The quantum phases of matter and
gauge-gravity duality

University of Michigan, Ann Arbor, March 13, 2013

Subir Sachdev
Sommerfeld-Bloch theory of metals, insulators, and superconductors: many-electron quantum states are adiabatically connected to independent electron states
Modern phases of quantum matter
Not adiabatically connected
to independent electron states:

many-particle
quantum entanglement
Quantum Entanglement: quantum superposition with more than one particle

Hydrogen atom: \(|\uparrow\rangle \)

Hydrogen molecule:

\[
\begin{align*}
\text{Superposition of two electron states leads to non-local correlations between spins}
\end{align*}
\]
Quantum Entanglement: quantum superposition with more than one particle

Hydrogen atom:

Hydrogen molecule:

\[\frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \]

Einstein-Podolsky-Rosen “paradox”: Non-local correlations between observations arbitrarily far apart
Outline

1. \mathbb{Z}_2 Spin liquid in the kagome antiferromagnet

2. Superfluid-insulator transition of ultracold atoms in optical lattices:
 Quantum criticality and conformal field theories

3. Holography and the quasi-normal modes of black-hole horizons

4. Strange metals:
 What lies beyond the horizon?
Outline

1. \mathbb{Z}_2 Spin liquid in the kagome antiferromagnet

2. Superfluid-insulator transition of ultracold atoms in optical lattices:
 Quantum criticality and conformal field theories

3. Holography and the quasi-normal modes of black-hole horizons

4. Strange metals:
 What lies beyond the horizon?
Crystals used in collaborations:
1) Polarized Raman scattering - Lemmens, Braunschweig
2) NMR – Takashi Imai, McMaster University
3) Thermal conductivity - Behnia, Ecole Superieure
4) µSR - Keren, Technion

ZnCu(OH)$_6$Cl$_2$
herbertsmithite single crystals

Our work at MIT:
1) The impurity question using x-rays
2) The spin excitations using neutrons

Wednesday, March 13, 13
Kagome antiferromagnet

\[H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j \]
Kagome antiferromagnet

\[H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j \]

\[\frac{1}{\sqrt{2}} (\uparrow\downarrow) - (\downarrow\uparrow) \]

Kagome antiferromagnet

\[H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j \]

\[\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)
\end{array}
\end{array}
\end{array}
\end{array} \]

Kagome antiferromagnet

\[H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j \]

\[\begin{array}{c}
\begin{array}{c}
\left(\frac{1}{\sqrt{2}} \right) \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right)
\end{array}
\end{array} \]

Kagome antiferromagnet

\[H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j \]

P. Fazekas and P. W. Anderson,
Kagome antiferromagnet

\[H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j \]

\[= \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right) \]

P. Fazekas and P. W. Anderson,
Kagome antiferromagnet

\[H = J \sum_{ij} \vec{S}_i \cdot \vec{S}_j \]

\[\frac{1}{\sqrt{2}} (\uparrow \downarrow \rangle - |\downarrow \uparrow \rangle) \]

Kagome antiferromagnet

\[H = J \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j \]

\[\bigcirc \bigcirc = \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right) \]

Kagome antiferromagnet

Alternative view

Pick a reference configuration
Kagome antiferromagnet

Alternative view

A nearby configuration
Kagome antiferromagnet

Alternative view

Difference: a closed loop
Kagome antiferromagnet

Alternative view

Ground state: sum over closed loops
Kagome antiferromagnet

Alternative view

Ground state: sum over closed loops
Mott insulator: Kagome antiferromagnet

Alternative view

Ground state: sum over closed loops
Kagome antiferromagnet

Alternative view

Ground state: sum over closed loops
\[|\Psi\rangle \Rightarrow \text{Ground state of entire system,} \]
\[\rho = |\Psi\rangle\langle \Psi| \]

\[\rho_A = \text{Tr}_B \rho = \text{density matrix of region } A \]

Entanglement entropy \[S_E = -\text{Tr} (\rho_A \ln \rho_A) \]
\[|\Psi\rangle \Rightarrow \text{Ground state of entire system,} \]
\[\rho = |\Psi\rangle \langle \Psi| \]

Take \[|\Psi\rangle = \frac{1}{\sqrt{2}} (|\uparrow\rangle_A \downarrow_B - |\downarrow\rangle_A |\uparrow\rangle_B) \]

Then \[\rho_A = \text{Tr}_B \rho = \text{density matrix of region } A \]
\[= \frac{1}{2} (|\uparrow\rangle_A \langle \uparrow|_A + |\downarrow\rangle_A \langle \downarrow|_A) \]

Entanglement entropy \[S_E = -\text{Tr} (\rho_A \ln \rho_A) \]
\[= \ln 2 \]
Entanglement entropy of a band insulator

Band insulators

An even number of electrons per unit cell
Entanglement entropy of a band insulator

$$S_E = aP - b \exp(-cP)$$

where P is the surface area (perimeter) of the boundary between A and B.
Entanglement in the \mathbb{Z}_2 spin liquid

Entanglement in the \mathbb{Z}_2 spin liquid

where P is the surface area (perimeter) of the boundary between A and B.

$$S_E = aP - \ln(2)$$

Mott insulator: Kagome antiferromagnet

Strong numerical evidence for a \mathbb{Z}_2 spin liquid

Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet

Tian-Heng Han, Joel S. Helton, Shaoyan Chu, Daniel G. Nocera, Jose A. Rodriguez-Rivera, Collin Broholm & Young S. Lee

Outline

1. \mathbb{Z}_2 Spin liquid in the kagome antiferromagnet

2. Superfluid-insulator transition of ultracold atoms in optical lattices: *Quantum criticality and conformal field theories*

3. Holography and the quasi-normal modes of black-hole horizons

4. Strange metals: *What lies beyond the horizon?*
Outline

1. \mathbb{Z}_2 Spin liquid in the kagome antiferromagnet

2. Superfluid-insulator transition of ultracold atoms in optical lattices:
 Quantum criticality and conformal field theories

3. Holography and the quasi-normal modes of black-hole horizons

4. Strange metals:
 What lies beyond the horizon?
Superfluid-insulator transition

Ultracold ^{87}Rb atoms - bosons

Superfluid

Insulator

$0 \quad \lambda_c \quad \lambda$
$\Psi \rightarrow \text{a complex field representing the Bose-Einstein condensate of the superfluid}$
\[S = \int d^2 r d t \left[|\partial_t \Psi|^2 - c^2 |\nabla_r \Psi|^2 - V(\Psi) \right] \]

\[V(\Psi) = (\lambda - \lambda_c) |\Psi|^2 + u (|\Psi|^2)^2 \]

\[\langle \Psi \rangle \neq 0 \quad \text{Superfluid} \]

\[\langle \Psi \rangle = 0 \quad \text{Insulator} \]
\[S = \int d^2 r d t \left[|\partial_t \Psi|^2 - c^2 |\nabla_r \Psi|^2 - V(\Psi) \right] \]

\[V(\Psi) = (\lambda - \lambda_c)|\Psi|^2 + u (|\Psi|^2)^2 \]

Particles and holes correspond to the 2 normal modes in the oscillation of \(\Psi \) about \(\Psi = 0 \).

Superfluid

\[\langle \Psi \rangle \neq 0 \]

Insulator

\[\langle \Psi \rangle = 0 \]
Insulator (the vacuum)
at large repulsion between bosons
Excitations of the insulator:

Particles $\sim \Psi^\dagger$
Excitations of the insulator:

Holes $\sim \Psi$
\[S = \int d^2r dt \left[|\partial_t \Psi|^2 - c^2 |\nabla_r \Psi|^2 - V(\Psi) \right] \]

\[V(\Psi) = (\lambda - \lambda_c) |\Psi|^2 + u \left(|\Psi|^2 \right)^2 \]

Particles and holes correspond to the 2 normal modes in the oscillation of \(\Psi \) about \(\Psi = 0 \).

\[\langle \Psi \rangle \neq 0 \quad \text{Superfluid} \]

\[\langle \Psi \rangle = 0 \quad \text{Insulator} \]
\[S = \int d^2r dt \left[|\partial_t \Psi|^2 - c^2 |\nabla_r \Psi|^2 - V(\Psi) \right] \]
\[V(\Psi) = (\lambda - \lambda_c)|\Psi|^2 + u(|\Psi|^2)^2 \]

Nambu-Goldstone mode is the oscillation in the phase \(\Psi \) at a constant non-zero \(|\Psi| \).

\[\langle \Psi \rangle \neq 0 \quad \text{Superfluid} \]
\[\langle \Psi \rangle = 0 \quad \text{Insulator} \]
A conformal field theory in 2+1 spacetime dimensions: a CFT3

\[S = \int d^2r dt \left[|\partial_t \Psi|^2 - c^2 |\nabla_r \Psi|^2 - V(\Psi) \right] \]

\[V(\Psi) = (\lambda - \lambda_c)|\Psi|^2 + u (|\Psi|^2)^2 \]

\[\langle \Psi \rangle \neq 0 \quad \text{Superfluid} \]

\[\langle \Psi \rangle = 0 \quad \text{Insulator} \]
\[S = \int d^2 r dt \left[|\partial_t \Psi|^2 - c^2 |\nabla_r \Psi|^2 - V(\Psi) \right] \]

\[V(\Psi) = (\lambda - \lambda_c) |\Psi|^2 + u \left(|\Psi|^2 \right)^2 \]

Quantum state with complex, many-body, “long-range” quantum entanglement

\[\langle \Psi \rangle \neq 0 \]

Superfluid

\[\langle \Psi \rangle = 0 \]

Insulator

0 \[\lambda_c \]
\[\lambda \]
\[S = \int d^2r dt \left[|\partial_t \Psi|^2 - c^2 |\nabla_r \Psi|^2 - V(\Psi) \right] \]

\[V(\Psi) = (\lambda - \lambda_c) |\Psi|^2 + u (|\Psi|^2)^2 \]

No well-defined normal modes, or particle-like excitations

\[\langle \Psi \rangle \neq 0 \quad \text{Superfluid} \]

\[\langle \Psi \rangle = 0 \quad \text{Insulator} \]

\(\lambda_c \)
\[
S = \int d^2r dt \left[|\partial_t \Psi|^2 - c^2 |\nabla_r \Psi|^2 - V(\Psi) \right]
\]

\[
V(\Psi) = (\lambda - \lambda_c) |\Psi|^2 + u (|\Psi|^2)^2
\]

Higgs mode is the oscillation in the amplitude \(|\Psi|\). This decays rapidly by emitting pairs of Nambu-Goldstone modes.

\[
\langle \Psi \rangle \neq 0 \quad \text{Superfluid}
\]

\[
\langle \Psi \rangle = 0 \quad \text{Insulator}
\]

\[\lambda_c\]
Despite rapid decay, there is a well-defined Higgs “quasi-normal mode”. This is associated with a pole in the lower-half of the complex frequency plane.

\[
S = \int d^2r dt \left[|\partial_t \Psi|^2 - c^2 |\nabla_r \Psi|^2 - V(\Psi) \right]
\]

\[
V(\Psi) = (\lambda - \lambda_c) |\Psi|^2 + u (|\Psi|^2)^2
\]

D. Podolsky, A. Auerbach, and D. P. Arovas, PRB 84, 174522 (2011).
\[S = \int d^2 r dt \left[|\partial_t \Psi|^2 - c^2 |\nabla_r \Psi|^2 - V(\Psi) \right] \]

\[V(\Psi) = (\lambda - \lambda_c) |\Psi|^2 + u (|\Psi|^2)^2 \]

The Higgs quasi-normal mode is at the frequency

\[
\frac{\omega_{\text{pole}}}{\Delta} = -i \frac{4}{\pi} + \frac{1}{N} \left(\frac{16 (4 + \sqrt{2} \log (3 - 2\sqrt{2}))}{\pi^2} + 2.46531203396 i \right) + O \left(\frac{1}{N^2} \right)
\]

where \(\Delta\) is the particle gap at the complementary point in the “paramagnetic” state with the same value of \(|\lambda - \lambda_c|\), and \(N = 2\) is the number of vector components of \(\Psi\). The universal answer is a consequence of the strong interactions in the CFT3.
Observation of Higgs quasi-normal mode across the superfluid-insulator transition of ultracold atoms in a 2-dimensional optical lattice:

Response to modulation of lattice depth scales as expected from the LHP pole

Observation of Higgs quasi-normal mode across the superfluid-insulator transition of ultracold atoms in a 2-dimensional optical lattice: Response to modulation of lattice depth scales as expected from the LHP pole

Figure 4 | Scaling of the low-frequency response. The low-frequency response in the superfluid regime shows a scaling compatible with the prediction \((1 - j/j_c)^{-2} v^3\) (Methods). Shown is the temperature response rescaled with \((1 - j/j_c)^2\) for \(V_0 = 10E_r\) (grey), \(9.5E_r\) (black), \(9E_r\) (green), \(8.5E_r\) (blue) and \(8E_r\) (red) as a function of the modulation frequency. The black line is a fit of the form \(av^b\) with a fitted exponent \(b = 2.9(5)\). The inset shows the same data points without rescaling, for comparison. Error bars, s.e.m.

\[S = \int d^2r dt \left[|\partial_t \Psi|^2 - c^2 |\nabla_r \Psi|^2 - V(\Psi) \right] \]

\[V(\Psi) = (\lambda - \lambda_c) |\Psi|^2 + u (|\Psi|^2)^2 \]

A conformal field theory in 2+1 spacetime dimensions:

a CFT3

\[\langle \Psi \rangle \neq 0 \]

Superfluid

\[\langle \Psi \rangle = 0 \]

Insulator

\[\lambda \]

\[\lambda_c \]

0
CFT3 at $T > 0$

Superfluid

Quantum critical

Insulator

T_{KT}

T

λ

λ_c

0
Quantum critical dynamics

Quantum “nearly perfect fluid”
with shortest possible local equilibration time, τ_{eq}

$$\tau_{eq} = C \frac{\hbar}{k_B T}$$

where C is a universal constant.

Response functions are characterized by poles in LHP
with $\omega \sim k_B T/\hbar$.
These poles (quasi-normal modes) appear naturally in
the holographic theory.
(Analogs of Higgs quasi-normal mode.)

Quantum critical dynamics

Transport co-efficients not determined by collision rate of quasiparticles, but by fundamental constants of nature

Conductivity

\[\sigma = \frac{Q^2}{\hbar} \times \text{[Universal constant } O(1) \text{]} \]

\(Q\) is the “charge” of one boson

CFT3 at $T>0$

- **Superfluid**
- **Insulator**
- **Quantum critical**

T vs λ

T_{KT}
CFT3 at $T>0$

Boltzmann theory of particles/holes/vortices does not apply
CFT3 at $T>0$

Needed: Accurate theory of quantum critical dynamics
Outline

1. \mathbb{Z}_2 Spin liquid in the kagome antiferromagnet

2. Superfluid-insulator transition of ultracold atoms in optical lattices:
 Quantum criticality and conformal field theories

3. Holography and the quasi-normal modes of black-hole horizons

4. Strange metals:
 What lies beyond the horizon?
Outline

1. \mathbb{Z}_2 Spin liquid in the kagome antiferromagnet

2. Superfluid-insulator transition of ultracold atoms in optical lattices:
 Quantum criticality and conformal field theories

3. Holography and the quasi-normal modes of black-hole horizons

4. Strange metals:
 What lies beyond the horizon?
Renormalization group: \Rightarrow Follow coupling constants of quantum many body theory as a function of length scale r
Renormalization group: \(\Rightarrow \) Follow coupling constants of quantum many body theory as a function of length scale \(r \)

\[r \quad \rightarrow \quad x_i \]

Key idea: \(\Rightarrow \) Implement \(r \) as an extra dimension, and map to a local theory in \(d + 2 \) spacetime dimensions.

J. McGreevy, arXiv0909.0518
For a relativistic CFT in d spatial dimensions, the metric in the holographic space is fixed by demanding the scale transformation ($i = 1 \ldots d$)

$$x_i \rightarrow \zeta x_i \quad , \quad t \rightarrow \zeta t \quad , \quad ds \rightarrow ds$$
This gives the unique metric

\[ds^2 = \frac{1}{r^2} (-dt^2 + dr^2 + dx_i^2) \]

This is the metric of anti-de Sitter space \(\text{AdS}_{d+2} \).
AdS/CFT correspondence

$\text{AdS}_4 \quad \mathcal{R}^{2,1} \quad \text{Minkowski}$

CFT_3

$r \quad x^i$
Holography and Entanglement

AdS$_4$ \hspace{2cm} R2,1 \hspace{2cm} Minkowski

CFT$_3$
Associate entanglement entropy with an observer in the enclosed spacetime region, who cannot observe “outside” : i.e. the region is surrounded by an imaginary horizon.

Holography and Entanglement

AdS$_4$

$R^{2,1}$

Minkowski

CFT3

Minimal surface area measures entanglement entropy

Computation of minimal surface area yields
\[S_E = aP - \gamma, \]
where \(\gamma \) is a shape-dependent universal number.

This emergent spacetime is a solution of Einstein gravity with a negative cosmological constant.

\[
S_E = \int d^4x \sqrt{-g} \left[\frac{1}{2\kappa^2} \left(R + \frac{6}{L^2} \right) \right]
\]
AdS/CFT correspondence at non-zero temperatures

AdS$_4$-Schwarzschild black-brane

There is a family of solutions of Einstein gravity which describe non-zero temperatures

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2\kappa^2} \left(R + \frac{6}{L^2} \right) \right]$$
AdS/CFT correspondence at non-zero temperatures

AdS$_4$-Schwarzschild black-brane

Black-brane (horizon) at temperature of 2+1 dimensional quantum critical system

$$ds^2 = \left(\frac{L}{r} \right)^2 \left[\frac{dr^2}{f(r)} - f(r)dt^2 + dx^2 + dy^2 \right]$$

with $f(r) = 1 - (r/R_h)^3$
AdS/CFT correspondence at non-zero temperatures

AdS$_4$-Schwarzschild black-brane

$$ds^2 = \left(\frac{L}{r} \right)^2 \left[\frac{dr^2}{f(r)} - f(r)dt^2 + dx^2 + dy^2 \right]$$

with $f(r) = 1 - (r/R_h)^3$

Black-brane (horizon) at temperature of 2+1 dimensional quantum critical system

A 2+1 dimensional system at its quantum critical point:

$$k_B T = \frac{3\hbar}{4\pi R_h}.$$
AdS/CFT correspondence at non-zero temperatures

AdS$_4$-Schwarzschild black-brane

Black-brane (horizon) at temperature of 2+1 dimensional quantum critical system

Friction of quantum criticality = waves falling past the horizon

A 2+1 dimensional system at its quantum critical point:

\[k_B T = \frac{3\hbar}{4\pi R_h} \]
AdS/CFT correspondence at non-zero temperatures

AdS$_4$-Schwarzschild black-brane

A 2+1 dimensional system at its quantum critical point:

\[k_B T = \frac{3\hbar}{4\pi R_h} \]

Black-brane (horizon) at temperature of 2+1 dimensional quantum critical system

Quasi-normal modes of waves near horizon -- quasi-normal modes of quantum criticality (and Higgs)
AdS$_4$ theory of quantum criticality

Most general effective holographic theory for linear charge transport with 4 spatial derivatives:

$$S_{\text{bulk}} = \frac{1}{g_M^2} \int d^4x \sqrt{g} \left[\frac{1}{4} F_{ab} F^{ab} + \gamma L^2 C_{abcd} F^{ab} F^{cd} \right]$$

$$+ \int d^4x \sqrt{g} \left[-\frac{1}{2\kappa^2} \left(R + \frac{6}{L^2} \right) \right],$$

Here F_{ab} is a 4-dimensional gauge field strength, which is “dual” to a conserved U(1) current of the CFT. C_{abcd} is the Weyl tensor.

AdS$_4$ theory of quantum criticality

Most general effective holographic theory for linear charge transport with 4 spatial derivatives:

\[
S_{\text{bulk}} = \frac{1}{g_M^2} \int d^4 x \sqrt{g} \left[\frac{1}{4} F_{ab} F^{ab} + \gamma L^2 C_{abcd} F^{ab} F^{cd} \right] \\
+ \int d^4 x \sqrt{g} \left[-\frac{1}{2\kappa^2} \left(R + \frac{6}{L^2} \right) \right],
\]

This action is characterized by 3 dimensionless parameters, which can be linked to data of the CFT (OPE coefficients): 2-point correlators of the conserved current J_μ and the stress energy tensor $T_{\mu\nu}$, and a 3-point T, J, J correlator.

AdS\textsubscript{4} theory of quantum criticality

Most general effective holographic theory for linear charge transport with 4 spatial derivatives:

\begin{equation}
S_{\text{bulk}} = \frac{1}{g_{M}^{2}} \int d^{4}x \sqrt{g} \left[\frac{1}{4} F_{ab} F^{ab} + \gamma L^{2} C_{abcd} F^{ab} F^{cd} \right] + \int d^{4}x \sqrt{g} \left[-\frac{1}{2\kappa^{2}} \left(R + \frac{6}{L^{2}} \right) \right],
\end{equation}

Boundary and bulk methods both show that $|\gamma| \leq 1/12$, and the bound is saturated by free fields.

AdS$_4$ theory of quantum criticality

The $\gamma > 0$ result has similarities to the quantum-Boltzmann result for transport of particle-like excitations.

AdS$_4$ theory of quantum criticality

The $\gamma < 0$ result can be interpreted as the transport of vortex-like excitations

Stability constraints on the effective theory ($|\gamma| < 1/12$) allow only a limited ω-dependence in the conductivity. This contrasts with the Boltzmann theory in which $\sigma(\omega)/\sigma_{\infty}$ becomes very large in the regime of its validity.

AdS\(_4\) theory of quantum criticality

Poles in LHP of conductivity at \(\omega \sim k_B T / \hbar\); analog of Higgs quasinormal mode–quasinormal modes of black brane.

AdS$_4$ theory of quantum criticality

Zeros in LHP of conductivity — quasinormal modes of S-dual theory

AdS$_4$ theory of quantum criticality

It can be shown that the conductivity of any CFT3 must satisfy two sum rules

$$\int_0^\infty d\omega \text{Re} [\sigma(\omega) - \sigma(\infty)] = 0$$

$$\int_0^\infty d\omega \text{Re} \left[\frac{1}{\sigma(\omega)} - \frac{1}{\sigma(\infty)} \right] = 0$$

- The AdS$_4$ theory satisfies both sum rules exactly.

- The Boltzmann theory must make a choice between the “particle” or “vortex” basis, and so satisfies only one of the sum rules.

Traditional CMT

- Identify quasiparticles and their dispersions
- Compute scattering matrix elements of quasiparticles (or of collective modes)
- These parameters are input into a quantum Boltzmann equation
- Deduce dissipative and dynamic properties at non-zero temperatures
<table>
<thead>
<tr>
<th>Traditional CMT</th>
<th>Holography and black-branes</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Identify quasiparticles and their dispersions</td>
<td>- Start with strongly interacting CFT without particle- or wave-like excitations</td>
</tr>
<tr>
<td>- Compute scattering matrix elements of quasiparticles (or of collective modes)</td>
<td></td>
</tr>
<tr>
<td>- These parameters are input into a quantum Boltzmann equation</td>
<td></td>
</tr>
<tr>
<td>- Deduce dissipative and dynamic properties at non-zero temperatures</td>
<td></td>
</tr>
</tbody>
</table>
Traditional CMT

- Identify quasiparticles and their dispersions
- Compute scattering matrix elements of quasiparticles (or of collective modes)
- These parameters are input into a quantum Boltzmann equation
- Deduce dissipative and dynamic properties at non-zero temperatures

Holography and black-branes

- Start with strongly interacting CFT without particle- or wave-like excitations
- Compute OPE co-efficients of operators of the CFT
Traditional CMT

- Identify quasiparticles and their dispersions

- Compute scattering matrix elements of quasiparticles (or of collective modes)

- These parameters are input into a quantum Boltzmann equation

- Deduce dissipative and dynamic properties at non-zero temperatures

Holography and black-branes

- Start with strongly interacting CFT without particle- or wave-like excitations

- Compute OPE co-efficients of operators of the CFT

- Relate OPE co-efficients to couplings of an effective gravitational theory on AdS
Traditional CMT

- Identify quasiparticles and their dispersions
- Compute scattering matrix elements of quasiparticles (or of collective modes)
- These parameters are input into a quantum Boltzmann equation
- Deduce dissipative and dynamic properties at non-zero temperatures

Holography and black-branes

- Start with strongly interacting CFT without particle- or wave-like excitations
- Compute OPE co-efficients of operators of the CFT
- Relate OPE co-efficients to couplings of an effective gravitational theory on AdS
Universal Scaling of the Conductivity at the Superfluid-Insulator Phase Transition

Jurij Šmakov and Erik Sørensen

Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada

(Received 30 May 2005; published 27 October 2005)

The scaling of the conductivity at the superfluid-insulator quantum phase transition in two dimensions is studied by numerical simulations of the Bose-Hubbard model. In contrast to previous studies, we focus on properties of this model in the experimentally relevant thermodynamic limit at finite temperature T. We find clear evidence for deviations from ω_k scaling of the conductivity towards ω_k/T scaling at low Matsubara frequencies ω_k. By careful analytic continuation using Padé approximants we show that this behavior carries over to the real frequency axis where the conductivity scales with ω/T at small frequencies and low temperatures. We estimate the universal dc conductivity to be $\sigma^* = 0.45(5)Q^2/h$, distinct from previous estimates in the $T = 0$, $\omega/T \gg 1$ limit.
Universal Scaling of the Conductivity at the Superfluid-Insulator Phase Transition

Jurij Šmakov and Erik Sørensen

Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
(Received 30 May 2005; published 27 October 2005)

The scaling of the conductivity at the superfluid-insulator quantum phase transition in two dimensions is studied by numerical simulations of the Bose-Hubbard model. In contrast to previous studies, we focus on properties of this model in the experimentally relevant thermodynamic limit at finite temperature T. We find clear evidence for deviations from ω_k scaling of the conductivity towards ω_k/T scaling at low Matsubara frequencies ω_k. By careful analytic continuation using Padé approximants we show that this behavior carries over to the real frequency axis where the conductivity scales with ω/T at small frequencies and low temperatures. We estimate the universal dc conductivity to be $\sigma^* = 0.45(5)Q^2/h$, distinct from previous estimates in the $T = 0$, $\omega/T \gg 1$ limit.

QMC yields $\sigma(0)/\sigma_\infty \approx 1.36$

Holography yields $\sigma(0)/\sigma_\infty = 1 + 4\gamma$ with $|\gamma| \leq 1/12$.

Maximum possible holographic value $\sigma(0)/\sigma_\infty = 1.33$

http://dx.doi.org/10.1103/PhysRevLett.95.180603

Outline

1. \mathbb{Z}_2 Spin liquid in the kagome antiferromagnet

2. Superfluid-insulator transition of ultracold atoms in optical lattices:
 Quantum criticality and conformal field theories

3. Holography and the quasi-normal modes of black-hole horizons

4. Strange metals:
 What lies beyond the horizon?
Outline

1. \mathbb{Z}_2 Spin liquid in the kagome antiferromagnet

2. Superfluid-insulator transition of ultracold atoms in optical lattices:
 Quantum criticality and conformal field theories

3. Holography and the quasi-normal modes of black-hole horizons

4. Strange metals:
 What lies beyond the horizon?
Resistivity $\sim \rho_0 + AT^n$

Electrons (fermions) occupy states inside a Fermi “surface” (circle) of radius k_F which is determined by the density of electrons, Q.
A Strange Metal

Can bosons form a metal?
Can bosons form a metal?

Yes, if each boson, \(b \), *fractionalizes* into 2 fermions (‘quarks’) \(b = f_1 f_2 \)!

S. Sachdev, arXiv:1209.1637
Can bosons form a metal?

Yes, if each boson, \(b \), fractionalizes into 2 fermions (‘quarks’) \(b = f_1 f_2 \).

- Each quark is charged under an emergent gauge force, which encapsulates the entanglement in the ground state.
Can bosons form a metal?

Yes, if each boson, \(b \), \textit{fractionalizes} into 2 fermions (‘quarks’)
\[
\mathbf{b} = f_1 f_2
\]

- Each quark is charged under an \textit{emergent} gauge force, which encapsulates the entanglement in the ground state.
- The quarks have “hidden” Fermi surfaces of radius \(k_F \).
The density of particles Q creates an electric flux ϵ_r which modifies the metric of the emergent spacetime.
The density of particles Q creates an electric flux \mathcal{E}_r which modifies the metric of the emergent spacetime.
The general metric transforms under rescaling as

\[x_i \rightarrow \zeta x_i, \quad t \rightarrow \zeta^z t, \quad ds \rightarrow \zeta^{\theta/d} ds. \]

Recall: conformal matter has \(\theta = 0, z = 1 \), and the metric is anti-de Sitter
The general metric transforms under rescaling as

\[x_i \rightarrow \zeta x_i, \quad t \rightarrow \zeta^z t, \quad ds \rightarrow \zeta^{\theta/d} ds. \]

The value \(\theta = d - 1 \) reproduces all the essential characteristics of the entropy and entanglement entropy of a strange metal.
The general metric transforms under rescaling as

\[x_i \rightarrow \zeta x_i, \quad t \rightarrow \zeta^z t, \quad ds \rightarrow \zeta^{\theta/d} ds. \]

The null-energy condition of gravity yields \(z \geq 1 + \theta/d \). In \(d = 2 \), this leads to \(z \geq 3/2 \). Field theory on strange metal yields \(z = 3/2 \) to 3 loops!

Conclusions

Realizations of many-particle entanglement: \mathbb{Z}_2 spin liquids and conformal quantum critical points
Conclusions

Conformal quantum matter

- New insights and solvable models for diffusion and transport of strongly interacting systems near quantum critical points
- The description is far removed from, and complementary to, that of the quantum Boltzmann equation which builds on the quasiparticle/vortex picture.
- Good prospects for experimental tests of frequency-dependent, non-linear, and non-equilibrium transport
Conclusions

More complex examples in metallic states are experimentally ubiquitous, but pose difficult strong-coupling problems to conventional methods of field theory.
Conclusions

String theory and gravity in emergent dimensions offer a remarkable new approach to describing states with many-particle quantum entanglement.

Much recent progress offers hope of a holographic description of “strange metals”