1. Z₂ spin liquid on the square lattice

- Start with the semiclassical ground state of the J₁-J₂-J₃ antiferromagnet on the square lattice which has planar spiral antiferromagnetic order at the wavevector (Q₀).
- Quantum fluctuations across a continuous phase transition lead to a spin liquid state with Z₂ topological order and long-range Ising-nematic order
- This state can be efficiently described by Schwinger boson mean field theory,

\[H_{MF} = -\sum_{ij} (Q_{ij} c_{a\alpha} b_{i\alpha}^+ b_{j\beta} + h.c.) + \sum \lambda_i b_{i\alpha}^+ b_{i\alpha} \]

\[\langle \Psi^b \rangle = C_P \text{exp} \left[\sum_{ij} \xi_{ij} c_{a\alpha} b_{i\alpha}^+ b_{j\beta} \right] |0\rangle \]
- Excitations of the Z₂ spin liquid are:
 - (i) bosonic spinons \(z_0 \sim b_0^+ + b_1^+ \)
 - (ii) bosonic visons, which are Z₂ vortices in the \(Q_{ij} \).
- The bosonic spinons and visons are mutual semions.

2. From bosonic to fermionic spinons

Purely topological properties of Z₂ spin liquids:

- 4 kinds of excitations, \(e, m, \bar{e} \) and the trivial local excitation 1
- Have the following fusion rules:

\[
\begin{align*}
 e \times e &= m \times m = e \times \bar{e} = 1 \\
 1 \times 1 &= 1, e \times \bar{e} = e, m \times 1 = m, e \times e = e \\
 e \times m &= e \times \bar{e} = m \times e = e
\end{align*}
\]
- In the context of spin liquids, \(e \) and \(\bar{e} \) are bosonic and fermionic spinons, and \(m \) is the vison, 1 is a local excitation with integer spin

From the projective transformations of bosonic spinons (e particle) and the vison (the \(\bar{e} \) particle) under space-group symmetries of the antiferromagnet, we can determine the projective symmetry transformations of the fermionic spinons (\(e \) particle). Finally, we can determine the effective Hamiltonian of the fermionic spinons \(f_{ab} \).

Y.-M. Liu, G.Y. Cho, A. Vishwanath, 1403.0575

Symmetry relations for spin liquids on the rectangular lattice

<table>
<thead>
<tr>
<th>Symmetry relation</th>
<th>Bosonic PSG</th>
<th>Fermionic PSG</th>
<th>Vison PSG</th>
<th>Unit factor</th>
<th>Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P^z) (P^y) (P_T) (T_x) (T_y) (T_T)</td>
<td>(-1) (-1) (1) (1)</td>
<td>(-1) (1)</td>
<td>(-1)</td>
<td>(-1)</td>
<td>(-1)</td>
</tr>
<tr>
<td>(P^z) (P^y) (P_T) (T_x) (T_y) (T_T)</td>
<td>(-1) (-1) (1) (1)</td>
<td>(-1) (1)</td>
<td>(-1)</td>
<td>(-1)</td>
<td>(-1)</td>
</tr>
<tr>
<td>(P^z) (P^y) (P_T) (T_x) (T_y) (T_T)</td>
<td>(-1) (-1) (1) (1)</td>
<td>(-1) (1)</td>
<td>(-1)</td>
<td>(-1)</td>
<td>(-1)</td>
</tr>
<tr>
<td>(P^z) (P^y) (P_T) (T_x) (T_y) (T_T)</td>
<td>(-1) (-1) (1) (1)</td>
<td>(-1) (1)</td>
<td>(-1)</td>
<td>(-1)</td>
<td>(-1)</td>
</tr>
<tr>
<td>(P^z) (P^y) (P_T) (T_x) (T_y) (T_T)</td>
<td>(-1) (-1) (1) (1)</td>
<td>(-1) (1)</td>
<td>(-1)</td>
<td>(-1)</td>
<td>(-1)</td>
</tr>
<tr>
<td>(P^z) (P^y) (P_T) (T_x) (T_y) (T_T)</td>
<td>(-1) (-1) (1) (1)</td>
<td>(-1) (1)</td>
<td>(-1)</td>
<td>(-1)</td>
<td>(-1)</td>
</tr>
<tr>
<td>(P^z) (P^y) (P_T) (T_x) (T_y) (T_T)</td>
<td>(-1) (-1) (1) (1)</td>
<td>(-1) (1)</td>
<td>(-1)</td>
<td>(-1)</td>
<td>(-1)</td>
</tr>
<tr>
<td>(P^z) (P^y) (P_T) (T_x) (T_y) (T_T)</td>
<td>(-1) (-1) (1) (1)</td>
<td>(-1) (1)</td>
<td>(-1)</td>
<td>(-1)</td>
<td>(-1)</td>
</tr>
<tr>
<td>(P^z) (P^y) (P_T) (T_x) (T_y) (T_T)</td>
<td>(-1) (-1) (1) (1)</td>
<td>(-1) (1)</td>
<td>(-1)</td>
<td>(-1)</td>
<td>(-1)</td>
</tr>
</tbody>
</table>

3. FL* metal from a Z₂ spin liquid

- Dopants in a FL* metal are fermions, \(e_{ab} \), with charge \(+e \) and spin \(S = 1/2 \) (the green dimers). So there need not be any low energy fractionalized excitations.
- The dopants form a Fermi surface of size equal to the dopant density \(\rho \).
- The emergent gauge excitations of the \(Z_2 \) spin liquid, i.e., visons, survive in the FL* metal. Note that the green and blue dimers have the same topological properties as the undoped dimer model.
- The violation of the Luttinger theorem in the FL* metal is justified by the presence of emergent gauge excitations (i.e., topological order).

Recent evidence for pseudogap metal as FL* in YBCO
Proest-Tailleur-Lebegue collaboration, Bedoux et al. arXiv:1511.08162

4. Confinement transition of a FL* metal

- Confinement can be induced by the condensation of the bosonic bilinear \(B \sim f_{ab} f_{bc} \) or \(e_{ab} e_{bc} \).
- This is a “Higgs” transition leading to confinement because \(B \) carries electric \(Z_2 \) charge.
- The \(B \)-condensed (Higgs) state is a superconductor because the pairing of the \(f_{ab} \) fermions in the \(Z_2 \) spin liquid now induces a pairing of the \(e_{ab} \) fermions. This pairing can have \(d_{x^2-y^2} + s \) symmetry.
- The \(e_{ab} \) fermions have trivial space group transformations, and so the projective space group transformations of \(B \) can be deduced from those of the fermionic spinons \(f_{ab} \).
- In many cases, the projective transformations of \(B \) also imply density-wave order in the superconductor. This implies there can be a direct second-order transition from the FL* metal to a confining Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state.