Putting competing orders in their place near the Mott transition

cond-mat/0408329 and cond-mat/0409470

Leon Balents (UCSB)

Lorenz Bartosch (Yale)

Anton Burkov (UCSB)

Subir Sachdev (Yale)

Krishnendu Sengupta (Toronto)

Talk online: Google Sachdev

Distinct experimental charcteristics of underdoped cuprates at $T > T_c$

Measurements of Nernst effect are well explained by a model of a liquid of vortices and anti-vortices

N. P. Ong, Y. Wang, S. Ono, Y. Ando, and S. Uchida, *Annalen der Physik* **13**, 9 (2004).

Y. Wang, S. Ono, Y. Onose, G. Gu, Y. Ando, Y. Tokura, S. Uchida, and N. P. Ong, *Science* **299**, 86 (2003).

Distinct experimental charcteristics of underdoped cuprates at $T > T_c$

STM measurements observe "density" modulations with a period of ≈ 4 lattice spacings

LDOS of $Bi_2Sr_2CaCu_2O_{8+\delta}$ at 100 K.

M. Vershinin, S. Misra, S. Ono, Y. Abe, Y. Ando, and A. Yazdani, Science, 303, 1995 (2004).

Is there a connection between vorticity and "density" wave modulations?

"Density" wave order---modulations in pairing amplitude, exchange energy, or hole density. Equivalent to valence-bond-solid (VBS) order (except at the special period of 2 lattice spacings)

Vortex-induced LDOS of Bi₂Sr₂CaCu₂O_{8+δ} integrated from 1meV to 12meV at 4K

Vortices have halos with LDOS modulations at a period ≈ 4 lattice spacings

J. Hoffman E. W. Hudson, K. M. Lang, V. Madhavan, S. H. Pan, H. Eisaki, S. Uchida, and J. C. Davis, *Science* 295, 466 (2002).

7 pA

O pA

Prediction of VBS order near vortices: K. Park and S. Sachdev, Phys. Rev. B **64**, 184510 (2001).

Landau-Ginzburg-Wilson theory of multiple order parameters:

• "Vortex/phase fluctuations" ("preformed pairs") Complex superconducting order parameter: Ψ_{sc}

 $\Psi_{sc} \to \Psi_{sc} e^{i\theta}$ symmetry encodes number conservation

• "Charge/valence-bond/pair-density/stripe" order Order parameters:

$$\rho(\mathbf{r}) = \sum_{Q} \rho_{Q} e^{iQ.\mathbf{r}}$$

 $\rho_o \rightarrow \rho_o e^{i\theta}$ encodes space group symmetry

<u>Landau-Ginzburg-Wilson theory of multiple order parameters:</u>

LGW free energy:

$$F = F_{sc} \left[\Psi_{sc} \right] + F_{charge} \left[\rho_{Q} \right] + F_{int}$$

$$F_{sc} \left[\Psi_{sc} \right] = r_{1} \left| \Psi_{sc} \right|^{2} + u_{1} \left| \Psi_{sc} \right|^{4} + \cdots$$

$$F_{charge} \left[\rho_{Q} \right] = r_{2} \left| \rho_{Q} \right|^{2} + u_{2} \left| \rho_{Q} \right|^{4} + \cdots$$

$$F_{int} = v \left| \Psi_{sc} \right|^{2} \left| \rho_{Q} \right|^{2} + \cdots$$

Distinct symmetries of order parameters permit couplings only between their energy densities (there are no symmetries which "rotate" two order parameters into each other)

For large positive *v*, there is a correlation between vortices and density wave order

"Disordered"

(≠ topologically ordered)

$$\langle \Psi_{sc} \rangle = 0, \langle \rho_{Q} \rangle = 0$$

$$\langle \rho_Q \rangle$$
Charge-ordered
insulator_ r_2

$$\langle \Psi_{sc} \rangle$$
Superconductor

"Disordered"

(≠ topologically ordered)

$$\langle \Psi_{sc} \rangle = 0, \langle \rho_{Q} \rangle = 0$$

 $\langle P_{Q} \rangle$ Charge-ordered

Non-superconducting quantum phase must have some other "order":

- Charge order in an insulator
- Fermi surface in a metal
- "Topological order" in a spin liquid

•

This requirement is <u>not</u> captured by LGW theory.

Needed: a theory of precursor fluctuations of the density wave order of the insulator within the superconductor.

i.e. a connection between vortices and density wave order

Outline

- A. Superfluid-insulator transitions of bosons on the square lattice at fractional filling *Quantum mechanics of vortices in a superfluid proximate to a commensurate Mott insulator*
- B. Application to a short-range pairing model for the cuprate superconductors

 Competition between VBS order and d-wave

Competition between VBS order and d-wave superconductivity

A. Superfluid-insulator transitions of bosons on the square lattice at fractional filling

Quantum mechanics of vortices in a superfluid proximate to a commensurate Mott insulator

LGW theory: continuous quantum transitions between these states

M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, *Nature* 415, 39 (2002).

Bosons at density f = 1/2 (equivalent to S=1/2 AFMs)

Weak interactions: superfluidity

$$\langle \Psi_{sc} \rangle \neq 0$$

Strong interactions: Candidate insulating states

All insulating phases have density-wave order $\rho(\mathbf{r}) = \sum_{o} \rho_{\varrho} e^{i\varrho \cdot \mathbf{r}}$ with $\langle \rho_{\varrho} \rangle \neq 0$

- C. Lannert, M.P.A. Fisher, and T. Senthil, *Phys. Rev.* B **63**, 134510 (2001)
- S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)

"Disordered"

(≠ topologically ordered)

$$\langle \Psi_{sc} \rangle = 0, \langle \rho_{Q} \rangle = 0$$

 $\langle \rho_Q \rangle$ Charge-ordered
insulator_ r_2

Superconductor

Charge-ordered insulator

$$r_1 - r_2$$

$$\langle \Psi_{sc} \rangle$$

Superconductor

"Disordered"

≠ topologically ordered)

$$\langle \Psi_{sc} \rangle = 0, \langle \rho_{Q} \rangle = 0$$

Charge-ordered

Strength of "magnetic" field on dual superconductor φ = density of bosons = f flux quanta per plaquette

C. Dasgupta and B.I. Halperin, *Phys. Rev. Lett.* **47**, 1556 (1981); D.R. Nelson, *Phys. Rev. Lett.* **60**, 1973 (1988); M.P.A. Fisher and D.-H. Lee, *Phys. Rev.* B **39**, 2756 (1989);

The wavefunction of a vortex acquires a phase of 2π each time the vortex encircles a boson

Strength of "magnetic" field on dual superconductor φ = density of bosons = f flux quanta per plaquette

C. Dasgupta and B.I. Halperin, *Phys. Rev. Lett.* **47**, 1556 (1981); D.R. Nelson, *Phys. Rev. Lett.* **60**, 1973 (1988); M.P.A. Fisher and D.-H. Lee, *Phys. Rev.* B **39**, 2756 (1989);

Statistical mechanics of dual "superconductor" φ , is invariant under the square lattice space group:

 T_x, T_y : Translations by a lattice spacing in the x, y directions

R : Rotation by 90 degrees.

Magnetic space group:

$$T_x T_y = e^{2\pi i f} T_y T_x \quad ;$$

$$R^{-1}T_yR = T_x$$
; $R^{-1}T_xR = T_y^{-1}$; $R^4 = 1$

Strength of "magnetic" field on dual superconductor φ = density of bosons = f flux quanta per plaquette

Hofstadter spectrum of dual "superconducting" order φ

At density f = p / q (p,q relatively prime integers) there are q species of vortices, φ_{ℓ} (with $\ell=1...q$), associated with q gauge-equivalent regions of the Brillouin zone

Magnetic space group:

$$T_x T_y = e^{2\pi i f} T_y T_x \quad ;$$

$$R^{-1}T_{y}R = T_{x}$$
; $R^{-1}T_{x}R = T_{y}^{-1}$; $R^{4} = 1$

Hofstadter spectrum of dual "superconducting" order φ

At density f = p / q (p,q relatively prime integers) there are q species of vortices, φ_{ℓ} (with $\ell=1...q$), associated with q gauge-equivalent regions of the Brillouin zone

The q vortices form a projective representation of the space group

$$T_{\scriptscriptstyle x}: \varphi_{\scriptscriptstyle \ell} o \varphi_{\scriptscriptstyle \ell+1} \ ; \ T_{\scriptscriptstyle y}: \varphi_{\scriptscriptstyle \ell} o e^{2\pi i \ell f} \varphi_{\scriptscriptstyle \ell}$$

$$R: \varphi_{\ell} \to \frac{1}{\sqrt{q}} \sum_{m=1}^{q} \varphi_m e^{2\pi i \ell m f}$$

The q φ_{ℓ} vortices characterize both superconducting and density wave orders

Superconductor/insulator :
$$\langle \varphi_{\ell} \rangle = 0/\langle \varphi_{\ell} \rangle \neq 0$$

The q φ_{ℓ} vortices characterize both superconducting and density wave orders

Density wave order: Status of space group symmetry determined by density operators
$$\rho_Q$$
 at wavevectors $Q_{mn} = \frac{2\pi p}{q}(m,n)$
$$\rho_{mn} = e^{i\pi mnf} \sum_{\ell=1}^{q} \varphi_{\ell}^* \varphi_{\ell+n} e^{2\pi i\ell mf}$$

$$T_x : \rho_Q \to \rho_Q e^{iQ \cdot \hat{x}} \; ; \qquad T_y : \rho_Q \to \rho_Q e^{iQ \cdot \hat{y}}$$

$$R : \rho(Q) \to \rho(RQ)$$

Each pinned vortex in the superfluid has a halo of density wave order over a length scale \approx the zero-point quantum motion of the vortex. This scale diverges upon approaching the Mott insulator

Vortex-induced LDOS of Bi₂Sr₂CaCu₂O_{8+δ} integrated from 1meV to 12meV at 4K

Vortices have halos with LDOS modulations at a period ≈ 4 lattice spacings

J. Hoffman E. W. Hudson, K. M. Lang, V. Madhavan, S. H. Pan, H. Eisaki, S. Uchida, and J. C. Davis, *Science* 295, 466 (2002).

7 pA

O pA

Prediction of VBS order near vortices: K. Park and S. Sachdev, Phys. Rev. B **64**, 184510 (2001).

Superconductor

Superconductor

"Disordered"

$$\langle \Psi_{sc} \rangle = 0, \langle \rho_{Q} \rangle = 0$$

Charge-ordered

 $\rightarrow r_1 - r_2$

Charge-ordered insulator

insulator

- **Y**

 $\langle \Psi_{sc} \rangle$ Superconductor

$$\langle \varphi_{\ell} \rangle = 0, \langle \rho_{mn} \rangle = 0$$

Fluctuation-induced, weak, first order transition $\langle \rho_{Q} \rangle$ Charge-ordered insulator

$$\langle \varphi_{\ell} \rangle \neq 0, \langle \rho_{mn} \rangle \neq 0$$
 $r_1 - r_2$

Superconductor

$$\langle \varphi_{\ell} \rangle = 0, \langle \rho_{mn} \rangle = 0$$

Fluctuation-induced,

Charge-ordered insulator

$$\langle \varphi_{\ell} \rangle \neq 0, \langle \rho_{mn} \rangle \neq 0$$
 $r_1 - r_2$

Supersolid

$$\langle \Psi_{sc} \rangle$$

Superconductor

$$\langle \varphi_{\ell} \rangle = 0, \langle \rho_{mn} \rangle = 0$$

$$\langle \varphi_{\ell} \rangle = 0, \langle \rho_{mn} \rangle \neq 0$$

Charge-ordered insulator

$$\langle \varphi_{\ell} \rangle \neq 0, \langle \rho_{mn} \rangle \neq 0$$
 $r_1 - r_2$

$$\langle \Psi_{sc} \rangle$$

Superconductor

$$\left\langle \varphi_{\ell}\right\rangle =0\,,\left\langle \wp_{mn}\right\rangle =0$$

Fluctuation-induced,

weak, first order transition $\langle \rho_0 \rangle$

Charge-ordered insulator

$$\langle \varphi_{\ell} \rangle \neq 0, \langle \rho_{mn} \rangle \neq 0$$
 $r_1 - r_2$

Superconductor

$$\langle \varphi_{\ell} \rangle = 0, \langle \rho_{mn} \rangle = 0$$

Supersolid $\langle \varphi_{\ell} \rangle = 0, \langle \rho_{mn} \rangle \neq 0$

$$\langle \rho_{mn} \rangle \neq 0$$

Charge-ordered insulator

$$\langle \varphi_{\ell} \rangle \neq 0, \langle \rho_{mn} \rangle \neq 0$$
 $r_1 - r_2$

$$V_{sc}$$

Superconductor

$$\langle \varphi_{\ell} \rangle = 0, \langle \rho_{mn} \rangle = 0$$

Second order transition

Charge-ordered insulator

$$\langle \varphi_{\ell} \rangle \neq 0, \langle \rho_{mn} \rangle \neq 0$$
 $r_1 - r_2$

Spatial structure of insulators for q=4 (f=1/4 or 3/4)

B. Application to a short-range pairing model for the cuprate superconductors

Competition between VBS order and d-wave superconductivity

 \mathcal{G} = parameter controlling strength of quantum fluctuations in a semiclassical theory of the destruction of Neel order

La₂CuO₄

T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher, Science 303, 1490 (2004).

A convenient derivation of the dual theory for vortices is obtained from the doped quantum dimer model

$$H_{dqd} = J \sum_{\square} \left(\left| \begin{array}{c} \\ \\ \end{array} \right| \right) \left\langle \begin{array}{c} \\ \\ \end{array} \right| + \left| \begin{array}{c} \\ \\ \end{array} \right| \right) \left\langle \begin{array}{c} \\ \\ \end{array} \right| \right)$$

$$-t \sum_{\square} \left(\left| \begin{array}{c} \\ \\ \end{array} \right| \right) \left\langle \begin{array}{c} \\ \\ \\ \end{array} \right| + \left| \begin{array}{c} \\ \\ \\ \end{array} \right| \right\rangle \left\langle \begin{array}{c} \\ \\ \end{array} \right| \right) - \cdots$$

E. Fradkin and S. A. Kivelson, Mod. Phys. Lett. B 4, 225 (1990).

Density of holes = δ

Duality mapping of doped dimer model shows:

Vortices in the superconducting state obey the magnetic translation algebra

$$T_x T_y = e^{2\pi i f} T_y T_x$$
with $f = \frac{p}{q} = \frac{1 - \delta_{MI}}{2}$

where δ_{MI} is the density of holes in the proximate Mott insulator (for $\delta_{MI} = 1/8, f = 7/16 \Rightarrow q = 16$)

Most results of Part A on bosons can be applied unchanged with *q* as determined above

Conclusions

- I. Description of the competition between superconductivity and density wave order in term of defects (vortices). Theory naturally excludes "disordered" phase with no order.
- II. Vortices carry the quantum numbers of *both* superconductivity *and* the square lattice space group (in a projective representation).
- III. Vortices carry halo of charge order, and pinning of vortices/anti-vortices leads to a unified theory of STM modulations in zero and finite magnetic fields.
- IV. Conventional (LGW) picture: density wave order causes the transport energy gap, the appearance of the Mott insulator.

 Present picture: Mott localization of charge carriers is more fundamental, and (weak) density wave order emerges naturally in theory of the Mott transition.