Compressible quantum matter and gauge-gravity duality

Review: arXiv:1203.4565

Gravity, black holes, and condensed matter,
Kavli Royal Society Center, Chicheley_Hall
A Royal Society International Seminar, April 23-24, 2012

Subir Sachdev

Talk online at sachdev.physics.harvard.edu
anti-de Sitter space
anti-de Sitter space

J. McGreevy, arXiv0909.0518
Consider the metric which transforms under rescaling as

\[x_i \rightarrow \zeta x_i \]
\[t \rightarrow \zeta^z t \]
\[ds \rightarrow \zeta^{\theta/d} ds. \]

This identifies \(z \) as the dynamic critical exponent (\(z = 1 \) for “relativistic” quantum critical points).

\(\theta \) is the violation of hyperscaling exponent.
Consider the metric which transforms under rescaling as

\[x_i \rightarrow \zeta x_i \]
\[t \rightarrow \zeta^z t \]
\[ds \rightarrow \zeta^{\theta/d} ds. \]

This identifies \(z \) as the dynamic critical exponent (\(z = 1 \) for "relativistic" quantum critical points).

\(\theta \) is the violation of hyperscaling exponent. The most general choice of such a metric is

\[
d s^2 = \frac{1}{r^2} \left(-\frac{d t^2}{r^{2d(z-1)/(d-\theta)}} + r^{2\theta/(d-\theta)} d r^2 + d x_i^2 \right)
\]

We have used reparametrization invariance in \(r \) to choose so that it scales as \(r \rightarrow \zeta^{(d-\theta)/d} r \).
At $T > 0$, there is a “black-brane” at $r = r_h$. The Beckenstein-Hawking entropy of the black-brane is the thermal entropy of the quantum system $r = 0$.

The entropy density, S, is proportional to the “area” of the horizon, and so $S \sim r_h^{-d}$
At $T > 0$, there is a “black-brane” at $r = r_h$.

The Beckenstein-Hawking entropy of the black-brane is the thermal entropy of the quantum system $r = 0$.

The entropy density, S, is proportional to the “area” of the horizon, and so $S \sim r_h^{-d}$

Under rescaling $r \rightarrow \zeta^{(d-\theta)/d} r$, and the temperature $T \sim t^{-1}$, and so

$$S \sim T^{(d-\theta)/z} = T^{d_{\text{eff}}/z}$$

where $\theta = d - d_{\text{eff}}$ measures “dimension deficit” in the phase space of low energy degrees of a freedom.
The thermal entropy density scales as

\[S \sim T^{(d-\theta)/z}. \]

The third law of thermodynamics requires \(\theta < d \).

\[ds^2 = \frac{1}{r^2} \left(-\frac{dt^2}{r^{2d(z-1)/(d-\theta)}} + r^{2\theta/(d-\theta)} dr^2 + dx_i^2 \right) \]
Entanglement entropy

Measure strength of quantum entanglement of region A with region B.

$$\rho_A = \text{Tr}_B \rho = \text{density matrix of region A}$$

Entanglement entropy $$S_{EE} = - \text{Tr} (\rho_A \ln \rho_A)$$
Holographic entanglement entropy

Emergent holographic direction

r
Holographic entanglement entropy

Area of minimal surface equals entanglement entropy

Emergent holographic direction

The thermal entropy density scales as

\[S \sim T^{(d-\theta)/z}. \]

The third law of thermodynamics requires \(\theta < d \).

The entanglement entropy, \(S_E \), of an entangling region with boundary surface ‘area’ \(\Sigma \) scales as

\[S_E \sim \begin{cases}
\Sigma, & \text{for } \theta < d - 1 \\
\Sigma \ln \Sigma, & \text{for } \theta = d - 1 \\
\Sigma^{\theta/(d-1)}, & \text{for } \theta > d - 1
\end{cases} \]

All local quantum field theories obey the “area law” (upto log violations) and so \(\theta \leq d - 1 \).
The thermal entropy density scales as

\[S \sim T^{(d-\theta)/z}. \]

The third law of thermodynamics requires \(\theta < d \).

The entanglement entropy, \(S_E \), of an entangling region with boundary surface ‘area’ \(\Sigma \) scales as

\[
S_E \sim \begin{cases}
\Sigma, & \text{for } \theta < d - 1 \\
\Sigma \ln \Sigma, & \text{for } \theta = d - 1 \\
\Sigma^{\theta/(d-1)}, & \text{for } \theta > d - 1
\end{cases}
\]

All local quantum field theories obey the “area law” (upto log violations) and so \(\theta \leq d - 1 \).

The null energy condition implies \(z \geq 1 + \frac{\theta}{d} \).
The thermal entropy density scales as

$$S \sim T^{(d-\theta)/z}.$$

The third law of thermodynamics requires $\theta < d$.

The entanglement entropy, S_E, of an entangling region with boundary surface ‘area’ Σ scales as

$$S_E \sim \begin{cases}
\Sigma, & \text{for } \theta < d - 1 \\
\Sigma \ln \Sigma, & \text{for } \theta = d - 1 \\
\Sigma^{\theta/(d-1)}, & \text{for } \theta > d - 1
\end{cases}$$

All local quantum field theories obey the “area law” (upto log violations) and so $\theta \leq d - 1$.

The null energy condition implies $z \geq 1 + \frac{\theta}{d}$.

\[
ds^2 = \frac{1}{r^2} \left(-\frac{dt^2}{r^{2d(z-1)/(d-\theta)}} + r^{2\theta/(d-\theta)} dr^2 + dx_i^2 \right)\]
The thermal entropy density scales as

\[S \sim T^{(d-\theta)/z}. \]

The third law of thermodynamics requires \(\theta < d \).

The entanglement entropy, \(S_E \), of an entangling region with boundary surface ‘area’ \(\Sigma \) scales as

\[S_E \sim \begin{cases}
\Sigma, & \text{for } \theta < d - 1 \\
\Sigma \ln \Sigma, & \text{for } \theta = d - 1 \\
\Sigma^{\theta/(d-1)}, & \text{for } \theta > d - 1
\end{cases} \]

All local quantum field theories obey the “area law” (upto log violations) and so \(\theta \leq d - 1 \).

The null energy condition implies \(z \geq 1 + \frac{\theta}{d} \).
Consider an infinite, continuum, translationally-invariant quantum system with a globally conserved U(1) charge Q (the “electron density”) in spatial dimension $d > 1$.

• Compressible systems must be gapless.

• Conformal quantum matter is compressible in $d = 1$, but not for $d > 1$. Compressible quantum matter
Compressible quantum matter

- Consider an infinite, continuum, translationally-invariant quantum system with a globally conserved U(1) charge Q (the “electron density”) in spatial dimension $d > 1$.

- Describe zero temperature phases where $d\langle Q\rangle/d\mu \neq 0$, where μ (the “chemical potential”) which changes the Hamiltonian, H, to $H - \mu Q$.

Monday, April 23, 2012
The only compressible phase of traditional condensed matter physics which does not break the translational or $U(1)$ symmetries is the Landau Fermi liquid.
Compressible quantum matter

Challenge to string theory:

Classify and understand non-Fermi liquid phases of compressible quantum matter,
i.e. *strange metals*
Strange metals

A. Field theory

B. Holography
Strange metals

A. Field theory

B. Holography
The Non-Fermi Liquid (NFL)

- Model of a spin liquid ("Bose metal"): couple fermions to a dynamical gauge field A_μ.

$$
L = f_\sigma^\dagger \left(\partial_\tau - iA_\tau - \frac{(\nabla - iA)^2}{2m} - \mu \right) f_\sigma
$$

$$
= \frac{1}{\sqrt{2}} \left(\langle \uparrow \downarrow \rangle - \langle \downarrow \uparrow \rangle \right)
$$
Fermi surface of an ordinary metal

\[\mathcal{L} = f_\sigma^\dagger \left(\partial_\tau - \frac{\nabla^2}{2m} - \mu \right) f_\sigma \]
Fermions coupled to a gauge field

\[\mathcal{L} = f_\sigma^+ \left(\partial_\tau - iA_\tau - \frac{(\nabla - iA)^2}{2m} - \mu \right) f_\sigma \]
There is a sharp Fermi surface defined by the (gauge-dependent) fermion Green’s function: \(G_f^{-1}(|\mathbf{k}| = k_F, \omega = 0) = 0 \). This Green’s function is not measurable, and so the Fermi surface is “hidden”.

\[
\mathcal{L} = f_\sigma^\dagger \left(\partial_\tau - iA_\tau - \frac{(\nabla - iA)^2}{2m} - \mu \right) f_\sigma
\]
Properties of this strange metal

\[\mathcal{L} = f^\dagger_\sigma \left(\partial_\tau - iA_\tau - \frac{(\nabla - iA)^2}{2m} - \mu \right) f_\sigma \]

- There is a sharp Fermi surface defined by the (gauge-dependent) fermion Green’s function: \(G_f^{-1}(|k| = k_F, \omega = 0) = 0 \). This Green’s function is not measurable, and so the Fermi surface is “hidden”.

- Area enclosed by the Fermi surface \(\mathcal{A} = Q \), the fermion density

• There is a sharp Fermi surface defined by the (gauge-dependent) fermion Green’s function: $G_f^{-1}(|k| = k_F, \omega = 0) = 0$. This Green’s function is not measurable, and so the Fermi surface is “hidden”.

• Area enclosed by the Fermi surface $A = Q$, the fermion density ρ_f.

• Critical continuum of excitations near the Fermi surface with energy $\omega \sim |q|^z$, where $q = |k| - k_F$ is the distance from the Fermi surface and z is the dynamic critical exponent.

\[\mathcal{L} = f_\sigma^\dagger \left(\partial_\tau - i A_\tau - \frac{(\nabla - i A)^2}{2m} - \mu \right) f_\sigma \]

\[A \quad \rightarrow \quad |q| \quad \leftarrow \]

Properties of this strange metal

\[\mathcal{L} = f^+_\sigma \left(\partial_\tau - iA_\tau - \frac{(\nabla - iA)^2}{2m} - \mu \right) f_\sigma \]

- Gauge-dependent Green’s function \(G_f^{-1} = q^{1-\eta} F(\omega/q^z) \).
 Three-loop computation shows \(\eta \neq 0 \) and \(z = 3/2 \).
Properties of this strange metal

\[\mathcal{L} = f^\dagger_\sigma \left(\partial_\tau - iA_\tau - \frac{(\nabla - iA)^2}{2m} - \mu \right) f_\sigma \]

- Gauge-dependent Green’s function \(G_f^{-1} = q^{1-\eta} F(\omega/q^z) \). Three-loop computation shows \(\eta \neq 0 \) and \(z = 3/2 \).

- The phase space density of fermions is effectively one-dimensional, so the entropy density \(S \sim T^{d_{\text{eff}}/z} \) with \(d_{\text{eff}} = 1 \).

Field theory of this strange metal

- Gauge fluctuation at wavevector \(\vec{q} \) couples most efficiently to fermions near \(\pm \vec{k}_0 \).

- Expand fermion kinetic energy at wavevectors about \(\vec{k}_0 \).

- In Landau gauge, only need the component of the gauge field, \(a \), orthogonal to \(\vec{q} \).
Field theory of this strange metal

\[
\mathcal{L}[\psi_\pm, a] = \\
\psi_+^\dagger \left(\partial_\tau - i \partial_x - \partial_y^2 \right) \psi_+ + \psi_-^\dagger \left(\partial_\tau + i \partial_x - \partial_y^2 \right) \psi_- \\
-a \left(\psi_+^\dagger \psi_+ - \psi_-^\dagger \psi_- \right) + \frac{1}{2 g^2} \left(\partial_y a \right)^2
\]

Field theory of this strange metal

\[\mathcal{L} = \psi_+^\dagger (\partial_\tau - i\partial_x - \partial_y^2) \psi_+ + \psi_-^\dagger (\partial_\tau + i\partial_x - \partial_y^2) \psi_-
- a (\psi_+^\dagger \psi_+ - \psi_-^\dagger \psi_-) + \frac{1}{2g^2} (\partial_y a)^2 \]

Simple scaling argument for \(z = 3/2 \).
Field theory of this strange metal

\[\mathcal{L} = \psi_+^\dagger (\mathbf{X} - i\partial_x - \partial_y^2) \psi_+ + \psi_-^\dagger (\mathbf{X} + i\partial_x - \partial_y^2) \psi_- \\
- a (\psi_+^\dagger \psi_+ - \psi_-^\dagger \psi_-) + \frac{1}{2g^2} (\partial_y a)^2 \]

Simple scaling argument for \(z = 3/2 \).

Perturbative computations show that the \(\psi_\pm^\dagger \partial_\tau \psi_\pm \) terms are irrelevant.
Field theory of this strange metal

\[\mathcal{L}_{\text{scaling}} = \psi_+^\dagger (-i \partial_x - \partial_y^2) \psi_+ + \psi_-^\dagger (+i \partial_x - \partial_y^2) \psi_- \\
- g a (\psi_+^\dagger \psi_+ - \psi_-^\dagger \psi_-) + \frac{1}{2} (\partial_y a)^2 \]

Simple scaling argument for \(z = 3/2 \).
Field theory of this strange metal

\[L_{\text{scaling}} = \psi_+^\dagger (-i \partial_x - \partial_y^2) \psi_+ + \psi_-^\dagger (+i \partial_x - \partial_y^2) \psi_- \]

\[- g a \left(\psi_+^\dagger \psi_+ - \psi_-^\dagger \psi_- \right) + \frac{1}{2} (\partial_y a)^2 \]

Simple scaling argument for \(z = 3/2 \).

Under the rescaling \(x \to x/s, y \to y/s^{1/2}, \) and \(\tau \to \tau/s^z \), we find invariance provided

\[a \to a s^{(2z+1)/4} \]
\[\psi \to \psi s^{(2z+1)/4} \]
\[g \to g s^{(3-2z)/4} \]

So the action is invariant provided \(z = 3/2 \).
Fermions and bosons coupled to a gauge field

\[\mathcal{L} = f^\dagger \left(\partial_\tau - iA_\tau - \frac{(\nabla - iA)^2}{2m} - \mu \right) f \\
+ b^\dagger \left(\partial_\tau + iA_\tau - \frac{(\nabla + iA)^2}{2m_b} - \mu_b \right) b + s|b|^2 - gb^\dagger f^\dagger fb + \ldots \]
Fermions and bosons coupled to a gauge field

\[\mathcal{L} = f^\dagger \left(\partial_\tau - i A_\tau - \frac{(\nabla - i A)^2}{2m} - \mu \right) f + b^\dagger \left(\partial_\tau + i A_\tau - \frac{(\nabla + i A)^2}{2m_b} - \mu_b \right) b + s|b|^2 - g b^\dagger f^\dagger f b + \ldots \]

Another strange metal: the fractionalized Fermi liquid (FL*)

Bosons can bind with fermions to form a gauge-neutral fermion \(c \sim b f \). The result FL* phase has *partial confinement* and 2 Fermi surfaces: the gauge-neutral Fermi surface of \(c \), and the gauge-charged Fermi surface of \(f \). They enclose a *combined* area equal to \(\langle Q \rangle \).

\[A_c = \langle Q_b \rangle \]
\[A_f = \langle Q - Q_b \rangle \]

Fermions and bosons coupled to a gauge field

\[\mathcal{L} = f^\dagger \left(\partial_\tau - i A_\tau - \frac{(\nabla - i A)^2}{2m} - \mu \right) f + b^\dagger \left(\partial_\tau + i A_\tau - \frac{(\nabla + i A)^2}{2m_b} - \mu_b \right) b + s |b|^2 - g b^\dagger f^\dagger f b + \ldots \]

Another strange metal: the fractionalized Fermi liquid (FL*)

In holography:
the \(c \) Fermi surface is that of the "probe" fermion;
the fractionalized \(f \) Fermi surface is "hidden" past the horizon.

\[A_c = \langle Q_b \rangle \]
\[A_f = \langle Q - Q_b \rangle \]

Kondo lattice model

Another strange metal: the fractionalized Fermi liquid (FL*)

Spin liquid of \(f \) electrons

Fermi surface of \(c \) conduction electrons

Strange metals

A. Field theory

B. Holography
The value of θ is fixed by requiring that the thermal entropy density $S \sim T^{1/z}$ for general d. Conjecture: this metric then describes a compressible state with a hidden Fermi surface.
The value of θ is fixed by requiring that the thermal entropy density $S \sim T^{1/z}$ for general d. Conjecture: this metric then describes a compressible state with a hidden Fermi surface.

The null energy condition yields the inequality $z \geq 1 + \theta/d$. For $d = 2$ and $\theta = 1$ this yields $z \geq 3/2$. The field theory analysis gave $z = 3/2$ to three loops!
The entanglement entropy exhibits logarithmic violation of the area law only for this value of θ!!

\[ds^2 = \frac{1}{r^2} \left(-\frac{dt^2}{r^2d(z-1)/(d-\theta)} + \frac{r^2\theta/(d-\theta)}{d-\theta} dr^2 + dx_i^2 \right) \]

$\theta = d - 1$

- The entanglement entropy exhibits logarithmic violation of the area law only for this value of θ!!
The entanglement entropy exhibits logarithmic violation of the area law only for this value of θ!!

The logarithmic violation is of the form $P \ln P$, where P is the perimeter of the entangling region. This form is independent of the shape of the entangling region, just as is expected for a (hidden) Fermi surface !!!

\[
\theta = d - 1
\]
Begin with a CFT

Dirac fermions + gauge field +
Holographic representation: \(\text{AdS}_4 \)

\[S = \int d^4 x \sqrt{-g} \left[\frac{1}{2\kappa^2} \left(R + \frac{6}{L^2} \right) \right] \]
Apply a chemical potential to the “deconfined” CFT

$\mu > 0$
The Maxwell-Einstein theory of the applied chemical potential yields a AdS$_4$-Reissner-Nordström black-brane.

\[\mathcal{E}_r = \langle Q \rangle \]

\[S = \int d^4x \sqrt{-g} \left[\frac{1}{2\kappa^2} \left(R + \frac{6}{L^2} \right) - \frac{1}{4e^2} F_{ab} F^{ab} \right] \]

The Maxwell-Einstein theory of the applied chemical potential yields a AdS$_4$-Reissner-Nordström black-brane.

At $T = 0$, we obtain an extremal black-brane, with a near-horizon (IR) metric of AdS$_2 \times R^2$

$$ds^2 = \frac{L^2}{6} \left(\frac{-dt^2 + dr^2}{r^2} \right) + dx^2 + dy^2$$

Artifacts of AdS$_2 \times \mathbb{R}^2$

- Corresponds to $\theta \to d$ and $z \to \infty$. This implies non-zero entropy density at $T = 0$, and “volume” law for entanglement entropy.

- Green’s function of a probe fermion (a *mesino*) can have a Fermi surface, but self energies are momentum independent, and the singular behavior is the same on and off the Fermi surface.

- Deficit of order $\sim N^2$ in the volume enclosed by the mesino Fermi surfaces: presumably associated with “hidden Fermi surfaces” of gauge-charged particles (the *quarks*).

Holographic theory of a non-Fermi liquid (NFL)

Add a relevant “dilaton” field

\[\mathcal{E}_r = \langle Q \rangle \]

\[
S = \int d^{d+2}x \sqrt{-g} \left[\frac{1}{2\kappa^2} \left(R - 2(\nabla \Phi)^2 - \frac{V(\Phi)}{L^2} \right) - \frac{Z(\Phi)}{4e^2} F_{ab} F^{ab} \right]
\]

with \(Z(\Phi) = Z_0 e^{\alpha \Phi} \), \(V(\Phi) = -V_0 e^{-\beta \Phi} \), as \(\Phi \to \infty \).

Holographic theory of a non-Fermi liquid (NFL)

Add a relevant “dilaton” field

\[S = \int d^{d+2}x \sqrt{-g} \left[\frac{1}{2\kappa^2} \left(R - 2(\nabla \Phi)^2 - \frac{V(\Phi)}{L^2} \right) - \frac{Z(\Phi)}{4e^2} F_{ab} F^{ab} \right] \]

with \(Z(\Phi) = Z_0 e^{\alpha \Phi} \), \(V(\Phi) = -V_0 e^{-\beta \Phi} \), as \(\Phi \to \infty \).

This is a “bosonization” of the Fermi surface
Holographic theory of a non-Fermi liquid (NFL)

Add a relevant “dilaton” field

\[E_r = \langle Q \rangle \]

\[\mathcal{E}_r = \langle Q \rangle \]

Leads to metric
\[ds^2 = L^2 \left(-f(r)dt^2 + g(r)dr^2 + \frac{dx^2 + dy^2}{r^2} \right) \]

with \(f(r) \sim r^{-\gamma} \), \(g(r) \sim r^\delta \), \(\Phi(r) \sim \ln(r) \) as \(r \to \infty \).

Holographic theory of a non-Fermi liquid (NFL)

\[ds^2 = \frac{1}{r^2} \left(-\frac{dt^2}{r^2 d(z-1)/(d-\theta)} + \frac{r^{2\theta}/(d-\theta) dr^2 + dx_i^2}{d^2} \right) \]

The \(r \to \infty \) metric has the above form with

\[
\theta = \frac{d^2 \beta}{\alpha + (d-1)\beta} \\
z = 1 + \frac{\theta}{d} + \frac{8(d(d - \theta) + \theta)^2}{d^2(d - \theta)\alpha^2}.
\]

Note \(z \geq 1 + \theta/d \).
The solution also specifies the missing numerical prefactors in the metric. In general, these depend upon the details on the UV boundary condition as \(r \to 0 \). However, the coefficient of \(dx_i^2/r^2 \) turns out to be independent of the UV boundary conditions, and proportional to \(Q^{2\theta}/(d(d-\theta)) \).

The square-root of this coefficient is the prefactor of the log divergence in the entanglement entropy for \(\theta = d - 1 \).
The entanglement entropy has log-violation of the area law

\[S_E = \Xi Q^{(d-1)/d} \Sigma \ln \left(Q^{(d-1)/d} \Sigma \right), \]

where \(\Sigma \) is surface area of the entangling region, and \(\Xi \) is a dimensionless constant which is independent of all UV details, of \(Q \), and of any property of the entangling region. Note \(Q^{(d-1)/d} \sim k_F^{d-1} \) via the Luttinger relation, and then \(S_E \) is just as expected for a Fermi surface !!!!
Holographic theory of a non-Fermi liquid (NFL)

Gauss Law and the “attractor” mechanism

⇔ Luttinger theorem on the boundary

Hidden Fermi surfaces of “quarks”
Holographic theory of a fractionalized-Fermi liquid (FL*)

Hidden Fermi surfaces of "quarks"

Visible Fermi surfaces of "mesinos"

\[\epsilon_r = Q - Q_{\text{mesino}} \]

\[\epsilon_r = Q \]

A state with partial confinement

Now the entanglement entropy implies that the Fermi momentum of the hidden Fermi surface is given by \(k_F^d \sim Q - Q_{\text{mesino}} \), just as expected by the extended Luttinger relation. Also the probe fermion quasiparticles are sharp for \(\theta = d - 1 \), as expected for a FL* state.
Confining geometry leads to a state which has all the properties of a Landau Fermi liquid.

Visible Fermi surfaces of “mesinos”

Confining geometry leads to a state which has all the properties of a Landau Fermi liquid.

S. Sachdev, Physical Review D 84, 066009 (2011)
Conclusions

Compressible quantum matter

Evidence for hidden Fermi surfaces in compressible states obtained for a class of holographic Einstein-Maxwell-dilaton theories. These theories describe a non-Fermi liquid (NFL) state of gauge theories at non-zero density.
Conclusions

Compressible quantum matter

Evidence for *hidden Fermi surfaces* in compressible states obtained for a class of holographic Einstein-Maxwell-dilaton theories. These theories describe a *non-Fermi liquid* (NFL) state of gauge theories at non-zero density.

After fixing $\theta = d - 1$ to obtain thermal entropy density $S \sim T^{1/z}$, we found

- Log violation of the area law in entanglement entropy, S_E.
Conclusions

Compressible quantum matter

Evidence for *hidden Fermi surfaces* in compressible states obtained for a class of holographic Einstein-Maxwell-dilaton theories. These theories describe a *non-Fermi liquid* (NFL) state of gauge theories at non-zero density.

After fixing $\theta = d - 1$ to obtain thermal entropy density $S \sim T^{1/z}$, we found

- Log violation of the area law in entanglement entropy, S_E.
- Leading-log S_E independent of shape of entangling region.
Conclusions

Compressible quantum matter

Evidence for hidden Fermi surfaces in compressible states obtained for a class of holographic Einstein-Maxwell-dilaton theories. These theories describe a non-Fermi liquid (NFL) state of gauge theories at non-zero density.

After fixing $\theta = d - 1$ to obtain thermal entropy density $S \sim T^{1/z}$, we found

- Log violation of the area law in entanglement entropy, S_E.
- Leading-log S_E independent of shape of entangling region.
- The $d = 2$ bound $z \geq 3/2$, compared to $z = 3/2$ in three-loop field theory.
Conclusions

Compressible quantum matter

Evidence for *hidden Fermi surfaces* in compressible states obtained for a class of holographic Einstein-Maxwell-dilaton theories. These theories describe a *non-Fermi liquid* (NFL) state of gauge theories at non-zero density.

After fixing $\theta = d - 1$ to obtain thermal entropy density $S \sim T^{1/z}$, we found

- Log violation of the area law in entanglement entropy, S_E.
- Leading-log S_E independent of shape of entangling region.
- The $d = 2$ bound $z \geq 3/2$, compared to $z = 3/2$ in three-loop field theory.
- Evidence for Luttinger theorem in prefactor of S_E.

Monday, April 23, 2012
Conclusions

Compressible quantum matter

Evidence for hidden Fermi surfaces in compressible states obtained for a class of holographic Einstein-Maxwell-dilaton theories. These theories describe a non-Fermi liquid (NFL) state of gauge theories at non-zero density.

Fermi liquid (FL) state described by a confining holographic geometry
Conclusions

Compressible quantum matter

Evidence for hidden Fermi surfaces in compressible states obtained for a class of holographic Einstein-Maxwell-dilaton theories. These theories describe a non-Fermi liquid (NFL) state of gauge theories at non-zero density.

Fermi liquid (FL) state described by a confining holographic geometry

Hidden Fermi surfaces can co-exist with Fermi surfaces of mesinos, leading to a state with partial confinement: the fractionalized Fermi liquid (FL*)
Quantum phase transition with Fermi surface reconstruction

Metal with electron and hole pockets

Metal with "large" Fermi surface

$\langle \varphi \rangle \neq 0$

$\langle \varphi \rangle = 0$

Pnictides, electron-doped cuprates
Proposed phase diagram for the hole-doped cuprates

Metal with electron and hole pockets

- $\langle \varphi \rangle \neq 0$
- Fractionalized Fermi liquid (FL*) phase with no symmetry breaking and “small” Fermi surface

Electron and/or hole Fermi pockets form in “local” SDW order, but quantum fluctuations destroy long-range SDW order

- $\langle \varphi \rangle = 0$
- Metal with “large” Fermi surface

M. Punk and S. Sachdev, arXiv:1202.4023

Monday, April 23, 2012