Low energy theory of a single vortex and electronic quasiparticles in a d-wave superconductor
Low energy theory of a single vortex and electronic quasiparticles in a d-wave superconductor

Subir Sachdev

Harvard University

Predrag Nikolic

Talk online at http://sachdev.physics.harvard.edu
BCS theory for local density of states (LDOS) at the center of a vortex in a d-wave superconductor

Prominent feature: large peak at zero bias

STM around vortices induced by a magnetic field in the superconducting state

Local density of states (LDOS)

1Å spatial resolution image of integrated LDOS of Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ (1meV to 12 meV) at B=5 Tesla.

Outline

1. Our model
2. Influence of electronic quasiparticles on vortex motion
3. Influence of vortex motion on electronic quasiparticles
4. Aharonov-Bohm phases in vortex motion and “checkerboard” modulations in LDOS
I. The model
Degrees of freedom

- We consider a point vortex (with vanishing core radius) whose (first-quantized) position is $r_v(\tau)$. The τ dependence represents the zero-point quantum motion of this vortex.

- The Bogoliubov quasiparticles are represented at low energies by the (second-quantized) Dirac field $\Psi(r, \tau)$.
A single vortex in a d-wave superconductor.

Effective low energy action

After the Franz-Tesanovic gauge transformation, this vortex appears as a π flux tube to the fermionic quasiparticles. The complete low energy theory for the vortex and the fermionic “Dirac” quasiparticles is then

$$Z = \int \mathcal{D}\Psi(r, \tau) \mathcal{D}r_v(\tau) \exp(-S)$$

$$S = \int d^2r d\tau \bar{\Psi} \gamma^\mu (\partial_\mu - ia_\mu) \Psi$$

$$+ \text{ additional terms from the “Doppler shift”}$$

where

$$\vec{\nabla} \times \dot{\vec{a}} = \pi \delta(\vec{r} - \vec{r}_v(\tau))$$
A single vortex in a d-wave superconductor.

Effective low energy action

After the Franz-Tesanovic gauge transformation, this vortex appears as a π flux tube to the fermionic quasiparticles. The complete low energy theory for the vortex and the fermionic “Dirac” quasiparticles is then

$$
\mathcal{Z} = \int \mathcal{D}\Psi(r, \tau) \mathcal{D}r_v(\tau) \exp(-\mathcal{S})
$$

$$
\mathcal{S} = \int d^2r d\tau \bar{\Psi} \gamma^\mu (\partial_\mu - ia_\mu) \Psi
$$

+ additional terms from the “Doppler shift”

where

$$
\vec{\nabla} \times \vec{a} = \pi \delta(r - r_v(\tau))
$$

Note: The action is has no coupling constants, and much can be deduced simply by a $z = 1$ scaling analysis.
Outline

1. Our model

2. Influence of electronic quasiparticles on vortex motion

3. Influence of vortex motion on electronic quasiparticles

4. Aharonov-Bohm phases in vortex motion and “checkerboard” modulations in LDOS
II. Influence of electronic quasiparticles on vortex motion
Integrate out the nodal quasiparticles and expand the resulting action in powers of $d\mathbf{r}_v/d\tau$. This gives a result of the form

$$S [\mathbf{r}_v(\tau)] = \int \frac{d\omega}{2\pi} |\mathbf{r}_v(\omega)|^2 K(\omega)$$

Translational invariance implies $K(0) = 0$. The scaling dimension of $K(\omega)$ is 3, and this allows us to deduce its functional form.
Integrate out the nodal quasiparticles and expand the resulting action in powers of $d\mathbf{r}_v/d\tau$. We obtained:

$$S[\mathbf{r}_v(\tau)] = \int \frac{d\omega}{2\pi} |\mathbf{r}_v(\omega)|^2 \left[\frac{m_v\omega^2}{2} + C_1|\omega|^3 + C_2T^2|\omega| \right] + \ldots$$
Integrate out the nodal quasiparticles and expand the resulting action in powers of $d\mathbf{r}_v/d\tau$. We obtained:

$$S[\mathbf{r}_v(\tau)] = \int \frac{d\omega}{2\pi} |\mathbf{r}_v(\omega)|^2 \left[\frac{m_v\omega^2}{2} + C_1|\omega|^3 + C_2T^2|\omega| \right] + \ldots$$

A finite effective mass

$$m_v \sim \frac{\Lambda}{v_F^2}$$

where $\Lambda \sim \Delta$ is a high energy cutoff.

By power-counting, there are no infra-red singularities to this order, and hence only an analytic dependence on ω is possible.
Integrate out the nodal quasiparticles and expand the resulting action in powers of $d\mathbf{r}_v/d\tau$. We obtained:

$$S[\mathbf{r}_v(\tau)] = \int \frac{d\omega}{2\pi} |\mathbf{r}_v(\omega)|^2 \left[\frac{m_v \omega^2}{2} + C_1 |\omega|^3 + C_2 T^2 |\omega| \right] + \ldots$$

sub-Ohmic damping with

$$C_1 = v_F^{-2} \times \left(\text{Universal function of } \frac{v_\Delta}{v_F} \right)$$
Integrate out the nodal quasiparticles and expand the resulting action in powers of $d\mathbf{r}_v/d\tau$. We obtained:

$$\mathcal{S}[\mathbf{r}_v(\tau)] = \int \frac{d\omega}{2\pi} |\mathbf{r}_v(\omega)|^2 \left[\frac{m_v \omega^2}{2} + C_1 |\omega|^3 + C_2 T^2 |\omega| \right] + \ldots$$

Bardeen-Stephen viscous drag with

$$C_2 = v_F^{-2} \times \left(\text{Universal function of } \frac{\nu_\Delta}{v_F} \right)$$
Integrate out the nodal quasiparticles and expand the resulting action in powers of \(d\mathbf{r}_v/d\tau \). We obtained:

\[
S[\mathbf{r}_v(\tau)] = \int \frac{d\omega}{2\pi} |\mathbf{r}_v(\omega)|^2 \left[\frac{m_v\omega^2}{2} + C_1|\omega|^3 + C_2T^2|\omega| \right] + \ldots
\]

Bardeen-Stephen viscous drag with

\[
C_2 = v_F^{-2} \times \left(\frac{\nu}{v_F} \right)
\]

Negligible damping of vortex from nodal quasiparticles at \(T=0 \). Damping increases as \(T^2 \) at higher \(T \)
Outline

1. Our model
2. Influence of electronic quasiparticles on vortex motion
3. Influence of vortex motion on electronic quasiparticles
4. Aharonov-Bohm phases in vortex motion and “checkerboard” modulations in LDOS
III. Influence of vortex motion on electronic quasiparticles
A single vortex in a d-wave superconductor.
Effective low energy action for electronic quasiparticles

Add a harmonic pinning potential to the vortex, and ignore damping of vortex motion

\[
\mathcal{Z} = \int \mathcal{D}\Psi(\mathbf{r}, \tau)\mathcal{D}\mathbf{r}_v(\tau) \exp(-\mathcal{S})
\]

\[
\mathcal{S} = \int d^2r d\tau \bar{\Psi} \gamma^\mu (\partial_\mu - ia_\mu) \Psi
\]

\[
+ \frac{1}{2} m_v \left(\frac{d\mathbf{r}_v}{d\tau} \right)^2 + \frac{1}{2} m_v \omega_v^2 \mathbf{r}_v^2
\]

where

\[
\vec{\nabla} \times \vec{a} = \pi \delta(\mathbf{r} - \mathbf{r}_v(\tau))
\]

Now integrate out \mathbf{r}_v and determine change in electronic LDOS.
Influence of the quantum oscillating vortex on the LDOS

ω / ω_v

$\alpha^2 = \frac{m v_F^2}{\omega_v} = 1$

Resonant feature near the vortex oscillation frequency and no zero-bias peak
Influence of the quantum oscillating vortex on the LDOS

Resonant feature near the vortex oscillation frequency and no zero-bias peak

\[\frac{\omega}{\omega_v} \]

\[\alpha^2 = \frac{mv_F^2}{\omega_v} = 1 \]

Influence of the quantum oscillating vortex on the LDOS

Resonant feature near the vortex oscillation frequency and no zero-bias peak

Is there an independent way to determine \(m_v \) and \(\omega_v \)?
Outline

1. Our model

2. Influence of electronic quasiparticles on vortex motion

3. Influence of vortex motion on electronic quasiparticles

4. Aharonov-Bohm phases in vortex motion and “checkerboard” modulations in LDOS
IV. Aharonov-Bohm phases in vortex motion and “checkerboard” modulations in LDOS

In ordinary fluids, vortices experience the Magnus Force

\[F_M = (\text{mass density of air}) \cdot g(\text{velocity of ball}) \cdot g(\text{circulation}) \]
For a vortex in a superfluid, this is

\[\mathbf{F}_M = (m \rho) \left(\left(\mathbf{v}_s - \frac{d\mathbf{r}_v}{dt} \right) \times \hat{z} \right) \left(\oint \mathbf{v}_s \cdot d\mathbf{r} \right) \]

\[= n \hbar \rho \left(\mathbf{v}_s - \frac{d\mathbf{r}_v}{dt} \right) \times \hat{z} \]

where \(\rho \) = number density of bosons

\(\mathbf{v}_s \) = local velocity of superfluid

\(\mathbf{r}_v \) = position of vortex
For a vortex in a superfluid, this is

\[
F_M = (m\rho) \left(\left(\mathbf{v}_s - \frac{d\mathbf{r}_v}{dt} \right) \times \hat{z} \right) \left(\int \mathbf{v}_s \cdot d\mathbf{r} \right)
\]

\[
= n\hbar\rho \left(\mathbf{v}_s - \frac{d\mathbf{r}_v}{dt} \right) \times \hat{z}
\]

\[
= n \left(\mathbf{E} + \frac{d\mathbf{r}_v}{dt} \times \mathbf{B} \right)
\]

where \(\mathbf{E} = \rho\mathbf{v}_s \times \hat{z} \) and \(\mathbf{B} = -\hbar\rho\hat{z} \)

Dual picture:

The vortex is a quantum particle with dual “electric” charge \(n \), moving in a dual “magnetic” field of strength \(= \hbar \times \) (number density of Bose particles)

Let the Hamiltonian of a single vortex be \mathcal{H}_v.

In general, this is a very complicated object, but we can obtain all needed information by symmetry considerations.

The Hamiltonian \mathcal{H}_v should commute with T_x, the operator which translates the square lattice by one site in the x direction (and similarly for T_y):

\[
[T_x, \mathcal{H}_v] = 0 \\
[T_y, \mathcal{H}_v] = 0
\]
However, T_x and T_y do not commute with each other.

Under translation along a distance \mathbf{s}, a vortex picks up a Aharanov-Bohm phase factor $\exp\left(i \int_0^s d\mathbf{r} \cdot \mathbf{A}\right)$.

Consequently

$$T_x T_y = \exp\left(i\phi\right) T_y T_x$$

where ϕ is the dual “flux” through a unit cell, This “flux” has the value

$$\phi = 2\pi f$$

where f is the filling fraction of bosons (Cooper pairs). We will consider the case of rational filling fraction $f = p/q$, where p, q are relatively prime integers.
Bosons on the square lattice at filling fraction $f=p/q$

$$[T_x, \mathcal{H}_v] = 0$$

$$[T_y, \mathcal{H}_v] = 0$$

$$T_x T_y = \exp \left(2\pi i p/q \right) T_y T_x$$
Bosons on the square lattice at filling fraction \(f = p/q \)

\[
\begin{align*}
[T_x, \mathcal{H}_v] &= 0 \\
[T_y, \mathcal{H}_v] &= 0 \\
T_x T_y &= \exp\left(2\pi i p/q\right) T_y T_x
\end{align*}
\]

Theorem:
The ground state of \(\mathcal{H}_v \) is at least \(q \)-fold degenerate. We can choose a basis, \(|m\rangle \) (\(m = 0 \ldots (q - 1) \)), for the ground states such that

\[
\begin{align*}
T_x |m\rangle &= |m + 1\rangle \\
T_y |m\rangle &= e^{2\pi i m p/q} |m\rangle
\end{align*}
\]
Properties of a quantum-fluctuating vortex weakly pinned by an impurity.

- Any impurity breaks translational invariance, and so chooses a preferred orientation in vortex “flavor space”. This chooses some linear combination among the ground states: \(|G\rangle = \sum_{m=0}^{q-1} c_m |m\rangle \)
Properties of a quantum-fluctuating vortex weakly pinned by an impurity.

- Any impurity breaks translational invariance, and so chooses a preferred orientation in vortex “flavor space”. This chooses some linear combination among the ground states: \(|G\rangle = \sum_{m=0}^{q-1} c_m |m\rangle \)

- The expectation value of any observable \(\mathcal{O} \), \(\langle G|\mathcal{O}|G\rangle \) can be related to the matrix of overlaps \(\langle m|n\rangle \) which, in turn, are linearly related to quantities \(\rho_{mn} \) which transform under \(T_x, T_y \) like the Fourier components of a density \(\rho_Q \) at the wavevectors \(Q = 2\pi f(m, n) \):

\[
T_x : \rho_Q \rightarrow e^{iQ \cdot \hat{x}} \rho_Q \quad T_y : \rho_Q \rightarrow e^{iQ \cdot \hat{y}} \rho_Q
\]
Properties of a quantum-fluctuating vortex weakly pinned by an impurity.

- Any impurity breaks translational invariance, and so chooses a prefered orientation in vortex “flavor space”. This chooses some linear combination among the ground states: $|G\rangle = \sum_{m=0}^{q-1} c_m |m\rangle$

- The expectation value of any observable \mathcal{O}, $\langle G|\mathcal{O}|G\rangle$, can be written in general, and is determined by

$$\rho_{mn} = e^{i\pi mnp/q} \sum_{\ell=0}^{q-1} e^{2\pi i\ell m} \langle \ell | \ell + n \rangle$$

$$T_x : \rho_Q \rightarrow e^{iQ \cdot \hat{x}} \rho_Q$$

$$T_y : \rho_Q \rightarrow e^{iQ \cdot \hat{y}} \rho_Q$$
Properties of a quantum-fluctuating vortex weakly pinned by an impurity.

- Any impurity breaks translational invariance, and so chooses a preferred orientation in vortex “flavor space”. This chooses some linear combination among the ground states: \(|G\rangle = \sum_{m=0}^{q-1} c_m |m\rangle \)

- The expectation value of any observable \(\mathcal{O} \), \(\langle G|\mathcal{O}|G\rangle \) can be related to the matrix of overlaps \(\langle m|n\rangle \) which, in turn, are linearly related to quantities \(\rho_{mn} \) which transform under \(T_x, T_y \) like the Fourier components of a density \(\rho_Q \) at the wavevectors \(Q = 2\pi f(m, n) \):

\[
T_x : \rho_Q \rightarrow e^{iQ \cdot \hat{x}} \rho_Q \quad T_y : \rho_Q \rightarrow e^{iQ \cdot \hat{y}} \rho_Q
\]
Properties of a quantum-fluctuating vortex weakly pinned by an impurity.

- Any impurity breaks translational invariance, and so chooses a preferred orientation in vortex “flavor space”. This chooses some linear combination among the ground states: \(|G\rangle = \sum_{m=0}^{q-1} c_m |m\rangle \)

- The expectation value of any observable \(\mathcal{O} \), \(\langle G|\mathcal{O}|G\rangle \) can be related to the matrix of overlaps \(\langle m|n\rangle \) which, in turn, are linearly related to quantities \(\rho_{mn} \) which transform under \(T_x, T_y \) like the Fourier components of a density \(\rho_Q \) at the wavevectors \(Q = 2\pi f(m,n) \):

\[
T_x : \rho_Q \rightarrow e^{iQ \cdot \hat{x}} \rho_Q \quad T_y : \rho_Q \rightarrow e^{iQ \cdot \hat{y}} \rho_Q
\]

- It can be shown that there is no linear combination \(|G\rangle \) for which all the \(\rho_{mn} \) are zero.
Properties of a quantum-fluctuating vortex weakly pinned by an impurity.

- Any pinned vortex exhibits modulations in “density”-like observables at the wavevectors Q over the region in which the vortex executes its quantum zero-point motion.
Vortex-induced LDOS of $\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+\delta}$ integrated from 1meV to 12meV at 4K

Vortices have halos with LDOS modulations at a period ≈ 4 lattice spacings

Using as input (i) the size of the “checkerboard halo” in STM as a measure of the zero-point motion radius of the vortex, and (ii) the forces between the vortices as determined from an estimate of the superfluid stiffness, we obtain as output an estimate of \(m_v \approx 2 - 9m_e \) and the vortex oscillation frequency \(\omega_v \approx 2 - 7 \text{ meV} \).
Influence of the quantum oscillating vortex on the LDOS

Resonant feature near the vortex oscillation frequency and no zero-bias peak.

Independent estimate of ω_v, gives a consistency check.
Conclusions

• Evidence that vortices in the cuprate superconductors carry a “flavor” index which encodes the spatial modulations of a proximate insulator. Quantum zero point motion of the vortex provides a natural explanation for LDOS modulations observed in STM experiments.

• Size of modulation halo allows estimate of the inertial mass of a vortex

• Direct detection of vortex zero-point motion may be possible in inelastic neutron or light-scattering experiments

• The quantum zero-point motion of the vortices influences the spectrum of the electronic quasiparticles, in a manner consistent with LDOS spectrum

• “Aharanov-Bohm” or “Berry” phases lead to surprising kinematic duality relations between seemingly distinct orders. These phase factors allow for continuous quantum phase transitions in situations where such transitions are forbidden by Landau-Ginzburg-Wilson theory.