critical point described by emergent fractionalized degrees of freedom \((A_\mu \text{ and } z_\alpha)\); Order parameters \((\phi \text{ and } \Psi_{\text{vbs}})\) are “composites” and of secondary importance**


Phase diagram of S=1/2 square lattice antiferromagnet

Neel order

\[ \langle \phi \rangle \sim \langle z_\alpha^* \sigma_{\alpha\beta} z_\beta \rangle \neq 0 \]

VBS order \( \langle \Psi_{vbs} \rangle \neq 0 \) (associated with condensation of monopoles in \( A_\mu \)),

\[ S = 1/2 \text{ spinons } z_\alpha \text{ confined,} \]

\[ S = 1 \text{ triplon excitations} \]

Second-order critical point described by

\[
S_{\text{critical}} = \int d^2x d\tau \left[ |(\partial_\mu - iA_\mu)z_\alpha|^2 + r |z_\alpha|^2 + \frac{u}{2} (|z_\alpha|^2)^2 + \frac{1}{4e^2} (\partial_\mu A_\nu - \partial_\nu A_\mu)^2 \right]
\]

at its critical point \( r = r_c \), where \( A_\mu \) is non-compact

Conclusions

• New quantum phases induced by Berry phases: VBS order in the antiferromagnet
• Critical resonating-valence-bond states describes the quantum phase transition from the Neel to the VBS
• Emergent gauge fields are essential for a full description of the low energy physics.