1. “Conventional” phases of matter
 Metals, insulators, superconductors

2. Emergent gauge fields and topology
 Spin liquids with Rydberg atoms

3. Strange metals
 SYK model and emergent gravity
1. “Conventional” phases of matter
 Metals, insulators, superconductors

2. Emergent gauge fields and topology
 Spin liquids with Rydberg atoms

3. Strange metals
 SYK model and emergent gravity
Ordinary metals are shiny, and they conduct heat and electricity efficiently. Each atom donates electrons which are delocalized throughout the entire crystal.
Foundations of quantum many body theory:

1. Ground states connected adiabatically to independent electron states
Foundations of quantum many body theory:

1. Ground states connected adiabatically to independent electron states

2. Boltzmann-Landau theory of quasiparticles

Metals
Current flow with quasiparticles

Flowing quasiparticles scatter off each other in a typical scattering time \(\tau \)

This time is much longer than a limiting 'Planckian time' \(\frac{\hbar}{k_B T} \).

The long scattering time implies that quasiparticles are well-defined.
Band insulators

An even number of electrons per unit cell
Metals
Electrons pair, and the pairs undergo Bose-Einstein condensation
High temperature superconductors

$\text{YBa}_2\text{Cu}_3\text{O}_{6+x}$
Nd-Fe-B magnets, YBaCuO superconductor

Julian Hetel and Nandini Trivedi, Ohio State University
1. “Conventional” phases of matter
 - Metals, insulators, superconductors

2. Emergent gauge fields and topology
 - Spin liquids with Rydberg atoms

3. Strange metals
 - SYK model and emergent gravity
Mott insulator: Triangular lattice antiferromagnet

\[H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j \]

Nearest-neighbor model has non-collinear Neel order
Mott insulator: Triangular lattice antiferromagnet

\[H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j \]

Nearest-neighbor model has non-collinear Neel order
Mott insulator: Triangular lattice antiferromagnet

\[\frac{1}{\sqrt{2}} \left(|\uparrow\uparrow\rangle - |\downarrow\uparrow\rangle \right) \]

\[|G\rangle = \sum_{\mathcal{D}} c_{\mathcal{D}} |\mathcal{D}\rangle \]

\(\mathcal{D} \rightarrow \text{dimer covering of lattice} \)

Mott insulator: Triangular lattice antiferromagnet

\[= \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right) \]

\[|G\rangle = \sum_{D} c_{D} |D\rangle \]

\(D \rightarrow \) dimer covering of lattice

Mott insulator: Triangular lattice antiferromagnet

\[M = \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right) \]

\[|G\rangle = \sum_D c_D |D\rangle \]

\(D \rightarrow \) dimer covering of lattice

Mott insulator: Triangular lattice antiferromagnet

\[\frac{1}{\sqrt{2}} \left(|\uparrow \downarrow \rangle - |\downarrow \uparrow \rangle \right) \]

\[|G\rangle = \sum_{\mathcal{D}} c_{\mathcal{D}} |\mathcal{D}\rangle \]

\(\mathcal{D} \rightarrow \) dimer covering of lattice

Mott insulator: Triangular lattice antiferromagnet

\[= \frac{1}{\sqrt{2}} \left(\left\langle \uparrow \downarrow \right| - \left| \downarrow \uparrow \right\rangle \right) \]

\[|G\rangle = \sum_{\mathcal{D}} c_{\mathcal{D}} |\mathcal{D}\rangle \]

\(\mathcal{D} \rightarrow \text{dimer covering of lattice} \)

Mott insulator: Triangular lattice antiferromagnet

\[\frac{1}{\sqrt{2}} \left(| \uparrow \downarrow \rangle - | \downarrow \uparrow \rangle \right) \]

\[|G\rangle = \sum_\mathcal{D} c_\mathcal{D} |\mathcal{D}\rangle \]

\(\mathcal{D} \rightarrow \text{dimer covering of lattice} \)

Mott insulator: Triangular lattice antiferromagnet

non-collinear Néel state

Z_2 spin liquid with neutral $S = 1/2$ spinons and vison excitations

Excitations of the \mathbb{Z}_2 Spin liquid

Spinon: $S_z = 1/2$

e (boson) or ϵ (fermion) particle

$$\frac{1}{\sqrt{2}} \left(|\uparrow \downarrow \rangle - |\downarrow \uparrow \rangle \right)$$
Excitations of the Z_2 Spin liquid

Spinon: $S_z = 1/2$

e (boson) or ϵ (fermion) particle

\[
\frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)
\]
Excitations of the Z_2 Spin liquid

Spinon: $S_z = 1/2$

e (boson) or ϵ (fermion) particle

\[
= \frac{1}{\sqrt{2}} (|\uparrow \downarrow\rangle - |\downarrow \uparrow\rangle)
\]
Excitations of the \mathbb{Z}_2 Spin liquid

Spinon: $S_z = 1/2$

e (boson) or ϵ (fermion) particle

$$= \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$
Excitations of the \mathbb{Z}_2 Spin liquid

A vison m (boson) particle

$$|v\rangle = \sum_{\mathcal{D}} c_{\mathcal{D}} (-1)^{n_{\mathcal{D}}} |\mathcal{D}\rangle$$

$\mathcal{D} \rightarrow$ dimer covering of lattice

$n_{\mathcal{D}} \rightarrow$ number of dimers crossing red line

$$= \frac{1}{\sqrt{2}} \left(|\uparrow \downarrow\rangle - |\downarrow \uparrow\rangle\right)$$
Excitations of the \mathbb{Z}_2 Spin liquid

A vison m (boson) particle

$$= \frac{1}{\sqrt{2}} \left(\left| \uparrow \downarrow \right> - \left| \downarrow \uparrow \right> \right)$$

$$|v\rangle = \sum_{\mathcal{D}} c_\mathcal{D} (-1)^{n_\mathcal{D}} |\mathcal{D}\rangle$$

$\mathcal{D} \rightarrow$ dimer covering of lattice

$n_\mathcal{D} \rightarrow$ number of dimers crossing red line
Excitations of the Z_2 Spin liquid

A vison m (boson) particle

$$= \frac{1}{\sqrt{2}} \left(|↑↓\rangle - |↓↑\rangle \right)$$

$$|v\rangle = \sum_{\mathcal{D}} c_{\mathcal{D}} (-1)^{n_{\mathcal{D}}} |\mathcal{D}\rangle$$

$\mathcal{D} \rightarrow$ dimer covering of lattice

$n_{\mathcal{D}} \rightarrow$ number of dimers crossing red line
Excitations of the \mathbb{Z}_2 Spin liquid

A vison

m (boson) particle

$$\frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$

$$|v\rangle = \sum_{\mathcal{D}} c_{\mathcal{D}} (-1)^{n_{\mathcal{D}}} |\mathcal{D}\rangle$$

$\mathcal{D} \rightarrow$ dimer covering of lattice

$n_{\mathcal{D}} \rightarrow$ number of dimers crossing red line
Excitations of the \mathbb{Z}_2 Spin liquid

A vison

m (boson) particle

\[\frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \]

\[|v\rangle = \sum_{\mathcal{D}} c_{\mathcal{D}} (-1)^{n_{\mathcal{D}}} |\mathcal{D}\rangle \]

$\mathcal{D} \rightarrow$ dimer covering of lattice

$n_{\mathcal{D}} \rightarrow$ number of dimers crossing red line
Excitations of the \mathbb{Z}_2 Spin liquid

A vison

m (boson) particle

$$\psi = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$

$$|v\rangle = \sum_{\mathcal{D}} c_{\mathcal{D}} (-1)^{n_{\mathcal{D}}} |\mathcal{D}\rangle$$

$\mathcal{D} \rightarrow$ dimer covering of lattice

$n_{\mathcal{D}} \rightarrow$ number of dimers crossing red line
Excitations of the Z_2 Spin liquid

- A spinon adiabatically transported around a vison picks up a phase factor of -1: spinons and visons are mutual semions.

- A bound state of a spinon and a vison picks up a phase factor of -1 when exchanged with another bound state of a spinon and a vison:

 - The ϵ spinon (fermion) is a bound state of the e spinon (boson) and a vison ($\epsilon = e \times m$).

 - The e spinon (boson) is a bound state of the ϵ spinon (fermion) and a vison ($e = \epsilon \times m$).
Ground state degeneracy on the torus

Place insulator on a torus:
Obtain a degenerate orthogonal state by modifying the wavefunction on a “branch-cut” encircling the torus.

Place insulator on a torus:

Ground state degeneracy on the torus
Ground state degeneracy on the torus

\[\frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \]

Place insulator on a torus:

Number of dimers crossing “branch-cut” is conserved modulo 2: there are nearly degenerate states with odd and even dimer-cuts

D.J. Thouless, PRB 36, 7187 (1987)
Ground state degeneracy on the torus

\[= \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right) / \sqrt{2} \]

Place insulator on a torus:

Number of dimers crossing “branch-cut” is conserved modulo 2: there are nearly degenerate states with odd and even dimer-cuts

D.J. Thouless, PRB 36, 7187 (1987)
Ground state degeneracy on the torus:

\[\psi = (|\uparrow\downarrow\rangle - |\uparrow\uparrow\rangle) / \sqrt{2} \]

Number of dimers crossing “branch-cut” is conserved modulo 2: there are nearly degenerate states with odd and even dimer-cuts.

Place insulator on a torus:

D.J. Thouless, PRB 36, 7187 (1987)
Ground state degeneracy on the torus

\[= (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) / \sqrt{2} \]

Place insulator on a torus:

Number of dimers crossing “branch-cut” is conserved modulo 2: there are nearly degenerate states with odd and even dimer-cuts.

D.J. Thouless, PRB 36, 7187 (1987)
Ground state degeneracy on the torus

\[\frac{2}{\sqrt{2}} = (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) / \sqrt{2} \]

Place insulator on a torus:

Number of dimers crossing “branch-cut” is conserved modulo 2: there are nearly degenerate states with odd and even dimer-cuts

D.J. Thouless, PRB 36, 7187 (1987)
Ground state degeneracy on the torus

\[\frac{\left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right)}{\sqrt{2}} \]

Number of dimers crossing “branch-cut” is conserved modulo 2: there are nearly degenerate states with odd and even dimer-cuts.

D.J. Thouless, PRB 36, 7187 (1987)
Ground state degeneracy on the torus

\[\text{Number of dimers crossing "branch-cut" is conserved modulo 2: there are nearly degenerate states with odd and even dimer-cuts} \]

\[= (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) / \sqrt{2} \]

D.J. Thouless, PRB 36, 7187 (1987)
Ground state degeneracy on the torus

\[= (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) / \sqrt{2} \]

Number of dimers crossing “branch-cut” is conserved modulo 2: there are nearly degenerate states with odd and even dimer-cuts.

Place insulator on a torus:

D.J. Thouless, PRB 36, 7187 (1987)
Rydberg atoms

Optical tweezer (traps atom)

Excited state (large principle quantum number)

Ground state

\[H_{\text{Ryd}} = \sum_i \left[\frac{\Omega}{2} (|g\rangle\langle r| + |r\rangle\langle g|)_i - \Delta |r\rangle\langle r| \right] + \sum_{(i,j)} V_{|i-j|} \left(|r\rangle\langle r|_i \otimes |r\rangle\langle r|_j \right) \]

Ground state

\[V_{|i-j|} \sim |i-j|^{-6} \]

Fig: https://www.caltech.edu/about/news/quantum-innovations-achieved-using-alkaline-earth-atoms
Rydberg atoms on the square lattice: theory

R. Samajdar, Wen Wei Ho, H. Pichler, M. D. Lukin, S. Sachdev, PRL 124, 103601 (2020)
Rydberg atoms on the square lattice: experiment

First observation of Ising quantum phase transition in 2+1 dimensions
Rydberg atoms on site-kagome lattice: theory

(a) PBC

(b) Stripe: $\delta = 2.2$, $R_b = 1.2$

(c) Nematic: $\delta = 3.3$, $R_b = 1.7$

(d) Staggered: $\delta = 3.3$, $R_b = 2.1$

(e) $S_{\gamma N}$

Rydberg atoms on site-kagome lattice: theory

(a) PBC

(b) Stripe: $\delta = 2.2$, $R_b = 1.2$

(c) Nematic: $\delta = 3.3$, $R_b = 1.7$

(d) Staggered: $\delta = 3.3$, $R_b = 2.1$

(e) R_b/α

Probing Topological Spin Liquids on a Programmable Quantum Simulator

Rydberg atoms on the link-kagome lattice: experiment
1. “Conventional” phases of matter

 Metals, insulators, superconductors

2. Emergent gauge fields and topology

 Spin liquids with Rydberg atoms

3. Strange metals

 SYK model and emergent gravity
High temperature superconductors
Strange Metal

Temperature (K)

AF insulator

T_N

T^*

Superconductor

p_c

T_c

Hole doping, ρ
Table 1 | Slope of T-linear resistivity and Planckian limit in seven materials.

<table>
<thead>
<tr>
<th>Material</th>
<th>p</th>
<th>n (10^{27}m^{-3})</th>
<th>m^* (m_0)</th>
<th>Λ_1/d (Ω/K)</th>
<th>$h/(2e^2T_F)$ (Ω/K)</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi2212</td>
<td>$p = 0.23$</td>
<td>6.8</td>
<td>8.4 ± 1.6</td>
<td>8.0 ± 0.9</td>
<td>7.4 ± 1.4</td>
<td>1.1 ± 0.3</td>
</tr>
<tr>
<td>Bi2201</td>
<td>$p \approx 0.4$</td>
<td>3.5</td>
<td>7 ± 1.5</td>
<td>8 ± 2</td>
<td>8 ± 2</td>
<td>1.0 ± 0.4</td>
</tr>
<tr>
<td>LSCO</td>
<td>$p = 0.26$</td>
<td>7.8</td>
<td>9.8 ± 1.7</td>
<td>8.2 ± 1.0</td>
<td>8.9 ± 1.8</td>
<td>0.9 ± 0.3</td>
</tr>
<tr>
<td>Nd-LSCO</td>
<td>$p = 0.24$</td>
<td>7.9</td>
<td>12 ± 4</td>
<td>7.4 ± 0.8</td>
<td>10.6 ± 3.7</td>
<td>0.7 ± 0.4</td>
</tr>
<tr>
<td>PCCO</td>
<td>$x = 0.17$</td>
<td>8.8</td>
<td>2.4 ± 0.1</td>
<td>1.7 ± 0.3</td>
<td>2.1 ± 0.1</td>
<td>0.8 ± 0.2</td>
</tr>
<tr>
<td>LCCO</td>
<td>$x = 0.15$</td>
<td>9.0</td>
<td>3.0 ± 0.3</td>
<td>3.0 ± 0.45</td>
<td>2.6 ± 0.3</td>
<td>1.2 ± 0.3</td>
</tr>
<tr>
<td>TMTSF</td>
<td>$P = 11 \text{kbar}$</td>
<td>1.4</td>
<td>1.15 ± 0.2</td>
<td>2.8 ± 0.3</td>
<td>2.8 ± 0.4</td>
<td>1.0 ± 0.3</td>
</tr>
</tbody>
</table>

Electron scattering time τ in 7 different strange metals

$$\frac{1}{\tau} = \alpha \frac{k_BT}{\hbar}$$

Current flow without quasiparticles
The SYK model has a scale-invariant entanglement structure:
i.e. electrons are entangled at all distance and time scales

In one set of variables, it describes certain *strange metals*

In a *dual* set of variables it describes certain *black holes*

Sachdev, Ye (1993)

The Sachdev-Ye-Kitaev (SYK) model

Pick a set of random positions

Sachdev, Ye (1993); Kitaev (2015)
The SYK model

Sachdev, Ye (1993); Kitaev (2015)

Place electrons randomly on some sites
The SYK model

Place electrons randomly on some sites

Sachdev, Ye (1993); Kitaev (2015)
The SYK model

Place electrons randomly on some sites

Sachdev, Ye (1993); Kitaev (2015)
The SYK model

Entangle electrons pairwise randomly

Sachdev, Ye (1993); Kitaev (2015)
The SYK model

Entangle electrons pairwise randomly

Sachdev, Ye (1993); Kitaev (2015)
The SYK model

Sachdev, Ye (1993); Kitaev (2015)

Entangle electrons pairwise randomly
The SYK model

Sachdev, Ye (1993); Kitaev (2015)

Entangle electrons pairwise randomly
The SYK model

Sachdev, Ye (1993); Kitaev (2015)

Entangle electrons pairwise randomly
The SYK model

Entangle electrons pairwise randomly

Sachdev, Ye (1993); Kitaev (2015)
The SYK model

Entangle electrons pairwise randomly

Sachdev, Ye (1993); Kitaev (2015)
The SYK model

Entangle electrons pairwise randomly

Sachdev, Ye (1993); Kitaev (2015)
The SYK model

Entangle electrons pairwise randomly

Sachdev, Ye (1993); Kitaev (2015)
The SYK model

Entangle electrons pairwise randomly

Sachdev, Ye (1993); Kitaev (2015)
The SYK model

Entangle electrons pairwise randomly

Sachdev, Ye (1993); Kitaev (2015)
The SYK model

Entangle electrons pairwise randomly

Sachdev, Ye (1993); Kitaev (2015)
The SYK model

Entangle electrons pairwise randomly

Sachdev, Ye (1993); Kitaev (2015)
The SYK model

Entangle electrons pairwise randomly

Sachdev, Ye (1993); Kitaev (2015)
The SYK model

Sachdev, Ye (1993); Kitaev (2015)

Entangle electrons pairwise randomly
The SYK model

Sachdev, Ye (1993); Kitaev (2015)

Electron scattering time τ in the SYK model

$$\frac{1}{\tau} = \alpha \frac{k_B T}{\hbar}$$

Entangle electrons pairwise randomly
The SYK model has a scale-invariant entanglement structure: i.e. electrons are entangled at all distance and time scales.

In one set of variables, it describes certain *strange metals*.

In a *dual* set of variables it describes certain *black holes*.

Sachdev, Ye (1993)
Black Holes

Objects so dense that light is gravitationally bound to them.

Horizon radius $R = \frac{2GM}{c^2}$

G Newton’s constant, c velocity of light, M mass of black hole
For $M =$ earth’s mass, $R \approx 9 \text{ mm}$!
Quantum Entanglement across a black hole horizon
Quantum Entanglement across a black hole horizon

![Diagram showing quantum entanglement across a black hole horizon.](image-url)
Quantum Entanglement across a black hole horizon
Quantum Entanglement across a black hole horizon

There is quantum entanglement between the inside and outside of a black hole.
Quantum Entanglement across a black hole horizon

Hawking (1975) used other arguments to show that black hole horizons have a temperature.
(The entanglement reasoning: to an outside observer, the state of the electron inside the black hole cannot be known, and so the outside electron is in a random state.)
Black holes have an entropy and a temperature, T_H

The entropy is proportional to their surface area.

They relax to thermal equilibrium in a Planckian time $\sim \hbar/(k_B T_H)$.

Black holes are represented as a `hologram' by a quantum many-body system in one lower dimension.

Duality: a `change of variables' between the many-particle configurations and the metric of spacetime

Susskind, Maldacena…..
Black holes have an entropy and a temperature, T_H

- The entropy is proportional to their surface area.

- They relax to thermal equilibrium in a Planckian time $\sim \hbar/(k_B T_H)$.

The hologram of a black hole in d dimensions is a quantum many-particle system in $(d - 1)$ dimensions which relaxes to thermal equilibrium in a Planckian time $\sim \hbar/(k_B T)$.
Maxwell’s electromagnetism and Einstein’s general relativity allow black hole solutions with a net charge.

The near-horizon geometry of a charged black hole is one-dimensional (ζ).
Maxwell’s electromagnetism and Einstein’s general relativity allow black hole solutions with a net charge.

The hologram of the 1+1 dimensional gravity near the horizon of a charged black hole is the 0+1 dimensional SYK model.

Sachdev (2010); Kitaev (2015); Sachdev (2015); Maldacena, Stanford, Yang (2016); Moitra, Trivedi, Vishal (2018); Gaikwad, Joshi, Mandal, Wadia (2018); Iliesiu, Turaci (2020)
The SYK model has a scale-invariant entanglement structure: i.e. electrons are entangled at all distance and time scales.

In one set of variables, it describes certain *strange metals*.

In a dual set of variables it describes certain *black holes*.

Sachdev, Ye (1993)
1. “Conventional” phases of matter
 Metals, insulators, superconductors

2. Emergent gauge fields and topology
 Spin liquids with Rydberg atoms

3. Strange metals
 SYK model and emergent gravity