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I.       Kondo lattice models



I. Doniach’s T=0 phase diagram for the Kondo lattice
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Luttinger’s theorem.
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Luttinger’s theorem on a d-dimensional lattice for the FL phase 

Let v0 be the volume of the unit cell of the ground state,
nT be the total number density of electrons per volume v0.

(need not be an integer)
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A “large” Fermi surface



Arguments for the Fermi surface volume of the FL phase 

Single ion Kondo effect implies  at low energiesKJ → ∞
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Fermi liquid of S=1/2 holes with hard-core repulsion
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Arguments for the Fermi surface volume of the FL phase 

Alternatively:
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Formulate Kondo lattice as the large U limit of the Anderson model
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Quantum critical point between SDW and FL phases 

Spin fluctuations of renormalized S=1/2 fermionic quasiparticles,        
(loosely speaking, TK remains finite at the quantum critical point)
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J.A. Hertz, Phys. Rev. B 14, 1165 (1976).

J. Mathon, Proc. R. Soc. London A, 306, 355 (1968);   
T.V. Ramakrishnan, Phys. Rev. B 10, 4014 (1974);   

T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism, Springer-Verlag, Berlin (1985)   
G. G. Lonzarich and L. Taillefer, J. Phys. C 18, 4339 (1985);   

A.J. Millis, Phys. Rev. B 48, 7183 (1993).

Characteristic paramagnon energy at finite temperature Γ(0,T) ~ T p with p > 1.

Arises from non-universal corrections to scaling, generated by          term.
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φ
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Quantum critical point between SDW and FL phases 

Critical point not described by strongly-coupled critical theory with universal 
dynamic response functions dependent on
In such a theory, paramagnon scattering amplitude would be determined by 
kBT alone, and not by value of microscopic paramagnon interaction term.

Bk Tω=

Additional singular corrections to quasiparticle self energy in d=2

Ar. Abanov and A. V. Chubukov Phys. Rev. Lett. 84, 5608 (2000);      
A. Rosch Phys. Rev. B 64, 174407 (2001).

S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992). 

(Contrary opinions: P. Coleman, Q. Si…………)
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Reconsider Doniach phase diagram 
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II. A new phase: FL*

This phase preserves spin rotation invariance, and has a Fermi 
surface of sharp electron-like quasiparticles.       

The state has “topological order” and associated neutral excitations. 
The topological order can be easily detected by the violation of

Luttinger’s theorem. It can only appear in dimensions d > 1

Precursors:  L. Balents and M. P. A. Fisher and C. Nayak, Phys. Rev. B 60, 1654, (1999);  
T. Senthil and M.P.A. Fisher, Phys. Rev. B 62, 7850 (2000);
S. Burdin, D. R. Grempel, and A. Georges, Phys. Rev. B 66, 045111 (2002).



It is more convenient to consider the Kondo-Heiseberg model:
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Work in the regime JH > JK

Determine the ground state of the quantum antiferromagnet defined by JH, 
and then couple to conduction electrons by JK



Ground states of quantum antiferromagnets
Begin with magnetically ordered states, and consider quantum 

transitions which restore spin rotation invariance

Two classes of ordered states:

(A) Collinear spins (B) Non-collinear spins
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(A) Collinear spins, bond order, and confinement

Quantum 
transition 
restoring 

spin 
rotation 

invariance

Bond-ordered state
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N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).
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(A) Collinear spins, bond order, and confinement

Quantum 
transition 
restoring 

spin 
rotation 

invariance

Bond-ordered state
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State of conduction electrons

Perturbation theory in JK is regular and so this state will be 
stable for finite JK

However, because nf=2 (per unit cell of ground state)
nT= nf+ nc= nc(mod 2), and Luttinger’s theorem is obeyed.

At JK= 0 the conduction electrons form a Fermi surface 
on their own with volume determined by nc

FL state with bond order



(B) Non-collinear spins, deconfined spinons, 
Z2 gauge theory, and topological order
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RVB state with free spinons

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991) – Z2 gauge theory                         
A.V. Chubukov, T. Senthil and S. Sachdev, Phys. Rev. Lett. 72, 2089 (1994).                       

P. Fazekas and P.W. Anderson, 
Phil Mag 30, 23 (1974).
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                                Order parameter space: 
Physical observables are invariant under the  gauge transformation a a

S Z
Z z z→ ±

Other approaches to a Z2 gauge theory:                                                  
R. Jalabert and S. Sachdev, Phys. Rev. B 44, 686 (1991);  S. Sachdev and M. Vojta,        

J. Phys. Soc. Jpn 69, Suppl. B, 1 (2000).                                                  
X. G. Wen, Phys. Rev. B 44, 2664 (1991).                                                  
T. Senthil and M.P.A. Fisher, Phys. Rev. B 62, 7850 (2000).                                                  
R. Moessner, S. L. Sondhi, and E. Fradkin, Phys. Rev. B 65, 024504 (2002).                                    
L. B. Ioffe, M.V. Feigel'man, A. Ioselevich, D. Ivanov, M. Troyer and G. Blatter,       

Nature 415, 503 (2002).



Vortices associated with π1(S3/Z2)=Z2

S3

(A) North pole

(B) South 
pole x

y
(A)

(B)

Can also consider vortex excitation in phase without 
magnetic order,                : vison( ) 0S =

JG
r

A paramagnetic phase with vison excitations suppressed has topological order. 
Suppression of visons also allows za quanta to propagate – these are the spinons.

State with spinons must have topological order



State of conduction electrons

Perturbation theory in JK is regular, and topological order is 
robust, and so this state will be stable for finite JK

So volume of Fermi surface is determined by
(nT -1)= nc(mod 2), and Luttinger’s theorem is violated.

At JK= 0 the conduction electrons form a Fermi surface 
on their own with volume determined by nc

The FL* state
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III. Lieb-Schultz-Mattis-Laughlin-Bonesteel-Affleck-
Yamanaka-Oshikawa flux-piercing arguments
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Unit cell ax , ay.
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coprime integers
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Adiabatic process commutes with the translation operator , so 
momentum  is conserved. 
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Effect of flux-piercing on a topologically ordered quantum paramagnet
N. E. Bonesteel,                      
Phys. Rev. B 40, 8954 (1989).     
G. Misguich, C. Lhuillier,         
M. Mambrini, and P. Sindzingre, 
Eur. Phys. J. B 26, 167 (2002).
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Effect of flux-piercing on a topologically ordered quantum paramagnet
N. E. Bonesteel,                      
Phys. Rev. B 40, 8954 (1989).     
G. Misguich, C. Lhuillier,         
M. Mambrini, and P. Sindzingre, 
Eur. Phys. J. B 26, 167 (2002).
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Flux piercing argument in Kondo lattice

Shift in momentum is carried by nT electrons, where 

nT = nf+ nc

In topologically ordered, state, momentum associated with nf=1 
electron is absorbed by creation of vison. The remaining 

momentum is absorbed by Fermi surface quasiparticles, which 
enclose a volume associated with nc electrons.

The FL* state.

cond-mat/0209144
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IV. Extended T=0 phase diagram for the Kondo lattice
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FL

SDW

Magnetic
frustration

FL*

SDW*

Hertz Gaussian paramagnon theory

Quantum criticality associated 
with the onset of topological 
order – described by interacting 
gauge theory. (Speaking loosely – TK
vanishes along this line)

• * phases have spinons with Z2 (d=2,3) or U(1) (d=3) gauge charges, and 
associated gauge fields.
• Fermi surface volume does not distinguish SDW and SDW* phases.



• Because of strong gauge fluctuations, U(1)-FL* may be unstable to 
U(1)-SDW* at low temperatures.
• Only phases at T=0: FL, SDW, U(1)-SDW*. 

IV. Extended T=0 phase diagram for the Kondo lattice
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Hertz Gaussian paramagnon theory

Quantum criticality associated 
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order – described by interacting 
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U(1) fractionalization (d=3)



• Because of strong gauge fluctuations, U(1)-FL* may be unstable to 
U(1)-SDW* at low temperatures.
• Only phases at T=0: FL, SDW, U(1)-SDW*. 
• Quantum criticality dominated by a T=0 FL-FL* transition.

U(1) fractionalization (d=3) Mean-field phase diagram

C/T ~ ln(1/T)

(cf. A. Georges)



Strongly coupled quantum criticality with a 
topological or spin-glass order parameter

Order parameter does not couple directly to simple observables

Dynamic spin susceptiblity
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Non-trivial universal scaling function which is a 
property of a bulk d-dimensional quantum field 

theory describing “hidden” order parameter.



• Superconductivity is generic between FL and Z2  FL* phases.
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Hertz Gaussian paramagnon theory

Superconductivity

Z2 fractionalization



Z2 fractionalization

Pairing of spinons in small Fermi surface state induces 
superconductivity at the confinement transition 

Small Fermi surface state can also exhibit a second-
order metamagnetic transition in an applied magnetic 

field, associated with vanishing of a spinon gap.

FL*

FL

Mean-field phase diagram
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Conclusions
• New phase diagram as a paradigm for clean metals with local moments. 
• Topologically ordered (*) phases lead to novel quantum criticality.
• New FL* allows easy detection of topological order by Fermi surface 

volume


