What is a “phase transition”?

A change in the collective properties of a macroscopic number of atoms
What is a “quantum phase transition”?

Change in the nature of entanglement in a macroscopic quantum system.
Entanglement

Hydrogen atom:

Hydrogen molecule:

\[= \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \]

Superposition of two electron states leads to non-local correlations between spins
Outline

Quantum phase transitions

1. Spin ordering in “Han purple”

2. Entanglement at the critical point: physical consequences at non-zero temperatures
 (a) Double-layer antiferromagnet
 (b) Superfluid-insulator transition
 (c) Hydrodynamics via mapping to quantum theory of black holes.

3. Entanglement of valence bonds

4. Conclusions
Outline

Quantum phase transitions

1. Spin ordering in “Han purple”

2. Entanglement at the critical point: physical consequences at non-zero temperatures
 (a) Double-layer antiferromagnet
 (b) Superfluid-insulator transition
 (c) Hydrodynamics via mapping to quantum theory of black holes.

3. Entanglement of valence bonds

4. Conclusions
Chinese Terracotta warriors (479-221 BC)

Han Purple – BaCuSi$_2$O$_6$

Each Cu$^{2+}$ has a single free electron spin

Han Purple – BaCuSi$_2$O$_6$

1. Spin ordering in “Han purple”

2. Entanglement at the critical point: physical consequences at non-zero temperatures
 (a) Double-layer antiferromagnet
 (b) Superfluid-insulator transition
 (c) Hydrodynamics via mapping to quantum theory of black holes.

3. Entanglement of valence bonds

4. Conclusions
Outline

Quantum phase transitions

1. Spin ordering in “Han purple”

2. Entanglement at the critical point: physical consequences at non-zero temperatures
 (a) Double-layer antiferromagnet
 (b) Superfluid-insulator transition
 (c) Hydrodynamics via mapping to quantum theory of black holes.

3. Entanglement of valence bonds

4. Conclusions
Outline

Quantum phase transitions

1. Spin ordering in “Han purple”

2. Entanglement at the critical point: physical consequences at non-zero temperatures
 (a) Double-layer antiferromagnet
 (b) Superfluid-insulator transition
 (c) Hydrodynamics via mapping to quantum theory of black holes.

3. Entanglement of valence bonds

4. Conclusions
Each Cu$^{2+}$ has a single free electron spin.

Vary the ratio J/J'.

Vary the ratio J/J'
Vary the ratio J/J'
Temperature, T

Vary the ratio J/J'

Spin wave
Vary the ratio J/J'
Temperature, T

Vary the ratio J/J'

Neel

Spin gap

"Triplet magnon"

Vary the ratio J/J'
Vary the ratio J/J'

Temperature, T

Neel

Spin gap
Temperature, T

Vary the ratio J/J'

Vary the ratio J/J'

Temperature, T

Quantum Criticality

Thermal excitations interact via a universal S matrix.

Vary the ratio J/J'

Temperature, T

Decoherence time $= \frac{\hbar}{k_B T}$

Vary the ratio J/J'

Quantum critical transport

Spin diffusion constant

\[D_s = \Theta \frac{c^2}{k_B T} \]

where \(\Theta \) is a universal number

Temperature, \(T \)

Vary the ratio \(J/J' \)

Outline

Quantum phase transitions

1. Spin ordering in “Han purple”

2. Entanglement at the critical point: physical consequences at non-zero temperatures
 (a) Double-layer antiferromagnet
 (b) Superfluid-insulator transition
 (c) Hydrodynamics via mapping to quantum theory of black holes.

3. Entanglement of valence bonds

4. Conclusions
Outline

Quantum phase transitions

1. Spin ordering in “Han purple”

2. Entanglement at the critical point: physical consequences at non-zero temperatures
 (a) Double-layer antiferromagnet
 (b) Superfluid-insulator transition
 (c) Hydrodynamics via mapping to quantum theory of black holes.

3. Entanglement of valence bonds

4. Conclusions
Trap for ultracold ^{87}Rb atoms
The Bose-Einstein condensate in a periodic potential

$$|G\rangle = \left| \begin{array}{c} \big| \big| O \big| \big|\end{array}\right| + \ldots 27 \text{ terms}$$

Lowest energy state for many atoms

$$|\text{BEC}\rangle = |G\rangle |G\rangle |G\rangle$$

$$= \left| \begin{array}{c} \big| \big| O \big| \big| O \big| \big| O \big| \big|\end{array}\right| + \left| \begin{array}{c} \big| \big| O \big| \big| O \big| \big| O \big| \big|\end{array}\right| + \left| \begin{array}{c} \big| \big| O \big| \big| O \big| \big|\end{array}\right| + \left| \begin{array}{c} \big| \big| O \big| \big| O \big| \big|\end{array}\right| + \left| \begin{array}{c} \big| \big| O \big| \big| O \big| \big|\end{array}\right| + \left| \begin{array}{c} \big| \big| O \big| \big| O \big| \big|\end{array}\right| + \left| \begin{array}{c} \big| \big| O \big| \big| O \big| \big|\end{array}\right| + \left| \begin{array}{c} \big| \big| O \big| \big| O \big| \big|\end{array}\right| + \left| \begin{array}{c} \big| \big| O \big| \big| O \big| \big|\end{array}\right| + \ldots 27 \text{ terms}$$

Large fluctuations in number of atoms in each potential well – *superfluidity* (atoms can “flow” without dissipation)
By tuning repulsive interactions between the atoms, states with multiple atoms in a potential well can be suppressed. The lowest energy state is then a \textit{Mott insulator} – it has negligible number fluctuations, and atoms cannot “flow”
Velocity distribution of 87Rb atoms

Velocity distribution of 87Rb atoms

Non-zero temperature phase diagram

Depth of periodic potential
Non-zero temperature phase diagram

Dynamics of the classical Gross-Pitaevski equation

Superfluid

Quantum critical

Insulator

Depth of periodic potential
Non-zero temperature phase diagram

Dilute Boltzmann gas of particle and holes

Superfluid

Insulator

Depth of periodic potential
Non-zero temperature phase diagram

No wave or quasiparticle description

Superfluid

Insulator

Depth of periodic potential
Resistivity of Bi films

Conductivity σ

$\sigma_{\text{Superconductor}} (T \to 0) = \infty$

$\sigma_{\text{Insulator}} (T \to 0) = 0$

$\sigma_{\text{Quantum critical point}} (T \to 0) \approx \frac{4e^2}{h}$

FIG. 1. Evolution of the temperature dependence of the sheet resistance $R(T)$ with thickness for a Bi film deposited onto Ge. Fewer than half of the traces actually acquired are shown. Film thicknesses shown range from 4.36 to 74.27 Å.
Non-zero temperature phase diagram

Depth of periodic potential
Non-zero temperature phase diagram

Collisionless-to hydrodynamic crossover of a conformal field theory (CFT)

Superfluid

Insulator

Depth of periodic potential

Non-zero temperature phase diagram

Needed: Cold atom experiments in this regime

Collisionless-to hydrodynamic crossover of a conformal field theory (CFT)

Superfluid

Insulator

Depth of periodic potential

Maldacena’s AdS/CFT correspondence relates the hydrodynamics of CFTs to the quantum gravity theory of the horizon of a black hole in Anti-de Sitter space.
Maldacena’s AdS/CFT correspondence relates the hydrodynamics of CFTs to the quantum gravity theory of the horizon of a black hole in Anti-de Sitter space.

Holographic representation of black hole physics in a 2+1 dimensional CFT at a temperature equal to the Hawking temperature of the black hole.
Hydrodynamics of a conformal field theory (CFT)

Waves of gauge fields in a curved background
The scattering cross-section of the thermal excitations is universal and so transport coefficients are universally determined by k_BT.

Charge diffusion constant

$$D_c = \Theta \frac{c^2}{k_BT}$$

Conductivity

$$\sigma = \Theta \frac{4e^2}{h}$$

For the (unique) CFT with a SU(N) gauge field and 16 supercharges, we know the exact diffusion constant associated with a global SO(8) symmetry:

Spin diffusion constant

\[D_s = \frac{3}{4\pi} \frac{c^2}{k_B T} \]

Spin conductivity

\[\sigma = \frac{N^{3/2}}{3\sqrt{2\pi}} \]

P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son, hep-th/0701036
Outline

Quantum phase transitions

1. Spin ordering in “Han purple”

2. Entanglement at the critical point: physical consequences at non-zero temperatures
 (a) Double-layer antiferromagnet
 (b) Superfluid-insulator transition
 (c) Hydrodynamics via mapping to quantum theory of black holes.

3. Entanglement of valence bonds

4. Conclusions
Outline

Quantum phase transitions

1. Spin ordering in “Han purple”

2. Entanglement at the critical point: physical consequences at non-zero temperatures
 (a) Double-layer antiferromagnet
 (b) Superfluid-insulator transition
 (c) Hydrodynamics via mapping to quantum theory of black holes.

3. Entanglement of valence bonds

4. Conclusions
Outline

Quantum phase transitions

1. Spin ordering in “Han purple”

2. Entanglement at the critical point: physical consequences at non-zero temperatures
 (a) Double-layer antiferromagnet
 (b) Superfluid-insulator transition
 (c) Hydrodynamics via mapping to quantum theory of black holes.

3. Entanglement of valence bonds

4. Conclusions
Outline

Quantum phase transitions

1. Spin ordering in “Han purple”

2. Entanglement at the critical point: physical consequences at non-zero temperatures
 (a) Double-layer antiferromagnet
 (b) Superfluid-insulator transition
 (c) Hydrodynamics via mapping to quantum theory of black holes.

3. Entanglement of valence bonds

4. Conclusions
Resonance in benzene leads to a symmetric configuration of valence bonds

(F. Kekulé, L. Pauling)
Resonance in benzene leads to a symmetric configuration of valence bonds

(F. Kekulé, L. Pauling)
Resonance in benzene leads to a symmetric configuration of valence bonds

(F. Kekulé, L. Pauling)
Temperature-doping phase diagram of the cuprate superconductors
Antiferromagnetic (Neel) order in the insulator

\[H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j; \quad \vec{S}_i \Rightarrow \text{spin operator with } S=1/2 \]
Induce formation of valence bonds by e.g. ring-exchange interactions

\[H = J \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + K \sum \text{4-spin exchange} \]

A. W. Sandvik, cond-mat/0611343
As in H_2 and benzene, each electron wants to pair up with another electron and form a valence bond

$$\frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$
\[\frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\uparrow\uparrow\rangle \right) \]
\[
\frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)
\]
\[
\frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)
\]
\[\frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \]
Entangled liquid of valence bonds (Resonating valence bonds – RVB)

$$\frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right)$$

Valence bond solid (VBS)

Valence bond solid (VBS)

\[\frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right) \]

Valence bond solid (VBS)

More possibilities for entanglement with nearby states

\[
\frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right)
\]

Valence bond solid (VBS)
More possibilities for entanglement with nearby states

Valence bond solid (VBS)
More possibilities for entanglement with nearby states

\[
\frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right)
\]

Valence bond solid (VBS)

More possibilities for entanglement with nearby states

\[
\frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)
\]

N. Read and S. Sachdev,

Valence bond solid (VBS)
More possibilities for entanglement with nearby states

\[\frac{1}{\sqrt{2}} (|↑↓⟩ - |↓↑⟩) \]

Valence bond solid (VBS)
More possibilities for entanglement with nearby states

\[
\frac{1}{\sqrt{2}} (|↑↓⟩ - |↓↑⟩)
\]

Valence bond solid (VBS)
More possibilities for entanglement with nearby states

\[\frac{1}{\sqrt{2}} \left(|↑↓⟩ - |↓↑⟩ \right) \]

N. Read and S. Sachdev,
Excitations of the RVB liquid

\[\frac{1}{\sqrt{2}} \left(|↑↓⟩ - |↓↑⟩ \right) \]
Excitations of the RVB liquid

\[\frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \]
Excitations of the RVB liquid

\[\frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \]
Excitations of the RVB liquid

\[
\frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right)
\]
Excitations of the RVB liquid

Electron *fractionalization*:
Excitations carry spin $S=1/2$ but no charge

$$ = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$
Excitations of the VBS

\[\frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \]
Excitations of the VBS

\[
\frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)
\]
Excitations of the VBS

\[
\frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)
\]
Excitations of the VBS

\[\frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \]
Excitations of the VBS

Free spins are unable to move apart:
no fractionalization, but confinement

$$\frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right)$$
Phase diagram of square lattice antiferromagnet

\[H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j + K \sum_\square \text{4-spin exchange} \]

A. W. Sandvik, cond-mat/0611343
Phase diagram of square lattice antiferromagnet

\[H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j + K \sum_{\square} \text{4-spin exchange} \]

Phase diagram of square lattice antiferromagnet

RVB physics appears at the quantum critical point which has fractionalized excitations: “deconfined criticality”

\[H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j + K \sum_{\square} \text{4-spin exchange} \]

Second-order critical point described by

\[S_{\text{critical}} = \int d^2x d\tau \left[|(\partial_\mu - i A_\mu) z_\alpha|^2 + r |z_\alpha|^2 + \frac{\mu}{2} \left(|z_\alpha|^2 \right)^2 + \frac{1}{4e^2} (\partial_\mu A_\nu - \partial_\nu A_\mu)^2 \right] \]

at its critical point \(r = r_c \), where \(z_\alpha \) are the neutral \(S = 1/2 \) spinons and \(A_\mu \) is a non-compact \(U(1) \) gauge field.

Quantum criticality of fractionalized excitations
Phases of nuclear matter
Observation of a valence bond solid (VBS)

$X[Pd(dmit)_2]_2$

One free electron spin on each vertex of a triangular lattice

Observation of a valence bond solid (VBS)

Pressure-temperature phase diagram of ETMe$_3$P[Pd(dmit)$_2$]$_2$

Y. Shimizu et al. cond-mat/0612545
Temperature-doping phase diagram of the cuprate superconductors
Temperature-doping phase diagram of the cuprate superconductors

Deconfined quantum critical point (DQCP)

Neel order

VBS order
Temperature-doping phase diagram of the cuprate superconductors

Neel order

Neel order + d-wave superconductivity

DQCP

“Superconducting algebraic holon liquid”

d-wave superconductivity

Hole concentration

R.K. Kaul, Y.-B. Kim, S. Sachdev and T. Senthil, to appear
Temperature-doping phase diagram of the cuprate superconductors

Quantum critical phases with enhanced VBS correlations

Neel order

Neel order + d-wave superconductivity

DQCP

“Superconducting algebraic holon liquid”

d-wave superconductivity

Hole concentration

R.K. Kaul, Y.-B. Kim, S. Sachdev and T. Senthil, to appear
Temperature-doping phase diagram of the cuprate superconductors

STM in zero field
“Glassy” Valence Bond Solid (VBS)

Temperature-doping phase diagram of the cuprate superconductors

“Glassy” Valence Bond Solid (VBS)
Outline

Quantum phase transitions

1. Spin ordering in “Han purple”

2. Entanglement at the critical point: physical consequences at non-zero temperatures
 (a) Double-layer antiferromagnet
 (b) Superfluid-insulator transition
 (c) Hydrodynamics via mapping to quantum theory of black holes.

3. Entanglement of valence bonds

4. Conclusions
Outline

Quantum phase transitions

1. Spin ordering in “Han purple”

2. Entanglement at the critical point: physical consequences at non-zero temperatures
 (a) Double-layer antiferromagnet
 (b) Superfluid-insulator transition
 (c) Hydrodynamics via mapping to quantum theory of black holes.

3. Entanglement of valence bonds

4. Conclusions
Conclusions

• Studies of new materials and trapped ultracold atoms are yielding new quantum phases, with novel forms of quantum entanglement.

• Some materials are of technological importance: e.g. high temperature superconductors.

• Real-world studies on the entanglement of large numbers of qubits: insights may be important for quantum cryptography and quantum computing.

• Tabletop “laboratories for the entire universe”: quantum mechanics of black holes, quark-gluon plasma, neutrons stars, and big-bang physics.