Modern phases of quantum matter

Not adiabatically connected to independent electron states:

many-particle quantum entanglement
“Complex entangled” states of quantum matter in d spatial dimensions

Useful classification is provided by nature of excitations with vanishing energy:

1. Gapped systems without zero energy excitations

2. “Relativistic” systems with zero energy excitations at isolated points in momentum space

3. “Compressible” systems with zero energy excitations on $d-1$ dimensional surfaces in momentum space.
“Complex entangled” states of quantum matter in d spatial dimensions

Gapped quantum matter
 Spin liquids, quantum Hall states

Conformal quantum matter
 Graphene, ultracold atoms, antiferromagnets

Compressible quantum matter
 Graphene, strange metals in high temperature superconductors, spin liquids
“Complex entangled” states of quantum matter in \(d \) spatial dimensions

Gapped quantum matter

Spin liquids, quantum Hall states

Conformal quantum matter

Graphene, ultracold atoms, antiferromagnets

Compressible quantum matter

Graphene, strange metals in high temperature superconductors, spin liquids
“Complex entangled” states of quantum matter in d spatial dimensions

Gapped quantum matter

Spin liquids, quantum Hall states

Conformal quantum matter

Graphene, ultracold atoms, antiferromagnets

Compressible quantum matter

Graphene, strange metals in high temperature superconductors, spin liquids
“Complex entangled” states of quantum matter in d spatial dimensions

Gapped quantum matter
- Spin liquids, quantum Hall states

Conformal quantum matter
- Graphene, ultracold atoms, antiferromagnets

Compressible quantum matter
- Graphene, strange metals in high temperature superconductors, spin liquids

Topological field theory

Conformal field theory

?
“Complex entangled” states of quantum matter in d spatial dimensions

Gapped quantum matter
Spin liquids, quantum Hall states

Conformal quantum matter
Graphene, ultracold atoms, antiferromagnets

Compressible quantum matter
Graphene, strange metals in high temperature superconductors, spin liquids
Band insulators

An even number of electrons per unit cell
Mott insulator

Emergent excitations

An odd number of electrons per unit cell but electrons are localized by Coulomb repulsion; state has long-range entanglement
Mott insulator: Kagome antiferromagnet

\[H = J \sum_{\langle ij \rangle} \mathbf{\hat{S}}_i \cdot \mathbf{\hat{S}}_j \]
Mott insulator: Kagome antiferromagnet

\[H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j \]

\[\bigcirc \bigcirc = \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right) \]

Mott insulator: Kagome antiferromagnet

\[H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j \]

\[\frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right) \]

Mott insulator: Kagome antiferromagnet

\[H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j \]

\[\bullet \bullet = \frac{1}{\sqrt{2}} (\uparrow\downarrow - \downarrow\uparrow) \]

Mott insulator: Kagome antiferromagnet

\[H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j \]

\[\text{P. Fazekas and P. W. Anderson, } Philos. Mag. \text{ 30, 23 (1974).} \]
Mott insulator: Kagome antiferromagnet

\[H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j \]

\[= \frac{1}{\sqrt{2}} \left(\langle \uparrow \downarrow \rangle - \langle \downarrow \uparrow \rangle \right) \]

Mott insulator: Kagome antiferromagnet

\[H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j \]

\[\bullet \bullet = \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right) \]

Mott insulator: Kagome antiferromagnet

\[H = J \sum_{ij} \vec{S}_i \cdot \vec{S}_j \]

\[\bullet \bullet = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \]

Quantum “disordered” state with exponentially decaying spin correlations.

Mott insulator: kagome antiferromagnet

Quantum “disordered” state with exponentially decaying spin correlations.

Spin liquid with topological features described by a \mathbb{Z}_2 gauge theory, or (equivalently) a doubled Chern-Simons field theory.

Entanglement in the \mathbb{Z}_2 spin liquid ground state

$|\Psi\rangle \Rightarrow$ Ground state of entire system,

$$\rho = |\Psi\rangle\langle\Psi|$$

$\rho_A = \text{Tr}_B \rho = \text{density matrix of region } A$

Entanglement entropy $S_E = -\text{Tr} (\rho_A \ln \rho_A)$
Entanglement in the \mathbb{Z}_2 spin liquid ground state

Entanglement entropy of a band insulator:

\[S_E = aP - b \exp(-cP) \]

where P is the surface area (perimeter) of the boundary between A and B.
Entanglement entropy of a \mathbb{Z}_2 spin liquid:

$$S_E = aP - \ln(2)$$

where P is the surface area (perimeter) of the boundary between A and B.

Entanglement entropy of a \mathbb{Z}_2 spin liquid:

$$S_E = aP - \ln(4)$$

where P is the surface area (perimeter) of the boundary between A and B.

Entanglement in the \mathbb{Z}_2 spin liquid ground state

Entanglement entropy of a \mathbb{Z}_2 spin liquid:

$$S_E = aP - \ln(2)$$

where P is the surface area (perimeter) of the boundary between A and B.

Kagome antiferromagnet

Hong-Chen Jiang, Z. Wang, and L. Balents, arXiv:1205.4289

Friday, June 8, 2012
Kagome antiferromagnet: evidence for spinons

Young Lee,
APS meeting, March 2012
“Complex entangled” states of quantum matter in \(d \) spatial dimensions

Gapped quantum matter
 Spin liquids, quantum Hall states

Conformal quantum matter
 Graphene, ultracold atoms, antiferromagnets

Compressible quantum matter
 Graphene, strange metals in high temperature superconductors, spin liquids
“Complex entangled” states of quantum matter in d spatial dimensions

Gapped quantum matter

Spin liquids, quantum Hall states

Conformal quantum matter

Graphene, ultracold atoms, antiferromagnets

Compressible quantum matter

Graphene, strange metals in high temperature superconductors, spin liquids
Spinning electrons localized on a square lattice

\[H = \sum_{\langle ij \rangle} J_{ij} \vec{S}_i \cdot \vec{S}_j \]

Examine ground state as a function of \(\lambda \)
Quantum critical point described by a CFT3 (O(3) Wilson-Fisher)

\[\lambda = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \]
Entanglement at the quantum critical point

- Entanglement entropy obeys $S_E = aP - \gamma$, where γ is a shape-dependent universal number associated with the CFT3.

Entanglement at the quantum critical point

- Entanglement entropy obeys $S_E = aP - \gamma$, where γ is a shape-dependent universal number associated with the CFT3.

- When A is a circle, $e^{-\gamma} = \text{partition function of CFT3 on } S^3$.

Key idea: Implement \(r \) as an extra dimension, and map to a local theory in \(d + 2 \) spacetime dimensions.
For a relativistic CFT in d spatial dimensions, the metric in the holographic space is uniquely fixed by demanding the following scale transformation ($i = 1 \ldots d$)

$$x_i \rightarrow \zeta x_i \ , \ t \rightarrow \zeta t \ , \ ds \rightarrow ds$$
For a relativistic CFT in d spatial dimensions, the metric in the holographic space is uniquely fixed by demanding the following scale transformation ($i = 1 \ldots d$)

$$x_i \rightarrow \zeta x_i \quad , \quad t \rightarrow \zeta t \quad , \quad ds \rightarrow ds$$

This gives the unique metric

$$ds^2 = \frac{1}{r^2} (-dt^2 + dr^2 + dx_i^2)$$

Reparametrization invariance in r has been used to the prefactor of dx_i^2 equal to $1/r^2$. This fixes $r \rightarrow \zeta r$ under the scale transformation. This is the metric of the space AdS_{d+2}.
AdS/CFT correspondence

AdS$_4$

$\mathbb{R}^{2,1}$

Minkowski

CFT$_3$
AdS/CFT correspondence

AdS_4

$\mathbb{R}^{2,1}$

Minkowski

CFT$_3$

r
AdS/CFT correspondence

AdS$_4$

\[R^{2,1} \]

Minkowski

CFT3

- Minimal surface area measures entanglement entropy

\[S_E = aP - \gamma, \text{ where } \gamma \text{ is a shape-dependent universal number.} \]

“Complex entangled” states of quantum matter in d spatial dimensions

Gapped quantum matter
Spin liquids, quantum Hall states

Conformal quantum matter
Graphene, ultracold atoms, antiferromagnets

Compressible quantum matter
Graphene, strange metals in high temperature superconductors, spin liquids
“Complex entangled” states of quantum matter in d spatial dimensions

Gapped quantum matter
 Spin liquids, quantum Hall states

Conformal quantum matter
 Graphene, ultracold atoms, antiferromagnets

Compressible quantum matter
 Graphene, strange metals in high temperature superconductors, spin liquids
• Consider an infinite, continuum, translationally-invariant quantum system with a globally conserved U(1) charge Q (the “electron density”) in spatial dimension $d > 1$.

• Describe zero temperature phases where $d\langle Q\rangle/d\mu \neq 0$, where μ (the “chemical potential”) which changes the Hamiltonian, H, to $H – \mu Q$.
Conformal quantum matter
Compressible quantum matter
Compressible quantum matter

A. Field theory

B. Holography
The Fermi liquid

\[\mathcal{L} = f_\sigma^\dagger \left(\partial_\tau - \frac{\nabla^2}{2m} - \mu \right) f_\sigma \]

+ short-range 4-Fermi terms
The Fermi liquid

\[\mathcal{L} = f_\sigma^\dagger \left(\partial_\tau - \frac{\nabla^2}{2m} - \mu \right) f_\sigma \]

+ short-range 4-Fermi terms

- Area enclosed by the Fermi surface \(\mathcal{A} = Q \), the fermion density
The Fermi liquid

\[\mathcal{L} = f_\sigma^\dagger \left(\partial_\tau - \frac{\nabla^2}{2m} - \mu \right) f_\sigma \]

+ short-range 4-Fermi terms

- Area enclosed by the Fermi surface \(\mathcal{A} = Q \), the fermion density

- Particle and hole of excitations near the Fermi surface with energy \(\omega \sim |q| \).
The Fermi liquid

\[\mathcal{L} = f^{\dagger}_{\sigma} \left(\partial_{\tau} - \frac{\nabla^2}{2m} - \mu \right) f_{\sigma} \]

+ short-range 4-Fermi terms

- Fermion Green’s function \(G_f^{-1} = \omega - v_F q + i \mathcal{O}(\omega^2, q^2) \).
The Fermi liquid

\[\mathcal{L} = f_\sigma^\dagger \left(\partial_\tau - \frac{\nabla^2}{2m} - \mu \right) f_\sigma + \text{short-range 4-Fermi terms} \]

- Fermion Green’s function \(G_f^{-1} = \omega - v_F q + i\mathcal{O}(\omega^2, q^2) \).
- The phase space density of fermions is effectively one-dimensional, so the entropy density \(S \sim T^{d_{\text{eff}}} \) with \(d_{\text{eff}} = 1 \).
Logarithmic violation of “area law”: \(S_E = \frac{1}{12} \left(k_F P \right) \ln(k_F P) \)

for a circular Fermi surface with Fermi momentum \(k_F \), where \(P \) is the perimeter of region A with an arbitrary smooth shape.
Non-Fermi liquids

To obtain a compressible state which is not a Fermi liquid, take a Fermi surface in $d = 2$, and couple it to any gapless scalar field, ϕ, which has low energy excitations near $q = 0$.
Non-Fermi liquids

To obtain a compressible state which is not a Fermi liquid, take a Fermi surface in $d = 2$, and couple it to any gapless scalar field, ϕ, which has low energy excitations near $q = 0$. The field ϕ could represent

- ferromagnetic order
- breaking of point-group symmetry (Ising-nematic order)
- breaking of time-reversal symmetry
- circulating currents
- transverse component of an Abelian or non-Abelian gauge field.
- ...
Non-Fermi liquids

- ϕ fluctuation at wavevector \vec{q} couples most efficiently to fermions near $\pm \vec{k}_0$.
- Expand fermion kinetic energy at wavevectors about $\pm \vec{k}_0$ and boson (ϕ) kinetic energy about $\vec{q} = 0$.
Non-Fermi liquids

$$\mathcal{L}[\psi_\pm, \phi] =$$

$$\psi_+^\dagger \left(\partial_\tau - i \partial_x - \partial_y^2 \right) \psi_+ + \psi_-^\dagger \left(\partial_\tau + i \partial_x - \partial_y^2 \right) \psi_-$$

$$- g \phi \left(\psi_+^\dagger \psi_+ \pm \psi_-^\dagger \psi_- \right) + (\partial_y \phi)^2$$

• Area enclosed by the Fermi surface $A = Q$, the fermion density. Position of the Fermi surface defined by $G_f^{-1}(k = k_F, \omega = 0) = 0$.

Non-Fermi liquids

• Area enclosed by the Fermi surface $A = Q$, the fermion density. Position of the Fermi surface defined by $G_f^{-1}(k = k_F, \omega = 0) = 0$.

• Critical continuum of excitations near the Fermi surface with energy $\omega \sim |q|^z$, where $q = |k| - k_F$ is the distance from the Fermi surface and z is the dynamic critical exponent.

Non-Fermi liquids

- Gauge-dependent Green’s function $G_f^{-1} = q^{1-\eta} F(\omega / q^z)$. Three-loop computation shows $\eta \neq 0$ and $z = 3/2$.

Non-Fermi liquids

- Gauge-dependent Green’s function $G_f^{-1} = q^{1-\eta} F(\omega/q^z)$. Three-loop computation shows $\eta \neq 0$ and $z = 3/2$.

- The phase space density of fermions is effectively one-dimensional, so the entropy density $S \sim T^{d_{eff}/z}$ with $d_{eff} = 1$.

Non-Fermi liquids

Simple scaling argument for $z = 3/2$.

$$\mathcal{L} = \psi_+^\dagger \left(\partial_\tau - i \partial_x - \partial_y^2 \right) \psi_+ + \psi_-^\dagger \left(\partial_\tau + i \partial_x - \partial_y^2 \right) \psi_- - g\phi \left(\psi_+^\dagger \psi_+ \pm \psi_-^\dagger \psi_- \right) + (\partial_y \phi)^2$$
Non-Fermi liquids

Simple scaling argument for $z = 3/2$.

\[\mathcal{L} = \psi_+^\dagger (\partial_x - i\partial_y - \partial_y^2) \psi_+ + \psi_-^\dagger (\partial_x + i\partial_y - \partial_y^2) \psi_- \]

\[-g\phi \left(\psi_+^\dagger \psi_+ \pm \psi_-^\dagger \psi_- \right) + (\partial_y \phi)^2 \]
Simple scaling argument for $z = 3/2$.

\[
\mathcal{L} = \psi_+^\dagger \left(\partial_x - i \partial_x - \partial_y^2 \right) \psi_+ + \psi_-^\dagger \left(\partial_x + i \partial_x - \partial_y^2 \right) \psi_- \\
- g \phi \left(\psi_+^\dagger \psi_+ \pm \psi_-^\dagger \psi_- \right) + (\partial_y \phi)^2
\]

Under the rescaling $x \to x/s$, $y \to y/s^{1/2}$, and $\tau \to \tau/s^z$, we find invariance provided

\[
\phi \quad \to \quad \phi \ s^{(2z+1)/4} \\
\psi \quad \to \quad \psi \ s^{(2z+1)/4} \\
g \quad \to \quad g \ s^{(3-2z)/4}
\]

So the action is invariant provided $z = 3/2$.
Logarithmic violation of “area law”: \(S_E = \frac{1}{12} (k_F P) \ln(k_F P) \)

for a circular Fermi surface with Fermi momentum \(k_F \), where \(P \) is the perimeter of region A with an arbitrary smooth shape.

Non-Fermi liquids have, at most, the “1/12” prefactor modified.

Logarithmic violation of “area law”: \[S_E = \frac{1}{12} (k_F P) \ln(k_F P) \]

for a circular Fermi surface with Fermi momentum \(k_F \), where \(P \) is the perimeter of region A with an arbitrary smooth shape.

Non-Fermi liquids have, at most, the “1/12” prefactor modified.

Computations in the $1/N$ expansion

All planar graphs of ψ_+ alone are as important as the leading term

Graph mixing ψ_+ and ψ_- is $O\left(N^{3/2}\right)$ (instead of $O\left(N\right)$), violating genus expansion

Sung-Sik Lee, Physical Review B 80, 165102 (2009)
Compressible quantum matter

A. Field theory

B. Holography
Consider the metric which transforms under rescaling as

\[x_i \rightarrow \zeta x_i \]
\[t \rightarrow \zeta^z t \]
\[ds \rightarrow \zeta^{\theta/d} ds. \]

This identifies \(z \) as the dynamic critical exponent (\(z = 1 \) for “relativistic” quantum critical points).

\(\theta \) is the violation of hyperscaling exponent.
Consider the metric which transforms under rescaling as

\[x_i \rightarrow \zeta x_i \]
\[t \rightarrow \zeta^z t \]
\[ds \rightarrow \zeta^{\theta/d} ds. \]

This identifies \(z \) as the dynamic critical exponent \((z = 1 \text{ for } "\text{relativistic}" \text{ quantum critical points})\).

\(\theta \) is the violation of hyperscaling exponent.

The most general choice of such a metric is

\[
\frac{ds^2}{r^2} = \frac{1}{r^2} \left(-\frac{dt^2}{r^{2d(z-1)/(d-\theta)}} + r^{2\theta/(d-\theta)} dr^2 + dx_i^2 \right)
\]

We have used reparametrization invariance in \(r \) to choose so that it scales as \(r \rightarrow \zeta^{(d-\theta)/d} r \).

At $T > 0$, there is a “black-brane” at $r = r_h$.

The Beckenstein-Hawking entropy of the black-brane is the thermal entropy of the quantum system $r = 0$.

The entropy density, S, is proportional to the “area” of the horizon, and so $S \sim r_h^{-d}$.
At $T > 0$, there is a “black-brane” at $r = r_h$.

The Beckenstein-Hawking entropy of the black-brane is the thermal entropy of the quantum system $r = 0$.

The entropy density, S, is proportional to the “area” of the horizon, and so $S \sim r_h^{-d}$

Under rescaling $r \rightarrow \zeta^{(d-\theta)/d} r$, and the temperature $T \sim t^{-1}$, and so

$$S \sim T^{(d-\theta)/z} = T^{d_{\text{eff}}/z}$$

where $\theta = d - d_{\text{eff}}$ measures “dimension deficit” in the phase space of low energy degrees of a freedom.
Area of minimal surface equals entanglement entropy

Holographic entanglement entropy

$S_{\text{Ryu and Takayanagi, Phys. Rev. Lett. 96, 18160 (2006).}}$

Emergent holographic direction
The thermal entropy density scales as

\[S \sim T^{(d-\theta)/z}. \]

The third law of thermodynamics requires \(\theta < d \).

The entanglement entropy, \(S_E \), of an entangling region with boundary surface ‘area’ \(P \) scales as

\[S_E \sim \begin{cases}
 P & \text{, for } \theta < d - 1 \\
 P \ln P & \text{, for } \theta = d - 1 \\
 P^{\theta/(d-1)} & \text{, for } \theta > d - 1
\end{cases} \]

All local quantum field theories obey the “area law” (upto log violations) and so \(\theta \leq d - 1 \).

The null energy condition implies \(z \geq 1 + \frac{\theta}{d} \).
The value of θ is fixed by requiring that the thermal entropy density $S \sim T^{1/z}$ for general d. Conjecture: this metric then describes a compressible state with a hidden Fermi surface of quarks coupled to gauge fields.

\[ds^2 = \frac{1}{r^2} \left(-\frac{dt^2}{r^{2d(z-1)/(d-\theta)}} + r^{2\theta/(d-\theta)} dr^2 + dx_i^2 \right) \]

$\theta = d - 1$

Holography of non-Fermi liquids

The value of θ is fixed by requiring that the thermal entropy density $S \sim T^{1/z}$ for general d.

Conjecture: this metric then describes a compressible state with a hidden Fermi surface of quarks coupled to gauge fields.

The null energy condition yields the inequality $z \geq 1 + \theta/d$. For $d = 2$ and $\theta = 1$ this yields $z \geq 3/2$. The field theory analysis gave $z = 3/2$ to three loops!

The entanglement entropy exhibits logarithmic violation of the area law only for this value of θ!!

The logarithmic violation is of the form $P \ln P$, where P is the perimeter of the entangling region. This form is independent of the shape of the entangling region, just as is expected for a (hidden) Fermi surface!!

$$ds^2 = \frac{1}{r^2} \left(-\frac{dt^2}{r^2d(z-1)/(d-\theta)} + r^2\theta/(d-\theta)dr^2 + dx_i^2 \right)$$

$\theta = d - 1$

- The entanglement entropy exhibits logarithmic violation of the area law only for this value of θ!!

The entanglement entropy exhibits logarithmic violation of the area law only for this value of θ!!

The logarithmic violation is of the form $P \ln P$, where P is the perimeter of the entangling region. This form is independent of the shape of the entangling region, just as is expected for a (hidden) Fermi surface!!

$$ds^2 = \frac{1}{r^2} \left(-\frac{dt^2}{r^2 d(z-1)/(d-\theta)} + \frac{r^{2\theta}/(d-\theta)}{dr^2} + dx_i^2 \right)$$

$\theta = d - 1$
Holography of non-Fermi liquids

\[ds^2 = \frac{1}{r^2} \left(-\frac{dt^2}{r^{2d(z-1)/(d-\theta)}} + \frac{r^{2\theta/(d-\theta)}}{d} dr^2 + dx_i^2 \right) \]

\[\theta = d - 1 \]

- This metric can be realized in a Maxwell-Einstein-dilaton theory, which may be viewed as a “bosonization” of the non-Fermi liquid state. The entanglement entropy of this theory has log-violation of the area law with

\[S_E = \Xi \frac{Q^{(d-1)/d}}{P} \ln P. \]

where \(P \) is surface area of the entangling region, and \(\Xi \) is a dimensionless constant which is independent of all UV details, of \(Q \), and of any property of the entangling region.

Note \(Q^{(d-1)/d} \sim k_F^{d-1} \) via the Luttinger relation, and then \(S_E \) is just as expected for a Fermi surface !!!!

Gauss Law and the “attractor” mechanism ⇔ Luttinger theorem on the boundary
Holographic theory of a fractionalized-Fermi liquid (FL*)

Hidden Fermi surfaces of “quarks”

Visible Fermi surfaces of “mesinos”

\[\varepsilon_r = Q - Q_{\text{mesino}} \]

\[\varepsilon_r = Q \]

A state with partial confinement

S. Sachdev, Physical Review D 84, 066009 (2011)

These are spectators, and are expected to have well-defined quasiparticle excitations.
Confining geometry leads to a state which has all the properties of a Landau Fermi liquid.

Visible Fermi surfaces of “mesinos”

\[\mathcal{E}_r = 0 \]

\[\mathcal{E}_r = Q \]

S. Sachdev, Physical Review D 84, 066009 (2011)
Conclusions

Compressible quantum matter

Field theory of a non-Fermi liquid obtained by coupling a Fermi surface to a gapless scalar field with low energy excitations near zero wavevector
Conclusions

Compressible quantum matter

Evidence for hidden Fermi surfaces in compressible states obtained for a class of holographic Einstein-Maxwell-dilaton theories. These theories describe a non-Fermi liquid (NFL) state of gauge theories at non-zero density.
Conclusions

Compressible quantum matter

Evidence for *hidden Fermi surfaces* in compressible states obtained for a class of holographic Einstein-Maxwell-dilaton theories. These theories describe a *non-Fermi liquid* (NFL) state of gauge theories at non-zero density.

After fixing $\theta = d - 1$ to obtain thermal entropy density $S \sim T^{1/z}$, we found

- Log violation of the area law in entanglement entropy, S_E.
Compressible quantum matter

Evidence for *hidden Fermi surfaces* in compressible states obtained for a class of holographic Einstein-Maxwell-dilaton theories. These theories describe a *non-Fermi liquid* (NFL) state of gauge theories at non-zero density.

After fixing $\theta = d - 1$ to obtain thermal entropy density $S \sim T^{1/z}$, we found

- Log violation of the area law in entanglement entropy, S_E.
- Leading-log S_E independent of shape of entangling region.
Conclusions

Compressible quantum matter

Evidence for *hidden Fermi surfaces* in compressible states obtained for a class of holographic Einstein-Maxwell-dilaton theories. These theories describe a *non-Fermi liquid* (NFL) state of gauge theories at non-zero density.

After fixing $\theta = d - 1$ to obtain thermal entropy density $S \sim T^{1/z}$, we found

- Log violation of the area law in entanglement entropy, S_E.
- Leading-log S_E independent of shape of entangling region.
- The $d = 2$ bound $z \geq 3/2$, compared to $z = 3/2$ in three-loop field theory.
Conclusions

Compressible quantum matter

Evidence for *hidden Fermi surfaces* in compressible states obtained for a class of holographic Einstein-Maxwell-dilaton theories. These theories describe a *non-Fermi liquid* (NFL) state of gauge theories at non-zero density.

After fixing $\theta = d - 1$ to obtain thermal entropy density $S \sim T^{1/z}$, we found

- Log violation of the area law in entanglement entropy, S_E.
- Leading-log S_E independent of shape of entangling region.
- The $d = 2$ bound $z \geq 3/2$, compared to $z = 3/2$ in three-loop field theory.
- Evidence for Luttinger theorem in prefactor of S_E.