Holography of compressible quantum states

New England String Meeting,
Brown University, November 18, 2011

sachdev.physics.harvard.edu
Consider an infinite, continuum, translationally-invariant quantum system with a globally conserved U(1) charge Q (the “electron density”) in spatial dimension $d > 1$.

Compressible quantum matter

- Compressible systems must be gapless.
- Conformal systems are compressible in $d = 1$, but not for $d > 1$. Compressible quantum matter
Compressible quantum matter

- Consider an infinite, continuum, translationally-invariant quantum system with a globally conserved U(1) charge Q (the “electron density”) in spatial dimension $d > 1$.

- Describe zero temperature phases where $d\langle Q\rangle/d\mu \neq 0$, where μ (the “chemical potential”) which changes the Hamiltonian, H, to $H - \mu Q$.

• Consider an infinite, continuum, translationally-invariant quantum system with a globally conserved U(1) charge Q (the “electron density”) in spatial dimension $d > 1$.

• Describe zero temperature phases where $d\langle Q\rangle/d\mu \neq 0$, where μ (the “chemical potential”) which changes the Hamiltonian, H, to $H - \mu Q$.

• Compressible systems must be gapless.
Compressible quantum matter

- Consider an infinite, continuum, translationally-invariant quantum system with a globally conserved U(1) charge Q (the “electron density”) in spatial dimension $d > 1$.

- Describe zero temperature phases where $d\langle Q \rangle/d\mu \neq 0$, where μ (the “chemical potential”) which changes the Hamiltonian, H, to $H - \mu Q$.

- Compressible systems must be gapless.

- Conformal systems are compressible in $d = 1$, but not for $d > 1$.
One compressible state is the **solid** (or “Wigner crystal” or “stripe”). This state breaks translational symmetry.
Another familiar compressible state is the **superfluid**. This state breaks the global $U(1)$ symmetry associated with Q.

Condensate of fermion pairs
Graphene
The only other familiar compressible phase is a **Fermi Liquid** with a **Fermi surface**.
The only other familiar compressible phase is a **Fermi Liquid** with a **Fermi surface**

- The *only* low energy excitations are long-lived quasiparticles near the Fermi surface.
The only other familiar compressible phase is a **Fermi Liquid** with a **Fermi surface**

- **Luttinger relation:** The total “volume (area)” A enclosed by the Fermi surface is equal to $\langle Q \rangle$.
Exotic phases of compressible quantum matter

I. Field theory

II. Holography
Exotic phases of compressible quantum matter

I. Field theory

II. Holography
ABJM theory in D=2+1 dimensions

- $4N^2$ Weyl fermions carrying fundamental charges of $U(N) \times U(N) \times SU(4)_R$.

- $4N^2$ complex bosons carrying fundamental charges of $U(N) \times U(N) \times SU(4)_R$.

- $\mathcal{N} = 6$ supersymmetry
ABJM theory in D=2+1 dimensions

- $4N^2$ Weyl fermions carrying fundamental charges of $\text{U}(N) \times \text{U}(N) \times \text{SU}(4)_R$.
- $4N^2$ complex bosons carrying fundamental charges of $\text{U}(N) \times \text{U}(N) \times \text{SU}(4)_R$.
- $\mathcal{N} = 6$ supersymmetry

Adding a chemical potential coupling to a SU(4) charge breaks supersymmetry and SU(4) invariance
Theory similar to ABJM

- U(1) gauge invariance and U(1) global symmetry
- Fermions, f_+ and f_- ("quarks"), carry U(1) gauge charges ± 1, and global U(1) charge 1.
- Bosons, b_+ and b_- ("squarks"), carry U(1) gauge charges ± 1, and global U(1) charge 1.
- No supersymmetry

Theory similar to ABJM

- U(1) gauge invariance and U(1) global symmetry

- Fermions, f_+ and f_- ("quarks"), carry U(1) gauge charges ±1, and global U(1) charge 1.

- Bosons, b_+ and b_- ("squarks"), carry U(1) gauge charges ±1, and global U(1) charge 1.

- No supersymmetry

- Fermions, c ("mesinos"), gauge-invariant bound states of fermions and bosons carrying global U(1) charge 2.

Theory similar to ABJM

\[\mathcal{L} = f_\sigma^\dagger \left[(\partial_\tau - i\sigma A_\tau) - \frac{(\nabla - i\sigma A)^2}{2m} - \mu \right] f_\sigma \\
+ b_\sigma^\dagger \left[(\partial_\tau - i\sigma A_\tau) - \frac{(\nabla - i\sigma A)^2}{2m_b} + \epsilon_1 - \mu \right] b_\sigma \\
+ \frac{u}{2} \left(b_\sigma^\dagger b_\sigma \right)^2 - g_1 \left(b_+^\dagger b_- f_- f_+ + \text{H.c.} \right) \]

The index \(\sigma = \pm 1 \)

Theory similar to ABJM

\[\mathcal{L} = f_\sigma^\dagger \left[\left(\partial_\tau - i\sigma A_\tau \right) - \frac{\left(\nabla - i\sigma A \right)^2}{2m} - \mu \right] f_\sigma \\
+ b_\sigma^\dagger \left[\left(\partial_\tau - i\sigma A_\tau \right) - \frac{\left(\nabla - i\sigma A \right)^2}{2m_b} + \epsilon_1 - \mu \right] b_\sigma \\
+ \frac{u}{2} \left(b_\sigma^\dagger b_\sigma \right)^2 - g_1 \left(b_+^\dagger b_-^\dagger f_- f_+ + \text{H.c.} \right) \\
+ c^\dagger \left[\partial_\tau - \frac{\nabla^2}{2m_c} + \epsilon_2 - 2\mu \right] c \\
- g_2 \left[c^\dagger \left(f_+ b_- + f_- b_+ \right) + \text{H.c.} \right] \]

The index \(\sigma = \pm 1 \), and \(\epsilon_{1,2} \) are tuning parameters of phase diagram.

Conserved U(1) charge: \(Q = f_\sigma^\dagger f_\sigma + b_\sigma^\dagger b_\sigma + 2c^\dagger c \)

Phases of ABJM-like theories

\langle b_{\pm} \rangle = 0

2A_c = \langle Q \rangle

Fermi liquid (FL)

with Fermi surface of gauge-neutral mesinos

U(1) gauge theory is in \textit{confining} phase
Phases of ABJM-like theories

\[\langle b_\pm \rangle = 0 \]

\[2A_f = \langle Q \rangle \]

non-Fermi liquid (NFL)
with Fermi surface of gauge-charged quarks

U(1) gauge theory is in \textit{deconfined} phase
Phases of ABJM-like theories

\[\langle b_\pm \rangle = 0 \]

Fermi surface coupled to Abelian or non-Abelian gauge fields:

- Longitudinal gauge fluctuations are screened by the fermions.
- Transverse gauge fluctuations are unscreened, and Landau-damped. They are IR fluctuations with dynamic critical exponent \(z > 1 \).
- Theory is \textit{strongly coupled in two spatial dimensions}.
- “Non-Fermi liquid” broadening of the fermion quasiparticle pole.

Phases of ABJM-like theories

\[\langle b_\pm \rangle = 0 \]

\[2A_f = \langle Q \rangle \]

non-Fermi liquid (NFL)

with Fermi surface of gauge-charged quarks

U(1) gauge theory is in \textit{deconfined} phase
Phases of ABJM-like theories

\[\langle b_{\pm} \rangle = 0 \]

\[2A_f = \langle Q \rangle \]

non-Fermi liquid (NFL)

with Fermi surface of gauge-charged quarks

U(1) gauge theory is in deconfined phase

“Hidden” Fermi surface
Phases of ABJM-like theories

\[\langle b_{\pm} \rangle = 0 \]

Fractionalized Fermi liquid (FL*)
with Fermi surfaces of both quarks and mesinos

\[2A_c + 2A_f = \langle Q \rangle \]

U(1) gauge theory is in deconfined phase
Fractionalized Fermi liquid (FL*)
with Fermi surfaces of both quarks and mesinos

\[2A_c + 2A_f = \langle Q \rangle \]

Fractionalized Fermi liquid (FL*)
with Fermi surfaces of \textit{both} quarks and mesinos

U(1) gauge theory is in \textit{deconfined} phase
Fractionalized Fermi liquid (FL*) with Fermi surfaces of both quarks and mesinos

\[\langle b_\pm \rangle = 0 \]

\[2A_c + 2A_f = \langle Q \rangle \]

Fractionalized Fermi liquid (FL*) with Fermi surfaces of both quarks and mesinos

U(1) gauge theory is in deconfined phase

“Hidden” and visible Fermi surfaces co-exist
Key question:

How do we detect the “hidden Fermi surfaces” of fermions with gauge charges in the non-Fermi liquid phases?

These are not directly visible in the gauge-invariant fermion correlations computable via holography.
How do we detect the “hidden Fermi surfaces” of fermions with gauge charges in the non-Fermi liquid phases?

One promising answer:

Compute entanglement entropy

Entanglement entropy of Fermi surfaces

\[\rho_A = \text{Tr}_B \rho = \text{density matrix of region } A \]

Entanglement entropy \(S_{EE} = -\text{Tr} (\rho_A \ln \rho_A) \)
Logarithmic violation of “area law”: \(S_{EE} = \frac{1}{12} (k_F P) \ln(k_F P) \)

for a circular Fermi surface with Fermi momentum \(k_F \), where \(P \) is the perimeter of region A with an arbitrary smooth shape.

Logarithmic violation of “area law”: $S_{EE} = \frac{1}{12} (k_F P) \ln(k_F P)$

for a circular Fermi surface with Fermi momentum k_F, where P is the perimeter of region A with an arbitrary smooth shape.

Non-Fermi liquids have, at most, the “1/12” prefactor modified.

Exotic phases of compressible quantum matter

I. Field theory

II. Holography
Exotic phases of compressible quantum matter

I. Field theory

II. Holography
Begin with a CFT

Dirac fermions + gauge field +
$S = \int d^4 x \sqrt{-g} \left[\frac{1}{2\kappa^2} \left(R + \frac{6}{L^2} \right) \right]$
Apply a chemical potential to the “deconfined” CFT

\[\mu > 0 \]
The Maxwell-Einstein theory of the applied chemical potential yields a AdS$_4$-Reissner-Nordström black-brane

\[\mathcal{E}_r = \langle Q \rangle \]

\[S = \int d^4x \sqrt{-g} \left[\frac{1}{2\kappa^2} \left(R + \frac{6}{L^2} \right) - \frac{1}{4e^2} F_{ab} F^{ab} \right] \]

The Maxwell-Einstein theory of the applied chemical potential yields a AdS$_4$-Reissner-Nordström black-brane

At $T = 0$, we obtain an extremal black-brane, with a near-horizon (IR) metric of AdS$_2 \times R^2$

$$ds^2 = \frac{L^2}{6} \left(\frac{-dt^2 + dr^2}{r^2} \right) + dx^2 + dy^2$$
• Non-zero entropy density at $T = 0$

• Green’s function of a probe fermion (a *mesino*) can have a Fermi surface, but self energies are momentum independent, and the singular behavior is the same on and off the Fermi surface

• Deficit of order $\sim N^2$ in the volume enclosed by the mesino Fermi surfaces: presumably associated with “hidden Fermi surfaces” of gauge-charged particles (the *quarks*).

Holographic theory of a non-Fermi liquid (NFL)

Add a relevant “dilaton” field

\[r \]

Electric flux

\[E_r = \langle Q \rangle \]

\[S = \int d^4 x \sqrt{-g} \left[\frac{1}{2\kappa^2} \left(R - 2(\nabla \Phi)^2 - \frac{V(\Phi)}{L^2} \right) - \frac{Z(\Phi)}{4e^2} F_{ab} F^{ab} \right] \]

with \(Z(\Phi) = Z_0 e^{\alpha\Phi} \), \(V(\Phi) = -V_0 e^{\delta\Phi} \), as \(\Phi \to \infty \).

Holographic theory of a non-Fermi liquid (NFL)

Add a relevant “dilaton” field

\[r \]

\[\mathcal{E}_r = \langle Q \rangle \]

\[\mathcal{E}_r = \langle Q \rangle \]

Leads to metric

\[ds^2 = L^2 \left(-f(r) dt^2 + g(r) dr^2 + \frac{dx^2 + dy^2}{r^2} \right) \]

with \(f(r) \sim r^{-\gamma} \), \(g(r) \sim r^{\beta} \) as \(r \to \infty \).

With the choice of the exponents, α, δ, a large zoo of NFL phases appear possible. But the fate of the Luttinger count of Fermi surfaces seems unclear.
Holographic theory of a non-Fermi liquid (NFL)

Key idea:

Restrict attention to those models in which there is logarithmic violation of area law in the entanglement entropy. This restricts \(\delta = -\alpha/3 \) and \(g(r) \sim \text{constant} \), as \(r \to \infty \).

\[
ds^2 = L^2 \left(-\frac{dt^2}{r \gamma} + dr^2 + \frac{dx^2 + dy^2}{r^2} \right)
\]

Holographic theory of a non-Fermi liquid (NFL)

Evidence for “hidden” Fermi surface:

\[S_{EE} = F(\alpha)(P\sqrt{Q}) \ln(P\sqrt{Q}) \]

where \(P \) is the perimeter of the entangling region, and \(F(\alpha) \) is a known function of \(\alpha \) only.

- The dependence on \(Q \) and the shape of the entangling region is just as expected for a Fermi surface.

Logarithmic violation of “area law”: \[S_{EE} = \frac{1}{12} (k_F P) \ln(k_F P) \]

for a circular Fermi surface with Fermi momentum \(k_F \), where \(P \) is the perimeter of region A with an arbitrary smooth shape.

Non-Fermi liquids have, at most, the “1/12” prefactor modified.

Holographic theory of a non-Fermi liquid (NFL)

Evidence for “hidden” Fermi surface:

\[S_{EE} = F(\alpha)(P\sqrt{Q}) \ln(P\sqrt{Q}) \]

where \(P \) is the perimeter of the entangling region, and \(F(\alpha) \) is a known function of \(\alpha \) only.

- The dependence on \(Q \) and the shape of the entangling region is just as expected for a Fermi surface.

Holographic theory of a non-Fermi liquid (NFL) and a fractionalized Fermi liquid (FL*)

\[S_{EE} = F(\alpha)(P\sqrt{Q}) \ln(P\sqrt{Q}) \]

where \(P \) is the perimeter of the entangling region, and \(F(\alpha) \) is a known function of \(\alpha \) only.

- Adding probe fermions leads to a (visible) Fermi surface of “mesinos” as in a FL* phase, and a holographic entanglement entropy in which

\[Q \rightarrow Q - Q_{\text{mesinos}}. \]

So only the “hidden” Fermi surfaces of “quarks” are measured by the holographic minimal area formula.
In a deconfined NFL phase, the metric extends to infinity (representing critical IR modes), and all of the electric flux “leaks out”.
In a deconfined FL* phase, the metric extends to infinity, there is a mesino charge density in the bulk, and **only part** of the electric flux “leaks out”.

\[
\mathcal{E}_r = \langle Q \rangle - \langle Q_{\text{mesino}} \rangle
\]

Holographic theory of a fractionalized Fermi liquid (FL*)
In a confining FL phase, the metric terminates, all of the mesino density is in the bulk spacetime, and none of the electric flux “leaks out”.
Gauss Law in the bulk ⇔ Luttinger theorem on the boundary
Consider QED$_4$, with full quantum fluctuations,

$$ S = \int d^4 x \sqrt{g} \left[\frac{1}{4e^2} F_{ab} F^{ab} + i (\bar{\psi} \Gamma^M D_M \psi + m \bar{\psi} \psi) \right]. $$

in a metric which is AdS$_4$ in the UV, and confining in the IR. A simple model

$$ ds^2 = \frac{1}{r^2} (dr^2 - dt^2 + dx^2 + dy^2) \quad , \quad r < r_m $$

with r_m determined by the confining scale.
Massive Dirac fermions at zero chemical potential

Dispersion \(E_{\ell}(k) = \sqrt{k^2 + M_{\ell}^2} \)

Masses \(M_{\ell} \sim 1/r_m \)
Holographic theory of a Fermi liquid (FL)

Massive Dirac fermions at zero chemical potential

Dispersion $E_\ell(k) = \sqrt{k^2 + M_\ell^2}$
Masses $M_\ell \sim 1/r_m$

Almost all previous holographic theories have considered the situation where the spacing between the $E_\ell(k)$ vanishes, and an infinite number of $E_\ell(k)$ are relevant.
The spectrum at non-zero chemical potential is determined by self-consistently solving the Dirac equation and Gauss’s law:

$$
\left(\bar{\Gamma} \cdot \vec{D} + m \right) \Psi_\ell = E_\ell \Psi_\ell \ ; \ \nabla_r \mathcal{E}_r = \sum_\ell \int \frac{d^2k}{4\pi^2} \Psi^\dagger_\ell(k, z) \Psi_\ell(k, z) f(E_\ell(k))
$$

where \(\mathcal{E} \) is the electric field, and \(f(E) \) is the Fermi function.
• The confining geometry implies that all gauge and graviton modes are gapped (modulo Landau damping from the Fermi surface).

\begin{equation}
E_r^{\text{boundary}} - E_r^{\text{IR}} = A
\end{equation}

But \(E_r^{\text{boundary}} = \frac{Q}{4\pi} \), by the rules of AdS/CFT. So we obtain the usual Luttinger theorem of a Landau Fermi liquid, \(A = \frac{Q}{4\pi} \) provided \(E_r^{\text{IR}} = 0 \).
- The confining geometry implies that all gauge and graviton modes are gapped (modulo Landau damping from the Fermi surface).

- We can apply standard many body theory results, treating this multi-band system in 2 dimensions, like a 2DEG at a semiconductor surface.
The confining geometry implies that all gauge and graviton modes are gapped (modulo Landau damping from the Fermi surface).

We can apply standard many body theory results, treating this multi-band system in 2 dimensions, like a 2DEG at a semiconductor surface.

Integrating Gauss’s Law, we obtain

\[\mathcal{E}_r(\text{boundary}) - \mathcal{E}_r(\text{IR}) = A \]

But \(\mathcal{E}_r(\text{boundary}) = \langle Q \rangle \), by the rules of AdS/CFT. So we obtain the usual Luttinger theorem of a Landau Fermi liquid,

\[A = \langle Q \rangle \]

provided \(\mathcal{E}_r(\text{IR}) = 0 \).
Holographic theory of a Fermi liquid (FL)

Electric flux

Gauss Law in the bulk
\[\mathcal{E}_r = \langle Q \rangle \]

\[\mathcal{E}_r = 0 \]

In a confining FL phase, the metric terminates, all of the mesino density is in the bulk spacetime, and \textit{none} of the electric flux “leaks out”.

Gauss Law in the bulk
\[\Rightarrow \text{Luttinger theorem on the boundary} \]
Conclusions

Compressible quantum matter

Evidence for *hidden Fermi surfaces* in compressible states obtained for a class of holographic Einstein-Maxwell-dilaton theories. These theories describe a *non-Fermi liquid* (NFL) state of gauge theories at non-zero density.
Conclusions

Compressible quantum matter

Evidence for hidden Fermi surfaces in compressible states obtained for a class of holographic Einstein-Maxwell-dilaton theories. These theories describe a non-Fermi liquid (NFL) state of gauge theories at non-zero density.

Fermi liquid (FL) state described by a confining holographic geometry
Evidence for hidden Fermi surfaces in compressible states obtained for a class of holographic Einstein-Maxwell-dilaton theories. These theories describe a non-Fermi liquid (NFL) state of gauge theories at non-zero density.

Fermi liquid (FL) state described by a confining holographic geometry.

Hidden Fermi surfaces can co-exist with Fermi surfaces of mesinos, leading to a fractionalized Fermi liquid (FL*)