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Distinct experimental charcteristics of underdoped cuprates at T > Tc

Measurements of Nernst effect are well explained by a model 
of a liquid of vortices and anti-vortices

N. P. Ong, Y. Wang, S. Ono, Y. 
Ando, and S. Uchida, Annalen
der Physik 13, 9 (2004).

Y. Wang, S. Ono, Y. Onose, G. 
Gu, Y. Ando, Y. Tokura, S. 
Uchida, and N. P. Ong, Science
299, 86 (2003).



STM measurements observe “density” modulations with a 
period of ≈ 4 lattice spacings

LDOS of Bi2Sr2CaCu2O8+δ at 100 K.
M. Vershinin, S. Misra, S. Ono, Y. Abe, Y. Ando, and A. Yazdani, Science, 303, 1995 (2004).

Distinct experimental charcteristics of underdoped cuprates at T > Tc



Is there a connection between vorticity
and “density” wave modulations?

“Density” wave order---modulations in pairing 
amplitude, exchange energy, or hole density. Equivalent 
to valence-bond-solid (VBS) order (except at the special 
period of 2 lattice spacings)



Vortex-induced LDOS of Bi2Sr2CaCu2O8+δ integrated 
from 1meV to 12meV at 4K
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halos with 
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J. Hoffman E. W. Hudson, K. M. Lang,                     
V. Madhavan, S. H. Pan, H. Eisaki, S. Uchida, 
and J. C. Davis, Science 295, 466 (2002).

Prediction of VBS order near 
vortices: K. Park and S. Sachdev, 
Phys. Rev. B 64, 184510 (2001).



Landau-Ginzburg-Wilson theory of multiple order parameters:

• “Vortex/phase fluctuations” (“preformed pairs”)                
Complex superconducting order parameter:   Ψsc

• “Charge/valence-bond/pair-density/stripe” order
Order parameters:                                          
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Landau-Ginzburg-Wilson theory of multiple order parameters:

LGW free energy:
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Distinct symmetries of order parameters permit couplings only between their 
energy densities (there are no symmetries which “rotate” two order parameters 
into each other)

For large positive v, there is a correlation between 
vortices and density wave order
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Non-superconducting quantum phase must have 
some other “order”:

• Charge order in an insulator

• Fermi surface in a metal

• “Topological order” in a spin liquid

• ……………

This requirement is not captured by LGW theory.



Needed: a theory of precursor 
fluctuations of the density 
wave order of the insulator 
within the superconductor.

i.e. a connection between 
vortices and density wave 

order



OutlineOutline
A. Superfluid-insulator transitions of bosons 

on the square lattice at fractional filling
Quantum mechanics of vortices in a 
superfluid proximate to a commensurate Mott 
insulator

B. Application to a short-range pairing model for the 
cuprate superconductors

Competition between VBS order and d-wave 
superconductivity



A. Superfluid-insulator transitions of bosons   
on the square lattice at fractional filling 

Quantum mechanics of vortices in a 
superfluid proximate to a commensurate 

Mott insulator



Bosons at density f = 1
Weak interactions: 

superfluidity

Strong interactions: 
Mott insulator which 
preserves all lattice 

symmetries

LGW theory: continuous quantum transitions between these states
M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).



Bosons at density f = 1/2  (equivalent to S=1/2 AFMs)

Weak interactions: superfluidity

Strong interactions: Candidate insulating states
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( ) .All insulating phases have density-wave order  with 0ieρ ρ ρ= ≠∑ Q r
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C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, 134510 (2001) 
S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)
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Boson-vortex duality

Quantum 
mechanics of two-

dimensional 
bosons: world 

lines of bosons in 
spacetime

x
y

τ

C. Dasgupta and B.I. Halperin, Phys. Rev. Lett. 47, 1556 (1981); D.R. Nelson, Phys. Rev. Lett. 60, 
1973 (1988); M.P.A. Fisher and D.-H. Lee, Phys. Rev. B 39, 2756 (1989); 



Boson-vortex duality

Classical statistical 
mechanics of a  
“dual” three-
dimensional  

“superconductor”, 
with order 

parameter ϕ : 
trajectories of 
vortices in a 

“magnetic” fieldx
y

z

Strength of “magnetic” field on dual superconductor ϕ
= density of bosons = f flux quanta per plaquette

C. Dasgupta and B.I. Halperin, Phys. Rev. Lett. 47, 1556 (1981); D.R. Nelson, Phys. Rev. Lett. 60, 
1973 (1988); M.P.A. Fisher and D.-H. Lee, Phys. Rev. B 39, 2756 (1989); 



Boson-vortex duality

vortex
boson

2ie π

Current of ϕ

The wavefunction of a vortex acquires a phase of 
2π each time the vortex encircles a boson

Strength of “magnetic” field on dual superconductor ϕ
= density of bosons = f flux quanta per plaquette

C. Dasgupta and B.I. Halperin, Phys. Rev. Lett. 47, 1556 (1981); D.R. Nelson, Phys. Rev. Lett. 60, 
1973 (1988); M.P.A. Fisher and D.-H. Lee, Phys. Rev. B 39, 2756 (1989); 



Boson-vortex duality
Statistical mechanics of dual “superconductor” ϕ, is 

invariant under the square lattice space group:

,  :  Translations by a lattice spacing in the ,  directions

 :  Rotation by 90 degrees.
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Strength of “magnetic” field on dual superconductor ϕ
= density of bosons = f flux quanta per plaquette



Boson-vortex duality

At density = /  ( ,  relatively 
prime integers) there are  species 
of vortices,  (with =1 ),  
associated with  gauge-equivalent 
regions of the Brillouin zone
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Boson-vortex duality

2
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The  vortices form a  representation of the space group
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Hofstadter spectrum of dual “superconducting” order ϕ

See also X.-G. Wen, Phys. Rev. B 65, 165113 (2002) 



Boson-vortex duality
   The   vortices characterize  
superconducting and density wave orders

q bothϕA

Superconductor insulator : 0 0  ϕ ϕ= ≠A A



Boson-vortex duality
   The   vortices characterize  
superconducting and density wave orders

q bothϕA
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Density wave order: 

Status of space group symmetry determined by 
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Each pinned vortex in the superfluid has a halo of density wave 
order over a length scale ≈ the zero-point quantum motion of the 
vortex. This scale diverges upon approaching the Mott insulator
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Fluctuation-induced, 
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Analysis of “extended LGW” theory of projective representation
Spatial structure of insulators for q=4 (f=1/4 or 3/4)
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B. Application to a short-range pairing model 
for the cuprate superconductors                    

Competition between VBS order and d-wave 
superconductivity



g = parameter controlling strength of quantum 
fluctuations in a semiclassical theory of the 
destruction of Neel order

Phase diagram of doped antiferromagnets

La2CuO4

Neel order



g

La2CuO4

Neel order

VBS order

or

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).

Phase diagram of doped antiferromagnets

T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher,  Science 303, 1490 (2004). 



VBS order

or

g

Phase diagram of doped antiferromagnets

La2CuO4

Dual vortex theory for 
interplay between VBS 
order and d-wave 
superconductivity

δHole density
Neel order



A convenient derivation of the dual theory for vortices is 
obtained from the doped quantum dimer model
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Density of holes = δ

E. Fradkin and S. A. Kivelson, Mod. Phys. Lett. B 4, 225 (1990).



Duality mapping of doped dimer model shows:

Vortices in the superconducting state obey the 
magnetic translation algebra
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where  is the density of holes in the proximate 
Mott insulator (for 1/ 8, 7 /16 )16
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Most results of Part A on bosons can be applied 
unchanged with q as determined above 
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δHole density

d-wave 
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above a critical δ
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Conclusions
I. Description of the competition between superconductivity and 

density wave order in term of defects (vortices). Theory 
naturally excludes “disordered” phase with no order.

II. Vortices carry the quantum numbers of both superconductivity 
and the square lattice space group (in a projective 
representation).

III. Vortices carry halo of charge order, and pinning of 
vortices/anti-vortices leads to a unified theory of STM 
modulations in zero and finite magnetic fields.

IV. Conventional (LGW) picture: density wave order causes the 
transport energy gap, the appearance of the Mott insulator.     
Present picture: Mott localization of charge carriers is more 
fundamental, and (weak) density wave order emerges naturally 
in theory of the Mott transition.


