Quantum criticality in condensed matter: field theory vs. gauge-gravity duality

Northeastern University, May 1, 2013

Subir Sachdev

Talk online at sachdev.physics.harvard.edu
Sommerfeld-Pauli-Bloch theory of metals, insulators, and superconductors: many-electron quantum states are adiabatically connected to independent electron states.
Boltzmann-Landau theory of dynamics of metals:

Long-lived *quasiparticles* (and *quasiholes*) have weak interactions which can be described by a Boltzmann equation.
Modern phases of quantum matter
Not adiabatically connected
to independent electron states:
many-particle
quantum entanglement,
and no quasiparticles
Outline

1. Superfluid-insulator transition of ultracold atoms in optical lattices:
 Quantum criticality and conformal field theories

2. Gauge-gravity duality
 Black-hole horizons and quasi-normal modes

3. Strange metals:
 What lies beyond the horizon?
1. Superfluid-insulator transition of ultracold atoms in optical lattices: *Quantum criticality and conformal field theories*

2. Gauge-gravity duality *Black-hole horizons and quasi-normal modes*

3. Strange metals: *What lies beyond the horizon ?*
Superfluid-insulator transition

Ultracold 87Rb atoms - bosons
$\Psi \rightarrow$ a complex field representing the Bose-Einstein condensate of the superfluid

$\langle \Psi \rangle \neq 0$

Superfluid

λ_c

$\langle \Psi \rangle = 0$

Insulator
\[S = \int d^2r dt \left[|\partial_t \Psi|^2 - c^2 |\nabla_r \Psi|^2 - V(\Psi) \right] \]

\[V(\Psi) = (\lambda - \lambda_c)|\Psi|^2 + u (|\Psi|^2)^2 \]

\[\langle \Psi \rangle \neq 0 \quad \text{Superfluid} \]

\[\langle \Psi \rangle = 0 \quad \text{Insulator} \]

\[\lambda_c \]
\[S = \int d^2r dt \left[|\partial_t \Psi|^2 - c^2 |\nabla_r \Psi|^2 - V(\Psi) \right] \]

\[V(\Psi) = (\lambda - \lambda_c)|\Psi|^2 + u (|\Psi|^2)^2 \]

Particles and holes correspond to the 2 normal modes in the oscillation of \(\Psi \) about \(\Psi = 0 \).

\[\langle \Psi \rangle \neq 0 \quad \text{Superfluid} \]

\[\langle \Psi \rangle = 0 \quad \text{Insulator} \]
Insulator (the vacuum)
at large repulsion between bosons
Excitations of the insulator:

Particles $\sim \Psi^\dagger$
Excitations of the insulator:

Holes $\sim \Psi$
\[S = \int d^2r dt \left[|\partial_t \Psi|^2 - c^2 |\nabla_r \Psi|^2 - V(\Psi) \right] \]

\[V(\Psi) = (\lambda - \lambda_c)|\Psi|^2 + u (|\Psi|^2)^2 \]

Particles and holes correspond to the 2 normal modes in the oscillation of \(\Psi \) about \(\Psi = 0 \).

\[\langle \Psi \rangle \neq 0 \quad \text{Superfluid} \]

\[\langle \Psi \rangle = 0 \quad \text{Insulator} \]
\[S = \int d^2 r dt \left[|\partial_t \Psi|^2 - c^2 |\nabla_r \Psi|^2 - V(\Psi) \right] \]

\[V(\Psi) = (\lambda - \lambda_c) |\Psi|^2 + u (|\Psi|^2)^2 \]

Nambu-Goldstone mode is the oscillation in the phase \(\Psi \) at a constant non-zero \(|\Psi| \).

\[\langle \Psi \rangle \neq 0 \quad \text{Superfluid} \]

\[\langle \Psi \rangle = 0 \quad \text{Insulator} \]

\(\lambda_c \)
\[S = \int d^2r dt \left[|\partial_t \Psi|^2 - c^2 |\nabla_r \Psi|^2 - V(\Psi) \right] \]

\[V(\Psi) = (\lambda - \lambda_c)|\Psi|^2 + u (|\Psi|^2)^2 \]

A conformal field theory in 2+1 spacetime dimensions: a CFT3

\[\langle \Psi \rangle \neq 0 \quad \text{Superfluid} \]

\[\langle \Psi \rangle = 0 \quad \text{Insulator} \]
Quantum state with complex, many-body, "long-range" quantum entanglement

\[S = \int d^2r dt \left[|\partial_t \Psi|^2 - c^2 |\nabla_r \Psi|^2 - V(\Psi) \right] \]

\[V(\Psi) = (\lambda - \lambda_c) |\Psi|^2 + u \left(|\Psi|^2 \right)^2 \]

\[\langle \Psi \rangle \neq 0 \quad \text{Superfluid} \]

\[\langle \Psi \rangle = 0 \quad \text{Insulator} \]

\[\lambda_c \]

Wednesday, May 1, 13
\[S = \int d^2r dt \left[|\partial_t \Psi|^2 - c^2 |\nabla_r \Psi|^2 - V(\Psi) \right] \]

\[V(\Psi) = (\lambda - \lambda_c) |\Psi|^2 + u (|\Psi|^2)^2 \]

No well-defined normal modes, or particle-like excitations

\[\langle \Psi \rangle \neq 0 \quad \text{Superfluid} \]

\[\langle \Psi \rangle = 0 \quad \text{Insulator} \]

Wednesday, May 1, 13
The Higgs mode can be excited with a periodic modulation of the classical energy density. The Higgs mode is the oscillation in the amplitude $|\Psi|$. This decays rapidly by emitting pairs of Nambu-Goldstone modes.

\[S = \int d^2 r dt \left[|\partial_t \Psi|^2 - c^2 |\nabla_r \Psi|^2 - V(\Psi) \right] \]

\[V(\Psi) = (\lambda - \lambda_c) |\Psi|^2 + u (|\Psi|^2)^2 \]
Despite rapid decay, there is a well-defined Higgs “quasi-normal mode”. This is associated with a pole in the lower-half of the complex frequency plane.

\[S = \int d^2r dt \left[|\partial_t \Psi|^2 - c^2 |\nabla_r \Psi|^2 - V(\Psi) \right] \]

\[V(\Psi) = (\lambda - \lambda_c) |\Psi|^2 + u (|\Psi|^2)^2 \]

\[S = \int d^2r dt \left[|\partial_t \Psi|^2 - c^2 |\nabla_r \Psi|^2 - V(\Psi) \right] \]

\[V(\Psi) = (\lambda - \lambda_c) |\Psi|^2 + u (|\Psi|^2)^2 \]

The Higgs quasi-normal mode is at the frequency

\[\frac{\omega_{\text{pole}}}{\Delta} = -i \frac{4}{\pi} + \frac{1}{N} \left(\frac{16 (4 + \sqrt{2} \log (3 - 2\sqrt{2}))}{\pi^2} + 2.46531203396 i \right) + O \left(\frac{1}{N^2} \right) \]

where \(\Delta \) is the particle gap at the complementary point in the “paramagnetic” state with the same value of \(|\lambda - \lambda_c|\), and \(N = 2 \) is the number of vector components of \(\Psi \).

The universal answer is a consequence of the strong interactions in the CFT3
Observation of Higgs quasi-normal mode across the superfluid-insulator transition of ultracold atoms in a 2-dimensional optical lattice:

Response to modulation of lattice depth scales as expected from the LHP pole

Observation of Higgs quasi-normal mode in quantum Monte Carlo

Scaling of spectral response functions predicted in
D. Podolsky and S. Sachdev,

Kun Chen, Longxiang Liu,
Youjin Deng, Lode Pollet,
and Nikolay Prokof’ev,
arXiv:1301.3139

Snir Gazit, Daniel Podolsky,
and Assa Auerbach,
arXiv:1212.3759
\[
S = \int d^2r dt \left[|\partial_t \Psi|^2 - c^2 |\nabla_r \Psi|^2 - V(\Psi) \right]
\]

\[
V(\Psi) = (\lambda - \lambda_c) |\Psi|^2 + u (|\Psi|^2)^2
\]

A conformal field theory in 2+1 spacetime dimensions: a CFT3
The diagram illustrates a phase transition in a quantum system, with labels and axes indicating critical temperatures and parameters. The region labeled "Quantum critical" lies between the "Superfluid" and "Insulator" states, with specific lines denoted as T_{KT} and λ_c.
"Boltzmann" theory of Nambu-Goldstone and vortices

Boltzmann theory of particles/holes

Superfluid

Insulator

Quantum critical

T

λ

λ_c

0
CFT3 at $T>0$

Quantum critical

Superfluid

Insulator

T_{KT}

λ_c
CFT3 at $T>0$

Boltzmann theory of particles/holes/vortices does not apply

Superfluid

Insulator

T_K
CFT3 at $T>0$

Needed:
Accurate theory of quantum critical dynamics
Electrical transport in a free CFT3 for $T > 0$

σ

$\sim T \delta(\omega)$

ω/T
Electrical transport for a (weakly) interacting CFT

\[\sigma(\omega, T) = \frac{e^2}{\hbar} \sum \left(\frac{\hbar \omega}{k_B T} \right) ; \quad \Sigma \to \text{a universal function} \]

Electrical transport for a (weakly) interacting CFT3

\[\sigma(\omega, T) = \frac{e^2}{\hbar} \sum \left(\frac{\hbar \omega}{k_B T} \right) ; \quad \Sigma \rightarrow \text{a universal function} \]

\[\mathcal{O}(\langle u^* \rangle^2) , \]

where \(u^* \) is the fixed point interaction

Electrical transport for a (weakly) interacting CFT3

$$\sigma(\omega, T) = \frac{e^2}{h} \sum \left(\frac{\hbar \omega}{k_B T} \right) ; \quad \Sigma \rightarrow \text{a universal function}$$

where u^* is the fixed point interaction

Electrical transport for a (weakly) interacting CFT3

\[\sigma(\omega, T) = \frac{e^2}{\hbar} \sum \left(\frac{\hbar \omega}{k_B T} \right) ; \quad \Sigma \to \text{a universal function} \]

\[\mathcal{O}(1/(u^*)^2) \]

\[\mathcal{O}((u^*)^2), \]

where \(u^* \) is the fixed point interaction

Electrical transport for a (weakly) interacting CFT3

\[\sigma(\omega, T) = \frac{e^2}{\hbar} \sum \left(\frac{\hbar \omega}{k_B T} \right) ; \quad \Sigma \rightarrow \text{a universal function} \]

\[\mathcal{O}\left(1/(u^*)^2\right) \]

Needed:

a method for computing the d.c. conductivity of interacting CFT3s
Quantum critical dynamics

Quantum “nearly perfect fluid”
with shortest possible local equilibration time, τ_{eq}

$$\tau_{eq} = C \frac{\hbar}{k_B T}$$

where C is a universal constant.

Response functions are characterized by poles in LHP
with $\omega \sim k_B T/\hbar$.
These poles (quasi-normal modes) appear naturally in
the holographic theory.
(Analogs of Higgs quasi-normal mode.)

Quantum critical dynamics

Transport co-efficients not determined by collision rate of quasiparticles, but by fundamental constants of nature

Conductivity

\[\sigma = \frac{Q^2}{h} \times [\text{Universal constant } O(1)] \]

(Q is the “charge” of one boson)

Outline

1. Superfluid-insulator transition of ultracold atoms in optical lattices:
 Quantum criticality and conformal field theories

2. Gauge-gravity duality
 Black-hole horizons and quasi-normal modes

3. Strange metals:
 What lies beyond the horizon?
1. Superfluid-insulator transition of ultracold atoms in optical lattices:
 Quantum criticality and conformal field theories

2. Gauge-gravity duality
 Black-hole horizons and quasi-normal modes

3. Strange metals:
 What lies beyond the horizon?
Renormalization group: \Rightarrow Follow coupling constants of quantum many body theory as a function of length scale r
Renormalization group: \(\Rightarrow \) Follow coupling constants of quantum many body theory as a function of length scale \(r \)

Key idea: \(\Rightarrow \) Implement \(r \) as an extra dimension, and map to a local theory in \(d + 2 \) spacetime dimensions.

J. McGreevy, arXiv0909.0518
For a relativistic CFT in d spatial dimensions, the metric in the holographic space is fixed by demanding the scale transformation $(i = 1 \ldots d)$

$$x_i \rightarrow \zeta x_i \ , \quad t \rightarrow \zeta t \ , \quad ds \rightarrow ds$$
This gives the unique metric

\[ds^2 = \frac{1}{r^2} \left(-dt^2 + dr^2 + dx_i^2 \right) \]

This is the metric of anti-de Sitter space AdS_{d+2}.
AdS/CFT correspondence

AdS_4

$\mathbb{R}^{2,1}$

Minkowski

CFT3

r

Wednesday, May 1, 13
This emergent spacetime is a solution of Einstein gravity with a negative cosmological constant:

\[
S_E = \int d^4x \sqrt{-g} \left[\frac{1}{2\kappa^2} \left(R + \frac{6}{L^2} \right) \right]
\]
For every primary operator $O(x)$ in the CFT, there is a corresponding field $\phi(x, r)$ in the bulk (gravitational) theory. For a scalar operator $O(x)$ of dimension Δ, the correlators of the boundary and bulk theories are related by

$$\langle O(x_1) \ldots O(x_n) \rangle_{\text{CFT}} = \frac{Z^n}{r_1^{-\Delta} \ldots r_n^{-\Delta}} \lim_{r \to 0} \langle \phi(x_1, r_1) \ldots \phi(x_n, r_n) \rangle_{\text{bulk}}$$

where the “wave function renormalization” factor $Z = (2\Delta - D)$.

AdS/CFT correspondence
For a U(1) conserved current J_μ of the CFT, the corresponding bulk operator is a U(1) gauge field A_μ. With a Maxwell action for the gauge field

$$S_M = \frac{1}{4g_M^2} \int d^{D+1}x \sqrt{g} F_{ab} F^{ab}$$

we have the bulk-boundary correspondence

$$\langle J_\mu(x_1) \ldots J_\nu(x_n) \rangle_{\text{CFT}} = (Z g_M^{-2})^n \lim_{r \to 0} r_1^{2-D} \ldots r_n^{2-D} \langle A_\mu(x_1, r_1) \ldots A_\nu(x_n, r_n) \rangle_{\text{bulk}}$$

with $Z = D - 2$.
A similar analysis can be applied to the stress-energy tensor of the CFT, $T_{\mu\nu}$. Its conjugate field must be a spin-2 field which is invariant under gauge transformations: it is natural to identify this with the change in metric of the bulk theory. We write $\delta g_{\mu\nu} = (L^2/r^2)\chi_{\mu\nu}$, and then the bulk-boundary correspondence is now given by

$$\langle T_{\mu\nu}(x_1) \ldots T_{\rho\sigma}(x_n) \rangle_{\text{CFT}} =$$

$$\left(\frac{Z L^2}{\kappa^2} \right)^n \lim_{r \to 0} r_1^{-D} \ldots r_n^{-D} \langle \chi_{\mu\nu}(x_1, r_1) \ldots \chi_{\rho\sigma}(x_n, r_n) \rangle_{\text{bulk}},$$

with $Z = D$.

AdS/CFT correspondence
AdS/CFT correspondence

So the minimal bulk theory for a CFT with a conserved $U(1)$ current is the *Einstein-Maxwell* theory with a cosmological constant

$$S = \frac{1}{4g_M^2} \int d^4x \sqrt{g} F_{ab} F^{ab}$$

$$+ \int d^4x \sqrt{g} \left[-\frac{1}{2\kappa^2} \left(R + \frac{6}{L^2} \right) \right].$$

This action is characterized by two dimensionless parameters: g_M and L^2/κ^2, which are related to the conductivity $\sigma(\omega) = \mathcal{K}$ and the central charge of the CFT.
AdS/CFT correspondence

This minimal action also fixes multi-point correlators of the CFT: however these do not have the most general form allowed for a CFT. To fix these, we have to allow for higher-gradient terms in the bulk action. For the conductivity, it turns out that only a single 4 gradient term contributes

$$S_{\text{bulk}} = \frac{1}{g_2^2 M} \int d^4 x \sqrt{g} \left[\frac{1}{4} F_{ab} F^{ab} + \gamma L^2 C_{abcd} F^{ab} F^{cd} \right]$$

$$+ \int d^4 x \sqrt{g} \left[-\frac{1}{2\kappa^2} \left(R + \frac{6}{L^2} \right) \right],$$

where C_{abcd} is the Weyl tensor. The parameter γ can be related to 3-point correlators of J_μ and $T_{\mu\nu}$. Both boundary and bulk methods show that $|\gamma| \leq 1/12$, and the bound is saturated by free fields.

D. Chowdhury, S. Raju, S. Sachdev, A. Singh, and P. Strack, arXiv:1210.5247
Gauge-gravity duality at non-zero temperatures

There is a family of solutions of Einstein gravity which describe non-zero temperatures

\[S_E = \int d^4x \sqrt{-g} \left[\frac{1}{2\kappa^2} \left(R + \frac{6}{L^2} \right) \right] \]
There is a family of solutions of Einstein gravity which describe non-zero temperatures.

\[ds^2 = \left(\frac{L}{r} \right)^2 \left[\frac{dr^2}{f(r)} - f(r)dt^2 + dx^2 + dy^2 \right] \]

with \(f(r) = 1 - \left(\frac{r}{R} \right)^3 \)
Gauge-gravity duality at non-zero temperatures

\[ds^2 = \left(\frac{L}{r} \right)^2 \left[\frac{dr^2}{f(r)} - f(r)dt^2 + dx^2 + dy^2 \right] \]

with \(f(r) = 1 - (r/R)^3 \)

A "horizon", similar to the surface of a black hole at \(r = R \)!
A 2+1 dimensional system at its quantum critical point:

\[k_B T = \frac{3\hbar}{4\pi R}. \]

Gauge-gravity duality at non-zero temperatures

\[ds^2 = \left(\frac{L}{r} \right)^2 \left[\frac{dr^2}{f(r)} - f(r)dt^2 + dx^2 + dy^2 \right] \]

with \(f(r) = 1 - (r/R)^3 \)

A “horizon”, similar to the surface of a black hole at \(r = R \)!
Gauge-gravity duality at non-zero temperatures

\[ds^2 = \left(\frac{L}{r} \right)^2 \left[\frac{dr^2}{f(r)} - f(r)dt^2 + dx^2 + dy^2 \right] \]

with \(f(r) = 1 - \left(\frac{r}{R} \right)^3 \)

The temperature and entropy of the horizon equal those of the quantum critical point:

\[k_B T = \frac{3\hbar}{4\pi R} \]
Gauge-gravity duality at non-zero temperatures

A 2+1 dimensional system at its quantum critical point:
\[k_B T = \frac{3\hbar}{4\pi R}. \]

The temperature and entropy of the horizon equal those of the quantum critical point.

Quasi-normal modes of quantum criticality = waves falling into black hole.
Gauge-gravity duality at non-zero temperatures

The temperature and entropy of the horizon equal those of the quantum critical point:

\[k_B T = \frac{3\hbar}{4\pi R}. \]

Characteristic damping time of quasi-normal modes:

\[(k_B/\hbar) \times \text{Hawking temperature} \]
AdS4 theory of electrical transport in a strongly interacting CFT3 for $T > 0$

Conductivity is independent of $\gamma = 0$.

σ

$\frac{1}{g_M^2}$

ω/T

Conductivity is independent of ω/T for $\gamma = 0$.

Wednesday, May 1, 13
AdS4 theory of electrical transport in a strongly interacting CFT3 for $T > 0$

Consequence of self-duality of Maxwell theory in 3+1 dimensions

Conductivity is independent of ω/T for $\gamma = 0$.

C. P. Herzog, P. K. Kovtun, S. Sachdev, and D. T. Son,
Electrical transport in a free CFT3 for $T > 0$

σ

$\sim T \delta(\omega)$

Complementary ω-dependent conductivity in the free theory
AdS4 theory of electrical transport in a strongly interacting CFT3 for $T > 0$

Conductivity is independent of $\frac{\omega}{T}$ for $\gamma = 0$.

$$\sigma$$

$$\frac{1}{g_M^2}$$

$$\frac{\omega}{T}$$

Conductivity is independent of ω/T for $\gamma = 0$.

Wednesday, May 1, 13
AdS\textsubscript{4} theory of “nearly perfect fluids”

The $\gamma > 0$ result has similarities to the quantum-Boltzmann result for transport of particle-like excitations.

AdS$_4$ theory of “nearly perfect fluids”

- The $\gamma < 0$ result can be interpreted as the transport of vortex-like excitations

AdS$_4$ theory of “nearly perfect fluids”

The $\gamma = 0$ case is the exact result for the large N limit of SU(N) gauge theory with $\mathcal{N} = 8$ supersymmetry (the ABJM model). The ω-independence is a consequence of self-duality under particle-vortex duality (S-duality).

AdS$_4$ theory of “nearly perfect fluids”

Stability constraints on the effective theory ($|\gamma| < 1/12$) allow only a limited ω-dependence in the conductivity

AdS$_4$ theory of quantum criticality

Poles in LHP of conductivity at $\omega \sim k_B T/\hbar$; analog of Higgs quasinormal mode–quasinormal modes of black brane

AdS$_4$ theory of quantum criticality

Poles in LHP of resistivity — quasinormal modes of S-dual theory

The holographic solutions for the conductivity satisfy two sum rules, valid for all CFT3s. (W. Witzack-Krempa and S. Sachdev, Phys. Rev. B 86, 235115 (2012))

$$\int_0^\infty d\omega \text{Re} \left[\sigma(\omega) - \sigma(\infty) \right] = 0$$

$$\int_0^\infty d\omega \text{Re} \left[\frac{1}{\sigma(\omega)} - \frac{1}{\sigma(\infty)} \right] = 0$$

The second rule follows from the existence of an EM-dual CFT3.

Boltzmann theory chooses a “particle” basis: this satisfies only one sum rule but not the other.

Holographic theory satisfies both sum rules.
Universal Scaling of the Conductivity at the Superfluid-Insulator Phase Transition

Jurij Šmakov and Erik Sørensen

Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada

(Received 30 May 2005; published 27 October 2005)

The scaling of the conductivity at the superfluid-insulator quantum phase transition in two dimensions is studied by numerical simulations of the Bose-Hubbard model. In contrast to previous studies, we focus on properties of this model in the experimentally relevant thermodynamic limit at finite temperature T. We find clear evidence for deviations from ω_k scaling of the conductivity towards ω_k/T scaling at low Matsubara frequencies ω_k. By careful analytic continuation using Padé approximants we show that this behavior carries over to the real frequency axis where the conductivity scales with ω/T at small frequencies and low temperatures. We estimate the universal dc conductivity to be $\sigma^* = 0.45(5) Q^2/h$, distinct from previous estimates in the $T = 0$, $\omega/T \gg 1$ limit.
Universal Scaling of the Conductivity at the Superfluid-Insulator Phase Transition

Jurij Šmakov and Erik Sørensen

Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
(Received 30 May 2005; published 27 October 2005)

The scaling of the conductivity at the superfluid-insulator quantum phase transition in two dimensions is studied by numerical simulations of the Bose-Hubbard model. In contrast to previous studies, we focus on properties of this model in the experimentally relevant thermodynamic limit at finite temperature T. We find clear evidence for deviations from ω_k scaling of the conductivity towards ω_k/T scaling at low Matsubara frequencies ω_k. By careful analytic continuation using Padé approximants we show that this behavior carries over to the real frequency axis where the conductivity scales with ω/T at small frequencies and low temperatures. We estimate the universal dc conductivity to be $\sigma^* = 0.45(5)Q^2/h$, distinct from previous estimates in the $T = 0$, $\omega/T \gg 1$ limit.

QMC yields $\sigma(0)/\sigma_\infty \approx 1.36$

Holography yields $\sigma(0)/\sigma_\infty = 1 + 4\gamma$ with $|\gamma| \leq 1/12$.

Maximum possible holographic value $\sigma(0)/\sigma_\infty = 1.33$

Traditional CMT

- Identify quasiparticles and their dispersions
Traditional CMT

- Identify quasiparticles and their dispersions

- Compute scattering matrix elements of quasiparticles (or of collective modes)
Traditional CMT

- Identify quasiparticles and their dispersions

- Compute scattering matrix elements of quasiparticles (or of collective modes)

- These parameters are input into a quantum Boltzmann equation
Traditional CMT

- Identify quasiparticles and their dispersions
- Compute scattering matrix elements of quasiparticles (or of collective modes)
- These parameters are input into a quantum Boltzmann equation
- Deduce dissipative and dynamic properties at non-zero temperatures
Traditional CMT

- Identify quasiparticles and their dispersions
- Compute scattering matrix elements of quasiparticles (or of collective modes)
- These parameters are input into a quantum Boltzmann equation
- Deduce dissipative and dynamic properties at non-zero temperatures

Holography and black-branes

- Start with strongly interacting CFT without particle- or wave-like excitations
Traditional CMT

- Identify quasiparticles and their dispersions
- Compute scattering matrix elements of quasiparticles (or of collective modes)
- These parameters are input into a quantum Boltzmann equation
- Deduce dissipative and dynamic properties at non-zero temperatures

Holography and black-branes

- Start with strongly interacting CFT without particle- or wave-like excitations
- Compute OPE co-efficients of operators of the CFT
Traditional CMT

- Identify quasiparticles and their dispersions
- Compute scattering matrix elements of quasiparticles (or of collective modes)
- These parameters are input into a quantum Boltzmann equation
- Deduce dissipative and dynamic properties at non-zero temperatures

Holography and black-branes

- Start with strongly interacting CFT without particle- or wave-like excitations
- Compute OPE co-efficients of operators of the CFT
- Relate OPE co-efficients to couplings of an effective gravitational theory on AdS
<table>
<thead>
<tr>
<th>Traditional CMT</th>
<th>Holography and black-branes</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Identify quasiparticles and their dispersions</td>
<td>- Start with strongly interacting CFT without particle- or wave-like excitations</td>
</tr>
<tr>
<td>- Compute scattering matrix elements of quasiparticles (or of collective modes)</td>
<td>- Compute OPE co-efficients of operators of the CFT</td>
</tr>
<tr>
<td>- These parameters are input into a quantum Boltzmann equation</td>
<td>- Relate OPE co-efficients to couplings of an effective gravitational theory on AdS</td>
</tr>
<tr>
<td>- Deduce dissipative and dynamic properties at non-zero temperatures</td>
<td>- Solve Einstein-Maxwell-... equations, allowing for a horizon at non-zero temperatures.</td>
</tr>
</tbody>
</table>
Outline

1. Superfluid-insulator transition of ultracold atoms in optical lattices:
 Quantum criticality and conformal field theories

2. Gauge-gravity duality
 Black-hole horizons and quasi-normal modes

3. Strange metals:
 What lies beyond the horizon?
1. Superfluid-insulator transition of ultracold atoms in optical lattices: *Quantum criticality and conformal field theories*

2. Gauge-gravity duality *Black-hole horizons and quasi-normal modes*

3. Strange metals: *What lies beyond the horizon?*
Iron pnictides:

ea new class of high temperature superconductors
Resistivity $\sim \rho_0 + AT^{\alpha}$

BaFe$_2$(As$_{1-x}$P$_x$)$_2$

Short-range entanglement in state with Neel (AF) order

Resistivity \(\sim \rho_0 + AT^\alpha \)

Superconductivity

Bose condensate of pairs of electrons

Short-range entanglement

Resistivity

\(\sim \rho_0 + AT^\alpha \)
Superconductivity

BaFe$_2$(As$_{1-x}$P$_x$)$_2$

Resistivity $\sim \rho_0 + AT^\alpha$

Superconductivity

\[\text{BaFe}_2(\text{As}_{1-x}\text{P}_x)_2 \]

Resistivity \(\sim \rho_0 + AT^\alpha \)

Strange Metal

\[\text{Resistivity } \sim \rho_0 + AT^\alpha \]

Strange Metal

no quasiparticles, Landau-Boltzmann theory does not apply

\[\text{Resistivity} \sim \rho_0 + AT^\alpha \]

Electrons (fermions) occupy states inside a Fermi “surface” (circle) of radius k_F which is determined by the density of electrons, Q.
Can bosons form a metal?

Each quark is charged under an emergent gauge force, which encapsulates the entanglement in the ground state. The quarks have “hidden” Fermi surfaces of radius k_F. Can bosons form a metal?
Can bosons form a metal?

Yes, if each boson, \(b \), \textit{fractionalizes} into 2 fermions (‘quarks’)

\[b = f_1 f_2 \]
Can bosons form a metal?

Yes, if each boson, \(b \), fractionalizes into 2 fermions (‘quarks’)

\[b = f_1 f_2 \]

• Each quark is charged under an emergent gauge force, which encapsulates the entanglement in the ground state.
Can bosons form a metal?

Yes, if each boson, \(b \), fractionalizes into 2 fermions (‘quarks’) \(b = f_1 f_2 \! \):

- Each quark is charged under an emergent gauge force, which encapsulates the entanglement in the ground state.
- The quarks have “hidden” Fermi surfaces of radius \(k_F \).
The density of particles Q creates an electric flux \mathcal{E}_r which modifies the metric of the emergent spacetime.
The density of particles Q creates an electric flux \mathcal{E}_r which modifies the metric of the emergent spacetime.
Holographic theory of a strange metal

Hidden Fermi surfaces of “quarks”?

The general metric transforms under rescaling as

$$x_i \rightarrow \zeta x_i, \quad t \rightarrow \zeta^z t, \quad ds \rightarrow \zeta^{\theta/d} ds.$$

Recall: conformal matter has $\theta = 0$, $z = 1$, and the metric is anti-de Sitter
The general metric transforms under rescaling as

\[x_i \rightarrow \zeta x_i, \quad t \rightarrow \zeta^z t, \quad ds \rightarrow \zeta^{\theta/d} ds. \]

The value \(\theta = d - 1 \) reproduces all the essential characteristics of the entropy and entanglement entropy of a strange metal.
The general metric transforms under rescaling as

\[x_i \rightarrow \zeta x_i, \quad t \rightarrow \zeta^{\frac{z}{d}} t, \quad ds \rightarrow \zeta^{\theta/d} ds. \]

The null-energy condition of gravity yields \(z \geq 1 + \theta/d \). In \(d = 2 \), this leads to \(z \geq 3/2 \). Field theory on strange metal yields \(z = 3/2 \) to 3 loops!

Conclusions

Conformal quantum matter

New insights and solvable models for diffusion and transport of strongly interacting systems near quantum critical points
Conclusions

Conformal quantum matter

- New insights and solvable models for diffusion and transport of strongly interacting systems near quantum critical points.

- The description is far removed from, and complementary to, that of the quantum Boltzmann equation which builds on the quasiparticle/vortex picture.
Conclusions

Conformal quantum matter

New insights and solvable models for diffusion and transport of strongly interacting systems near quantum critical points

The description is far removed from, and complementary to, that of the quantum Boltzmann equation which builds on the quasiparticle/vortex picture.

Good prospects for experimental tests of frequency-dependent, non-linear, and non-equilibrium transport
More complex examples in metallic states are experimentally ubiquitous, but pose difficult strong-coupling problems to conventional methods of field theory.
Conclusions

String theory and gravity in emergent dimensions offer a remarkable new approach to describing states with many-particle quantum entanglement.

Much recent progress offers hope of a holographic description of “strange metals”