Disordered quantum matter without quasiparticles: the SYK models

34th Jerusalem Winter School in Theoretical Physics
New Horizons in Quantum Matter
December 27, 2016 - January 5, 2017

Subir Sachdev

Talk online: sachdev.physics.harvard.edu
Quantum matter without quasiparticles:

The Sachdev-Ye-Kitaev (SYK) models

Black holes with AdS$_2$ horizons

Fermi surface coupled to a gauge field

\[
\mathcal{L}[\Psi, a] = \Psi^\dagger \left(\partial_\tau - ia_\tau - \frac{(\nabla - i\vec{a})^2}{2m} - \mu \right) \Psi + \frac{1}{2g^2}(\nabla \times \vec{a})^2
\]
Quantum matter **without** quasiparticles:

The Sachdev-Ye-Kitaev (SYK) models

Black holes with AdS$_2$ horizons

Same low energy theory

Fermi surface coupled to a gauge field

\[\mathcal{L}[\Psi, a] = \Psi^\dagger \left(\partial_\tau - ia_\tau - \frac{(\nabla - i\vec{a})^2}{2m} - \mu \right) \Psi + \frac{1}{2g^2} (\nabla \times \vec{a})^2 \]
Quantum matter without quasiparticles:

The Sachdev-Ye-Kitaev (SYK) models

\[\tau_L = \frac{\hbar}{2\pi k_B T} \]

Black holes with AdS\(_2\) horizons

\[\tau_L = \frac{\hbar}{2\pi k_B T} \]

Fermi surface coupled to a gauge field

\[\mathcal{L}[\Psi, a] = \Psi^\dagger \left(\partial_\tau - ia_\tau - \frac{(\nabla - i\vec{a})^2}{2m} - \mu \right) \Psi + \frac{1}{2g^2}(\nabla \times \vec{a})^2 \]

\(\tau_L \): the Lyapunov time to reach quantum chaos
The Sachdev-Ye-Kitaev (SYK) model:

- A theory of a strange metal
- Dual theory of gravity on AdS$_2$
- Fastest possible quantum chaos

with $\tau_L = \frac{\hbar}{2\pi k_B T}$
Infinite-range model with quasiparticles

\[H = \frac{1}{(N)^{1/2}} \sum_{i,j=1}^{N} t_{ij} c_i^\dagger c_j + \ldots \]

\[c_i c_j + c_j c_i = 0 \quad , \quad c_i c_j^\dagger + c_j c_i^\dagger = \delta_{ij} \]

\[\frac{1}{N} \sum_{i} c_i^\dagger c_i = Q \]

\(t_{ij} \) are independent random variables with \(\overline{t_{ij}} = 0 \) and \(|t_{ij}|^2 = t^2 \)

Fermions occupying the eigenstates of a \(N \times N \) random matrix
Infinite-range model with quasiparticles

Feynman graph expansion in $t_{ij}..$, and graph-by-graph average, yields exact equations in the large N limit:

$$G(i\omega) = \frac{1}{i\omega + \mu - \Sigma(i\omega)} , \quad \Sigma(\tau) = t^2 G(\tau)$$

$$G(\tau = 0^-) = Q.$$

$G(\omega)$ can be determined by solving a quadratic equation.
Infinite-range model with quasiparticles

Now add weak interactions

\[H = \frac{1}{(N)^{1/2}} \sum_{i,j=1}^{N} t_{ij} c_i^\dagger c_j + \frac{1}{(2N)^{3/2}} \sum_{i,j,k,\ell=1}^{N} J_{ij;kl} c_i^\dagger c_j^\dagger c_k c_\ell \]

\(J_{ij;kl}\) are independent random variables with \(\overline{J_{ij;kl}} = 0\) and \(\overline{|J_{ij;kl}|^2} = J^2\). We compute the lifetime of a quasiparticle, \(\tau_\alpha\), in an exact eigenstate \(\psi_\alpha(i)\) of the free particle Hamiltonian with energy \(E_\alpha\). By Fermi’s Golden rule, for \(E_\alpha\) at the Fermi energy

\[
\frac{1}{\tau_\alpha} = \pi J^2 \rho_0^2 \int dE_\beta dE_\gamma dE_\delta f(E_\beta)(1 - f(E_\gamma))(1 - f(E_\delta)) \delta(E_\alpha + E_\beta - E_\gamma - E_\delta)
= \frac{\pi^3 J^2 \rho_0^2}{4} T^2
\]

where \(\rho_0\) is the density of states at the Fermi energy.

Fermi liquid state: Two-body interactions lead to a scattering time of quasiparticle excitations from in (random) single-particle eigenstates which diverges as \(\sim T^{-2}\) at the Fermi level.
SYK model

\[H = \frac{1}{(2N)^{3/2}} \sum_{i,j,k,\ell=1}^{N} J_{ij;kl} c_i^\dagger c_j^\dagger c_k c_\ell - \mu \sum_i c_i^\dagger c_i \]

\[c_i c_j + c_j c_i = 0 , \quad c_i c_j^\dagger + c_j^\dagger c_i = \delta_{ij} \]

\[Q = \frac{1}{N} \sum_i c_i^\dagger c_i \]

\(J_{ij;kl} \) are independent random variables with \(\bar{J}_{ij;kl} = 0 \) and \(|J_{ij;kl}|^2 = J^2 \)

\(N \to \infty \) yields critical strange metal.

S. Sachdev and J. Ye, PRL 70, 3339 (1993)

SYK model

Feynman graph expansion in J_{ij}, and graph-by-graph average, yields exact equations in the large N limit:

\[
G(i\omega) = \frac{1}{i\omega + \mu - \Sigma(i\omega)} \quad , \quad \Sigma(\tau) = -J^2G^2(\tau)G(-\tau)
\]

\[
G(\tau = 0^-) = Q.
\]

Low frequency analysis shows that the solutions must be gapless and obey

\[
\Sigma(z) = \mu - \frac{1}{A} \sqrt{z} + \ldots \quad , \quad G(z) = \frac{A}{\sqrt{z}}
\]

for some complex A. The ground state is a non-Fermi liquid, with a continuously variable density Q.

SYK and AdS$_2$

- Non-zero GPS entropy as $T \to 0$, $S(T \to 0) = NS_0 + \ldots$

Not a ground state degeneracy: due to an exponentially small (in N) many-body level spacing at all energies down to the ground state energy.

A. Georges, O. Parcollet, and S. Sachdev, PRB 63, 134406 (2001)
SYK and AdS$_2$

- Non-zero GPS entropy as $T \to 0$, $S(T \to 0) = NS_0 + \ldots$

 Not a ground state degeneracy: due to an exponentially small (in N) many-body level spacing at all energies down to the ground state energy.

- This entropy, and other dynamic correlators of the SYK models, imply that the SYK model is holographically dual to black holes with an AdS$_2$ horizon. The Bekenstein-Hawking entropy of the black hole equals NS_0:

 $$\text{GPS} = \text{BH}.$$

 A. Georges, O. Parcollet, and S. Sachdev, PRB **63**, 134406 (2001)

Einstein-Maxwell theory + cosmological constant

\[ds^2 = \frac{d\xi^2 - dt^2}{\xi^2} + d\vec{x}^2 \]

Gauge field: \(A = (E/\xi) dt \)

Mapping to SYK applies when temperature \(\ll 1/(\text{size of } T^2) \)

S. Sachdev, PRL 105, 151602 (2010)
SYK and AdS$_2$

\[
G(i\omega) = \frac{1}{i\omega + \mu - \Sigma(i\omega)} , \quad \Sigma(\tau) = -J^2 G^2(\tau) G(-\tau)
\]

\[
\Sigma(z) = \mu - \frac{1}{A} \sqrt{z} + \ldots , \quad G(z) = \frac{A}{\sqrt{z}}
\]

At frequencies $\ll J$, the $i\omega + \mu$ can be dropped, and without it equations are invariant under the reparametrization and gauge transformations

$$
\tau = f(\sigma)
$$

$$
G(\tau_1, \tau_2) = [f'(\sigma_1)f'(\sigma_2)]^{-1/4} \frac{g(\sigma_1)}{g(\sigma_2)} \tilde{G}(\sigma_1, \sigma_2)
$$

$$
\Sigma(\tau_1, \tau_2) = [f'(\sigma_1)f'(\sigma_2)]^{-3/4} \frac{g(\sigma_1)}{g(\sigma_2)} \tilde{\Sigma}(\sigma_1, \sigma_2)
$$

where $f(\sigma)$ and $g(\sigma)$ are arbitrary functions.
SYK and AdS$_2$

Let us write the large N saddle point solutions of S as

$$G_s(\tau_1 - \tau_2) \sim (\tau_1 - \tau_2)^{-1/2}$$
$$\Sigma_s(\tau_1 - \tau_2) \sim (\tau_1 - \tau_2)^{-3/2}.$$

The saddle point will be invariant under a reparamaterization $f(\tau)$ when choosing $G(\tau_1, \tau_2) = G_s(\tau_1 - \tau_2)$ leads to a transformed $\tilde{G}(\sigma_1, \sigma_2) = G_s(\sigma_1 - \sigma_2)$ (and similarly for Σ). It turns out this is true only for the SL(2, R) transformations under which

$$f(\tau) = \frac{a\tau + b}{c\tau + d}, \quad ad - bc = 1.$$

So the (approximate) reparametrization symmetry is spontaneously broken down to SL(2, R) by the saddle point.
Connections of SYK to gravity and AdS$_2$ horizons

- Reparameterization and gauge invariance are the ‘symmetries’ of the Einstein-Maxwell theory of gravity and electromagnetism.
- SL(2,R) is the isometry group of AdS$_2$.

$$ds^2 = (d\tau^2 + d\zeta^2)/\zeta^2$$ is invariant under

$$\tau' + i\zeta' = \frac{a(\tau + i\zeta) + b}{c(\tau + i\zeta) + d}$$

with $ad - bc = 1$.

SYK and AdS$_2$
Reparametrization and phase zero modes

We can write the path integral for the SYK model as

\[Z = \int \mathcal{D}G(\tau_1, \tau_1)\mathcal{D}\Sigma(\tau_1, \tau_2)e^{-NS[G, \Sigma]} \]

for a known action \(S[G, \Sigma] \). We find the saddle point, \(G_s, \Sigma_s \), and only focus on the “Nambu-Goldstone” modes associated with breaking reparameterization and U(1) gauge symmetries by writing

\[G(\tau_1, \tau_2) = [f'(\tau_1)f'(\tau_2)]^{1/4}G_s(f(\tau_1) - f(\tau_2))e^{i\phi(\tau_1) - i\phi(\tau_2)} \]

(and similarly for \(\Sigma \)). Then the path integral is approximated by

\[Z = \int \mathcal{D}f(\tau)\mathcal{D}\phi(\tau)e^{-NS_{\text{eff}}[f, \phi]} . \]

SYK and AdS$_2$

\[Z = \int \mathcal{D}f(\tau) \mathcal{D}\phi(\tau) e^{-N S_{\text{eff}}[f, \phi]} \cdot \]

Symmetry arguments, and explicit computations, show that the effective action is

\[S_{\text{eff}}[f, \phi] = \frac{K}{2} \int_0^{1/T} d\tau (\partial_\tau \phi + i(2\pi E T) \partial_\tau \epsilon)^2 - \frac{\gamma}{4\pi^2} \int_0^{1/T} d\tau \{ \tan(\pi T (\tau + \epsilon(\tau))), \tau \}, \]

where \(f(\tau) \equiv \tau + \epsilon(\tau) \), the couplings \(K \), \(\gamma \), and \(E \) can be related to thermodynamic derivatives and we have used the Schwarzian:

\[\{g, \tau\} \equiv \frac{g''''}{g'} - \frac{3}{2} \left(\frac{g''}{g'} \right)^2. \]

Specifically, an argument constraining the effective at \(T = 0 \) is

\[S_{\text{eff}} \left[f(\tau) = \frac{a\tau + b}{c\tau + d}, \phi(\tau) = 0 \right] = 0, \]

and this is origin of the Schwarzian.

Einstein-Maxwell theory + cosmological constant

\[ds^2 = \left(\frac{d\zeta^2 - dt^2}{\zeta^2} + d\vec{x}^2 \right) \]

Gauge field: \(A = (\mathcal{E}/\zeta)dt \)

\[\zeta = \infty \]

SYK and AdS\(^2\)

GPS entropy

Mapping to SYK applies when temperature \(\ll \frac{1}{\text{(size of } T^2)} \)

S. Sachdev, PRL 105, 151602 (2010)
Einstein-Maxwell theory + cosmological constant

\[ds^2 = \left(\frac{d\zeta^2 - dt^2}{\zeta^2} + d\vec{x}^2 \right) \]

Gauge field: \(A = (E/\zeta)dt \)

SYK and AdS

Same long-time effective action

\[AdS_2 \times \mathbb{T}^2 \]

charge density \(Q \)

\[\zeta = \infty \]

Mapping to SYK applies when temperature \(\ll 1/(\text{size of } \mathbb{T}^2) \)
One can also derive the thermodynamic properties from the large-N saddle point free energy:

$$F_N = \frac{1}{2} \log Pf (\tau) + \frac{1}{2} \frac{1}{Z} d\tau_1 d\tau_2 \mathcal{G}(\tau_1, \tau_2)$$

$$J^2 \mathcal{G}(\tau_1, \tau_2) \mathcal{C} \quad (8)$$

In the second line we write the free energy in a low temperature expansion, where $U \propto 0$. $0.0406 J$ is the ground state energy, $S_0 \propto 0.232$ is the zero temperature entropy [32, 4], and $T = c_v = \frac{\pi}{16} p^2 J \propto 0.396 J$ is the specific heat [11]. The entropy term can be derived by inserting the conformal saddle point solution (2) in the effective action. The specific heat can be derived from knowledge of the leading (in $1/J$) correction to the conformal saddle, but the energy requires the exact (numerical) finite J solution.

3 The generalized SYK model

In this section, we will present a simple way to generalize the SYK model to higher dimensions while keeping the solvable properties of the model in the large-N limit. For concreteness of the presentation, in this section we focus on a $(1+1)$-dimensional example, which describes a one-dimensional array of SYK models with coupling between neighboring sites. It should be clear how to generalize, and we will discuss more details of the generalization to arbitrary dimensions and generic graphs in section 6.

3.1 Definition of the chain model

Figure 1: A chain of coupled SYK sites: each site contains $N \gg 1$ fermion with SYK interaction. The coupling between nearest neighbor sites are four fermion interaction with two from each site.

Yingfei Gu, Xiao-Liang Qi, and D. Stanford, arXiv:1609.07832
R. Davison, Wenbo Fu, A. Georges, Yingfei Gu, K. Jensen, S. Sachdev, arXiv.1612.00849
Einstein-Maxwell theory + cosmological constant

\[ds^2 = \frac{d\zeta^2 - dt^2}{\zeta^2} + d\vec{x}^2 \]

Gauge field: \(A = (\mathcal{E}/\zeta)dt \)

Mapping to SYK applies when temperature \(\ll 1/(\text{size of } \mathbb{T}^2) \)

S. Sachdev, PRL 105, 151602 (2010)
Coupled SYK and AdS$_4$

AdS$_2 \times R^2$

$$ds^2 = \frac{(d\zeta^2 - dt^2)}{\zeta^2} + d\vec{x}^2$$

Gauge field: $A = (E/\zeta)dt$

Charge density Q

$S = \int d^4x \sqrt{-\hat{\mathcal{g}}} \left(\hat{\mathcal{R}} + 6/L^2 - \frac{1}{2} \sum_{i=1}^{2} (\partial \hat{\phi}_i)^2 - \frac{1}{4} \hat{F}_{\mu\nu} \hat{F}^{\mu\nu} \right)$,

Einstein-Maxwell-axion theory with saddle point $\hat{\phi}_i = kx_i$

leading to momentum dissipation
The coupled-SYK and AdS$_4$ models realize a disordered metal with no quasiparticle excitations. (a “strange metal”)

R. Davison, Wenbo Fu, A. Georges, Yingfei Gu, K. Jensen, S. Sachdev, arXiv.1612.00849
Quantum chaos:

- In both the SYK and holographic models, the growth of chaos is characterized by

\[
\left\langle \left| \{ c(x, t), c^\dagger(0, 0) \} \right|^2 \right\rangle \sim \exp \left(\frac{1}{\tau_L} \left(t - \frac{|x|}{v_B} \right) \right)
\]

where the Lyapunov time saturates the lower bound $\hbar/(2\pi k_B T)$ and the \texttt{BUTTERFLY VELOCITY} $v_B \sim T^{1/2}$.

- The thermal diffusivity, D_E is given exactly by

\[
D_E = v_B^2 \tau_L.
\]

There is no universal relationship between the charge diffusivity, D_c, and v_B.

R. Davison, Wenbo Fu, A. Georges, Yingfei Gu, K. Jensen, S. Sachdev, arXiv.1612.00849
Quantum chaos:

• In both the SYK and holographic models, the growth of chaos is characterized by

\[\langle |\{ c(x,t), c^\dagger(0,0)\}|^2 \rangle \sim \exp \left(\frac{1}{\tau_L} \left(t - \frac{|x|}{v_B} \right) \right) \]

where the Lyapunov time saturates the lower bound \(\hbar/(2\pi k_B T) \) and the butterfly velocity \(v_B \sim T^{1/2} \).

• The thermal diffusivity, \(D_E \) is given exactly by

\[D_E = v_B^2 \tau_L. \]

There is no universal relationship between the charge diffusivity, \(D_c \), and \(v_B \).

• Quantum chaos is intimately linked to the loss of phase coherence from electron-electron interactions. As the time derivative of the local phase is determined by the local energy, phase fluctuations and chaos are linked to interaction-induced energy fluctuations, and hence thermal diffusivity.
Coupled SYK and AdS$_4$

AdS$_2 \times \mathbb{R}^2$

\[ds^2 = \frac{(d\zeta^2 - dt^2)}{\zeta^2} + d\vec{x}^2 \]

Gauge field: \(A = (\mathcal{E}/\zeta)dt \)

\[S = \int d^4x \sqrt{-\hat{g}} \left(\hat{R} + \frac{6}{L^2} - \frac{1}{2} \sum_{i=1}^{2} (\partial \hat{\phi}_i)^2 - \frac{1}{4} \hat{F}_{\mu\nu} \hat{F}^{\mu\nu} \right), \]

Einstein-Maxwell-axion theory with saddle point \(\hat{\phi}_i = kx_i \) leading to momentum dissipation
Coupled SYK and AdS\(_4\)

Matching correlators for thermoelectric diffusion, and quantum chaos

\[\text{AdS}_2 \times R^2 \]

\[ds^2 = \frac{(d\zeta^2 - dt^2)}{\zeta^2} + d\vec{x}^2 \]

Gauge field: \(A = (E/\zeta)dt \)

\[\zeta = \infty \]

\[\zeta \]

\[\vec{x} \]

\[S = \int d^4x \sqrt{-\hat{g}} \left(\hat{R} + \frac{6}{L^2} - \frac{1}{2} \sum_{i=1}^{2} (\partial \hat{\phi}_i)^2 - \frac{1}{4} \hat{F}_{\mu\nu} \hat{F}^{\mu\nu} \right), \]

Einstein-Maxwell-axion theory with saddle point \(\hat{\phi}_i = k \vec{x}_i \)

leading to momentum dissipation
Quantum matter \textit{without} quasiparticles:

The Sachdev-Ye-Kitaev (SYK) models

Black holes with AdS$_2$ horizons

Fermi surface coupled to a gauge field

\[
\mathcal{L}[\Psi, a] = \Psi^\dagger \left(\partial_\tau - ia_\tau - \frac{(\nabla - i\vec{a})^2}{2m} - \mu \right) \Psi + \frac{1}{2g^2} (\nabla \times \vec{a})^2
\]
Quantum matter without quasiparticles:

The Sachdev-Ye-Kitaev (SYK) models

\[\tau_L = \frac{\hbar}{2\pi k_B T} \]

Black holes with AdS\(^2\) horizons

\[\tau_L = \frac{\hbar}{2\pi k_B T} \]

Fermi surface coupled to a gauge field

\[\mathcal{L}[\Psi, a] = \Psi^\dagger \left(\partial_\tau - ia_\tau - \frac{(\nabla - i\vec{a})^2}{2m} - \mu \right) \Psi + \frac{1}{2g^2} (\nabla \times \vec{a})^2 \]

\(\tau_L\): the Lyapunov time to reach quantum chaos
Quantum matter without quasiparticles:

The Sachdev-Ye-Kitaev (SYK) models

Fermi surface coupled to a gauge field

Black holes with AdS$_2$ horizons

\[\tau_L = \frac{\hbar}{2\pi k_B T} \]

\[v_B \sim T^{1/2} \]

Equation:

\[\mathcal{L}[\Psi, a] = \Psi^\dagger \left(\partial_\tau - ia_{\tau} - \frac{(\nabla - i\vec{a})^2}{2m} - \mu \right) \Psi + \frac{1}{2g^2} (\nabla \times \vec{a})^2 \]

τ_L: the Lyapunov time to reach quantum chaos

v_B: the "butterfly velocity" for the spatial propagation of chaos
Quantum matter without quasiparticles:

The Sachdev-Ye-Kitaev (SYK) models

\[\tau_L = \frac{\hbar}{2\pi k_B T} \]
\[v_B \sim T^{1/2} \]
\[D_E = v_B^2 \tau_L \]

Black holes with AdS\(_2\) horizons

\[\tau_L = \frac{\hbar}{2\pi k_B T} \]
\[v_B \sim T^{1/2} \]
\[D_E = v_B^2 \tau_L \]

Fermi surface coupled to a gauge field

\[\mathcal{L}[\Psi, a] = \Psi^\dagger \left(\partial_\tau - ia_\tau - \frac{(\nabla - i\vec{a})^2}{2m} - \mu \right) \Psi + \frac{1}{2g^2} (\nabla \times \vec{a})^2 \]

\(\tau_L \): the Lyapunov time to reach quantum chaos

\(v_B \): the “butterfly velocity” for the spatial propagation of chaos
Quantum matter without quasiparticles:

The Sachdev-Ye-Kitaev (SYK) models

Black holes with AdS$_2$ horizons

Fermi surface coupled to a gauge field

\[\mathcal{L}[\Psi, a] = \Psi^\dagger \left(\partial_\tau - ia_\tau - \frac{(\nabla - i\vec{a})^2}{2m} - \mu \right) \Psi + \frac{1}{2g^2}(\nabla \times \vec{a})^2 \]
Fermi surface coupled to a gauge field

\[\mathcal{L}[\Psi, a] = \Psi^\dagger \left(\partial_\tau - i a_\tau - \frac{(\nabla - i \vec{a})^2}{2m} - \mu \right) \Psi + \frac{1}{2g^2} (\nabla \times \vec{a})^2 \]
Fermi surface coupled to a gauge field

\[\mathcal{L}[\psi_\pm, a] = \]

\[\psi_+^\dagger \left(\partial_\tau - i\partial_x - \partial_y^2 \right) \psi_+ + \psi_-^\dagger \left(\partial_\tau + i\partial_x - \partial_y^2 \right) \psi_- \]

\[-a \left(\psi_+^\dagger \psi_+ - \psi_-^\dagger \psi_- \right) + \frac{1}{2g^2} \left(\partial_y a \right)^2 \]

Fermi surface coupled to a gauge field

Compute out-of-time-order correlator to diagnose quantum chaos

\[f(t) = \frac{1}{N^2} \theta(t) \sum_{i,j=1}^{N} \int d^2x \, \text{Tr} \left[e^{-\beta H/2} \{ \psi_i(x, t), \psi_j^\dagger(0) \} \right. \]

\[\times e^{-\beta H/2} \{ \psi_i(x, t), \psi_j^\dagger(0) \}^\dagger \right] \]

\[\sim \exp \left(\frac{(t - x/v_B)}{\tau_L} \right) \]
Fermi surface coupled to a gauge field

Compute out-of-time-order correlator to diagnose quantum chaos

\[i \rightarrow \begin{array}{c} f \\ i \end{array} = i \rightarrow \begin{array}{c} f \\ i \end{array} + i \rightarrow \begin{array}{c} f \\ i \end{array} + i \rightarrow \begin{array}{c} f \\ i \end{array} \]

Strongly-coupled theory with no quasiparticles and fast scrambling:

\[\tau_L \approx \frac{\hbar}{2.48 k_B T} \]
\[v_B \approx 4.1 \frac{N T^{1/3} v_F^{5/3}}{e^{4/3}} \frac{\gamma^{1/3}}{\gamma^{1/3}} \]
\[D_E \approx 0.42 v_B^2 \tau_L \]

\(N \) is the number of fermion flavors, \(v_F \) is the Fermi velocity, \(\gamma \) is the Fermi surface curvature, \(e \) is the gauge coupling constant.
Quantum matter without quasiparticles:

The Sachdev-Ye-Kitaev (SYK) models

Black holes with AdS$_2$ horizons

Fermi surface coupled to a gauge field

\[\mathcal{L}[\Psi, a] = \Psi^\dagger \left(\partial_\tau - ia_\tau - \frac{(\nabla - i\vec{a})^2}{2m} - \mu \right) \Psi + \frac{1}{2g^2} (\nabla \times \vec{a})^2 \]
Quantum matter **without** quasiparticles:

The Sachdev-Ye-Kitaev (SYK) models

\[\tau_L = \frac{\hbar}{2\pi k_B T} \]
\[v_B \sim T^{1/2} \]
\[D_E = v_B^2 \tau_L \]

Black holes with AdS\(_2\) horizons

\[\tau_L = \frac{\hbar}{2\pi k_B T} \]
\[v_B \sim T^{1/2} \]
\[D_E = v_B^2 \tau_L \]

Fermi surface coupled to a gauge field

\[\mathcal{L}[\Psi] = \left(\frac{\nabla - i\vec{a}}{2m} \right)^2 - \mu \right) \Psi + \frac{1}{2g^2} (\nabla \times \vec{a})^2 \]

\(\tau_L \): the Lyapunov time to reach quantum chaos

\(v_B \): the “butterfly velocity” for the spatial propagation of chaos
Quantum matter without quasiparticles:

- The Sachdev-Ye-Kitaev (SYK) models
- Black holes with AdS$_2$ horizons

Fermi surface coupled to a gauge field

\[\mathcal{L}[\Psi, a] = \Psi^\dagger \left(\partial_\tau - i a_\tau - \frac{(\nabla - i a)^2}{2m} - \mu \right) \Psi + \frac{1}{2g^2} (\nabla \times a)^2 \]

Thermal diffusivity, D_E:
\[D_E = \text{(universal number)} \times v_B^2 \tau_L \]
in all three models

τ_L: the Lyapunov time to reach quantum chaos
v_B: the “butterfly velocity” for the spatial propagation of chaos