Quantum Criticality and Black Holes

Sean Hartnoll, Chris Herzog, Pavel Kovtun,
Markus Muller, Subir Sachdev, Dam Son

Talk online at http://sachdev.physics.harvard.edu
Quantum Entanglement

Hydrogen atom:

Hydrogen molecule:

\[= \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right) \]

Superposition of two electron states leads to non-local correlations between spins
Quantum Phase Transition

Change in the nature of entanglement in a macroscopic quantum system.

Familiar phase transitions, such as water boiling to steam, also involve macroscopic changes, but in thermal motion.
Quantum Criticality

The complex and non-local entanglement at the critical point between two quantum phases
Outline

1. Entanglement of spins
 Experiments on antiferromagnetic insulators

2. Black Hole Thermodynamics
 Connections to quantum criticality

3. Nernst effect in the cuprate superconductors
 Quantum criticality and dyonic black holes
Outline

1. Entanglement of spins
 Experiments on antiferromagnetic insulators

2. Black Hole Thermodynamics
 Connections to quantum criticality

3. Nernst effect in the cuprate superconductors
 Quantum criticality and dyonic black holes
The cuprate superconductors

Na-CCOC
- Cu
- Ca/Na
- O
- Cl

Temperature

hole concentration

AFI
PG
ECG
dSC

~2-3 %
~5-10 %
~15 %
Antiferromagnetic (Neel) order in the insulator

No entanglement of spins
Antiferromagnetic (Neel) order in the insulator

Excitations: 2 spin waves (Goldstone modes)
Weaken some bonds to induce spin entanglement in a new quantum phase.
Ground state is a product of pairs of entangled spins.

\[= \frac{1}{\sqrt{2}} (\uparrow \downarrow \rangle - \downarrow \uparrow \rangle) \]
Excitations: 3 $S=1$ triplons

$$= \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right)$$
Excitations: 3 $S=1$ triplons

\[= \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right) \]
Excitations: 3 $S=1$ triplons

$\frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right)$
Excitations: 3 $S=1$ triplons

$$= \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right)$$
Excitations: 3 $S=1$ triplons

$= \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right)$
Phase diagram as a function of the ratio of exchange interactions, λ

Quantum critical point with non-local entanglement in spin wavefunction
TlCuCl_3
Phase diagram as a function of the ratio of exchange interactions, λ

Pressure in TlCuCl$_3$
TlCuCl$_3$ at ambient pressure

FIG. 1. Measured neutron profiles in the a^*c^* plane of TlCuCl$_3$ for $i=(1.35,0,0)$, $ii=(0,0,3.15)$ [r.l.u]. The spectrum at $T=1.5$ K.

Observation of $3 \rightarrow 2$ low energy modes, emergence of new longitudinal mode in Néel phase, and vanishing of Néel temperature at the quantum critical point

Quantum phase transition with full square lattice symmetry

\[H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j ; \quad \vec{S}_i \rightarrow \text{spin operator with } S = 1/2 \]
Quantum phase transition with full square lattice symmetry

\[H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j + K \sum \text{four spin exchange} \]

Quantum phase transition with full square lattice symmetry

\[H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j + K \sum \text{four spin exchange} \]

Why should we care about the entanglement at an isolated critical point in the parameter space?
Quantum criticality

Conformal field theory (CFT) at $T > 0$

Temperature, T

Neel VBS

K/J
Outline

1. Entanglement of spins
 Experiments on antiferromagnetic insulators

2. Black Hole Thermodynamics
 Connections to quantum criticality

3. Nernst effect in the cuprate superconductors
 Quantum criticality and dyonic black holes
Outline

1. Entanglement of spins
 Experiments on antiferromagnetic insulators

2. Black Hole Thermodynamics
 Connections to quantum criticality

3. Nernst effect in the cuprate superconductors
 Quantum criticality and dyonic black holes
Black Holes

Objects so massive that light is gravitationally bound to them.
Black Holes

Objects so massive that light is gravitationally bound to them.

The region inside the black hole horizon is causally disconnected from the rest of the universe.

Horizon radius \(R = \frac{2GM}{c^2} \)
Black Hole Thermodynamics

Bekenstein and Hawking discovered astonishing connections between the Einstein theory of black holes and the laws of thermodynamics

Entropy of a black hole \(S = \frac{k_B A}{4 \ell_P^2} \)

where \(A \) is the area of the horizon, and

\[\ell_P = \sqrt{\frac{G \hbar}{c^3}} \] is the Planck length.

The Second Law: \(dA \geq 0 \)
Black Hole Thermodynamics

Bekenstein and Hawking discovered astonishing connections between the Einstein theory of black holes and the laws of thermodynamics.

Horizon temperature: \[4\pi k_B T = \frac{\hbar^2}{2M \ell_P^2}\]
AdS/CFT correspondence

The quantum theory of a black hole in a 3+1-dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions.
AdS/CFT correspondence

The quantum theory of a black hole in a 3+1-dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions.

Black hole temperature = temperature of quantum criticality

Strominger, Vafa
AdS/CFT correspondence

The quantum theory of a black hole in a 3+1-dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions.

Black hole entropy

= entropy of quantum criticality in 2+1 dimensions

Strominger, Vafa
AdS/CFT correspondence

The quantum theory of a black hole in a 3+1-dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions.

Dynamics of quantum criticality = waves in curved gravitational background

Maldacena
AdS/CFT correspondence

The quantum theory of a black hole in a 3+1-dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions.

"Friction" of quantum critical dynamics = black hole absorption rates

Son
Outline

1. Entanglement of spins
 Experiments on antiferromagnetic insulators

2. Black Hole Thermodynamics
 Connections to quantum criticality

3. Nernst effect in the cuprate superconductors
 Quantum criticality and dyonic black holes
Outline

1. Entanglement of spins
 Experiments on antiferromagnetic insulators

2. Black Hole Thermodynamics
 Connections to quantum criticality

3. Nernst effect in the cuprate superconductors
 Quantum criticality and dyonic black holes
Dope the antiferomagnets with charge carriers of density x by applying a chemical potential μ.

$Ca_{1.90}Na_{0.10}CuO_2Cl_2$

$Bi_{2.2}Sr_{1.8}Ca_{0.8}Dy_{0.2}Cu_2O_y$

$a_0 = 3.9\text{Å}$

$a_0 = 5.4\text{Å}$
Superconductor
Superconductor

Scanning tunnelling microscopy
STM studies of the underdoped superconductor

\[Ca_{1.90}Na_{0.10}CuO_2Cl_2 \]

\[Bi_{2.2}Sr_{1.8}Ca_{0.8}Dy_{0.2}Cu_2O_y \]

\[a_0 = 3.9\text{Å} \]

\[a_0 = 5.4\text{Å} \]
Topograph

$\text{Ca}_{1.90}\text{Na}_{0.10}\text{CuO}_2\text{Cl}_2$

$\text{Bi}_{2.2}\text{Sr}_{1.8}\text{Ca}_{0.8}\text{Dy}_{0.2}\text{Cu}_2\text{O}_y$

Intense Tunneling-Asymmetry (TA) variation are highly similar

$Ca_{1.90}Na_{0.10}CuO_2Cl_2$

$Bi_{2.2}Sr_{1.8}Ca_{0.8}Dy_{0.2}Cu_2O_y$

Topograph

$\text{Ca}_{1.90}\text{Na}_{0.10}\text{CuO}_2\text{Cl}_2$

$\text{Bi}_{2.2}\text{Sr}_{1.8}\text{Ca}_{0.8}\text{Dy}_{0.2}\text{Cu}_2\text{O}_y$

Tunneling Asymmetry (TA)-map at \(E = 150 \text{meV} \)

\[\text{Ca}_{1.90}\text{Na}_{0.10}\text{CuO}_2\text{Cl}_2 \quad \text{Bi}_{2.2}\text{Sr}_{1.8}\text{Ca}_{0.8}\text{Dy}_{0.2}\text{Cu}_2\text{O}_y \]

Tunneling Asymmetry (TA)-map at \(E=150\text{meV}\)

\[\text{Ca}_{1.90}\text{Na}_{0.10}\text{CuO}_2\text{Cl}_2\]

\[\text{Bi}_{2.2}\text{Sr}_{1.8}\text{Ca}_{0.8}\text{Dy}_{0.2}\text{Cu}_2\text{O}_y\]

Indistinguishable bond-centered TA contrast

with disperse $4a_0$-wide nanodomains

TA Contrast is at oxygen site (Cu-O-Cu bond-centered)

$\text{Ca}_{1.88}\text{Na}_{0.12}\text{CuO}_2\text{Cl}_2$, 4 K

R map (150 mV)

12 nm

$4a_0$

Evidence for a predicted valence bond supersolid

Superconductor

Scanning tunnelling microscopy
Use coupling g to induce a transition to a VBS insulator.
Use coupling g to induce a transition to a VBS insulator.
Proposed generalized phase diagram

Superconductor

Insulator $x=1/8$
Nernst measurements

Superconductor

Insulator \(x = 1/8 \)
Nernst experiment
Nernst measurements
Non-zero temperature phase diagram

- VBS Supersolid
- Superfluid
- Quantum critical
- VBS Insulator

Coulomb interactions
Non-zero temperature phase diagram

VBS Supersolid

Quantum-critical dynamics of vortices in a magnetic field, at generic density, and with impurities

Superfluid

VBS Insulator

Coulomb interactions
To the CFT of the quantum critical point, we add

- A chemical potential μ
- A magnetic field B

After the AdS/CFT mapping, we obtain the Einstein-Maxwell theory of a black hole with

- An electric charge
- A magnetic charge

A precise correspondence is found between general hydrodynamics of vortices near quantum critical points and solvable models of black holes with electric and magnetic charges

In the hydrodynamic regime, $\hbar \omega \ll k_B T$, we can use classical principles involving relaxation to local equilibrium to understand these perturbations.

The variables entering the hydrodynamic theory are

- the external magnetic field $F^{\mu \nu}$,

\[
F^{\mu \nu} = \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & B \\
0 & -B & 0
\end{pmatrix},
\]

- $T^{\mu \nu}$, the stress energy tensor,
- ρ, the local number density,
- P, the local pressure,
- σ_Q, a universal conductivity, which is the single transport co-efficient.

- J^μ, the current,
- ε, the local energy density,
- u^μ, the local velocity, and

The dependence of ε, P, σ_Q on T and v follows from simple scaling arguments.
Lorentz invariance and positivity of entropy production lead to the hydrodynamic equations of motion and constitutive relations:

Lorentz invariance and positivity of entropy production lead to the hydrodynamic equations of motion and constitutive relations:

\[
\partial_\mu J^\mu = 0 \\
\partial_\mu T^{\mu\nu} = F^{\mu\nu} J_\nu
\]

Lorentz invariance and positivity of entropy production lead to the hydrodynamic equations of motion and constitutive relations:

\[\partial_\mu J^\mu = 0 \]
\[\partial_\mu T^\mu_\nu = F^\mu_\nu J_\nu \]
\[T^\mu_\nu = (\varepsilon + P)u^\mu u^\nu + Pg^\mu_\nu \]
\[J^\mu = \rho u^\mu \]

Constitutive relations which follow from Lorentz transformation to moving frame

Lorentz invariance and positivity of entropy production lead to the hydrodynamic equations of motion and constitutive relations:

\[\partial_\mu J^\mu = 0 \]
\[\partial_\mu T^{\mu\nu} = F^{\mu\nu} J_\nu \]
\[T^{\mu\nu} = (\varepsilon + P)u^\mu u^\nu + Pg^{\mu\nu} \]
\[J^\mu = \rho u^\mu + \sigma_Q (g^{\mu\nu} + u^\mu u^\nu) \left(-\partial_\nu \mu + F_{\nu\lambda} u^\lambda \right) + \mu \frac{\partial_\mu T}{T} \]

Single dissipative term allowed by requirement of positive entropy production. There is only one independent transport co-efficient.

Lorentz invariance and positivity of entropy production lead to the hydrodynamic equations of motion and constitutive relations:

\[
\begin{align*}
\partial_\mu J^\mu & = 0 \\
\partial_\mu T^{\mu\nu} & = F^{\mu\nu} J_\nu + \frac{1}{\tau_{\text{imp}}} (\delta_\nu^{\mu} + u_\mu u_\nu) T^{\nu\gamma} u_\gamma \\
T^{\mu\nu} & = (\varepsilon + P) u_\mu u_\nu + P g^{\mu\nu} \\
J^\mu & = \rho u^\mu + \sigma_Q (g^{\mu\nu} + u_\mu u_\nu) \left[(\partial_\nu \mu + F_{\nu\lambda} u^\lambda) + \mu \frac{\partial_\mu T}{T} \right]
\end{align*}
\]

Momentum relaxation from impurities

Only input parameters

\[\hbar \nu = 47 \text{ meV } \text{Å} \]

\[\tau_{\text{imp}} \approx 10^{-12} \text{ s} \]

Output

\[\omega_c = 6.2 \text{GHz} \cdot \frac{B}{1 \text{T}} \left(\frac{35\text{K}}{T} \right)^3 \]
To the CFT of the quantum critical point, we add

- A chemical potential μ
- A magnetic field B

After the AdS/CFT mapping, we obtain the Einstein-Maxwell theory of a black hole with

- An electric charge
- A magnetic charge

A precise correspondence is found between general hydrodynamics of vortices near quantum critical points and solvable models of black holes with electric and magnetic charges

THEORETICAL PHYSICS

A black hole full of answers

Jan Zaanen

A facet of string theory, the currently favoured route to a ‘theory of everything’, might help to explain some properties of exotic matter phases — such as some peculiarities of high-temperature superconductors.

NATURE|Vol 448|30 August 2007
Conclusions

- Quantum phase transitions in antiferromagnets
- Exact solutions via black hole mapping have yielded first exact results for transport co-efficients in interacting many-body systems, and were valuable in determining general structure of hydrodynamics.
- Theory of VBS order and Nernst effect in curpates.