Quantum criticality, the cuprate superconductors, and the AdS/CFT correspondence

Niels Bohr lecture, Copenhagen, May 5, 2010

Talk online: sachdev.physics.harvard.edu
Max Metlitski, Harvard

Eun Gook Moon, Harvard

arXiv:1001.1153

1. Coupled dimer antiferromagnets
 Introduction to quantum criticality

2. Theory of Ising-nematic ordering in the cuprate metals
 Strongly-coupled field theory

3. The AdS/CFT correspondence
 Phases of quantum matter at strong coupling
Outline

1. Coupled dimer antiferromagnets
 Introduction to quantum criticality

2. Theory of Ising-nematic ordering in the cuprate metals
 Strongly-coupled field theory

3. The AdS/CFT correspondence
 Phases of quantum matter at strong coupling
The cuprate superconductors
Square lattice antiferromagnet

\[H = \sum_{\langle ij \rangle} J_{ij} \vec{S}_i \cdot \vec{S}_j \]

Ground state has long-range Néel order

Order parameter is a single vector field \(\vec{\phi} = \eta_i \vec{S}_i \)

\(\eta_i = \pm 1 \) on two sublattices

\(\langle \vec{\phi} \rangle \neq 0 \) in Néel state.
TlCuCl$_3$
An insulator whose spin susceptibility vanishes exponentially as the temperature T tends to zero.
Square lattice antiferromagnet

\[H = \sum_{\langle ij \rangle} J_{ij} \vec{S}_i \cdot \vec{S}_j \]

Ground state has long-range Néel order

Order parameter is a single vector field \(\vec{\varphi} = \eta_i \vec{S}_i \)

\(\eta_i = \pm 1 \) on two sublattices

\(\langle \vec{\varphi} \rangle \neq 0 \) in Néel state.
Square lattice antiferromagnet

$$H = \sum_{\langle ij \rangle} J_{ij} \vec{S}_i \cdot \vec{S}_j$$

Weaken some bonds to induce spin entanglement in a new quantum phase
Square lattice antiferromagnet

\[H = \sum_{\langle ij \rangle} J_{ij} \vec{S}_i \cdot \vec{S}_j \]

Ground state is a "quantum paramagnet" with spins locked in valence bond singlets

\[= \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right) \]
\[\lambda_c = \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right) \]
Quantum critical point with non-local entanglement in spin wavefunction

$$\rho = \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right)$$
Excitation spectrum in the paramagnetic phase
TlCuCl$_3$ at ambient pressure

FIG. 1. Measured neutron profiles in the a^*c^* plane of TlCuCl$_3$
for $i=(1.35,0,0)$, $ii=(0,0,3.15)$ [r.l.u]. The spectrum at $T=1.5$ K

N. Cavadini, G. Heigold, W. Henggeler, A. Furrer, H.-U. Güdel, K. Krämer
Sharp spin 1 particle excitation above an energy gap (spin gap)

Excitation spectrum in the Néel phase
Excitation spectrum in the Néel phase

Spin waves

Wednesday, May 5, 2010
Excitation spectrum in the Néel phase

Spin waves
Description using Landau-Ginzburg field theory

\[S = \int d^2r d\tau \left[(\partial_\tau \bar{\phi})^2 + c^2 (\nabla_r \bar{\phi})^2 + (\lambda - \lambda_c) \bar{\phi}^2 + u (\bar{\phi}^2)^2 \right] \]

\(\text{O}(3) \) order parameter \(\bar{\phi} \)

\(\lambda \)

\(\lambda_c \)

CFT3
Excitation spectrum in the paramagnetic phase

\[V(\vec{\varphi}) = (\lambda - \lambda_c)\varphi^2 + u (\varphi^2)^2 \]

\[\lambda > \lambda_c \]
Excitation spectrum in the paramagnetic phase

\[V(\vec{\varphi}) = (\lambda - \lambda_c)\varphi^2 + u(\varphi^2)^2 \]

\[\lambda > \lambda_c \]

Spin $S = 1$ “triplon”
Excitation spectrum in the paramagnetic phase

\[V(\phi) = (\lambda - \lambda_c)\phi^2 + u(\phi^2)^2 \]

\[\lambda > \lambda_c \]

Spin \(S = 1 \)

“triplon”
Excitation spectrum in the paramagnetic phase

\[V(\vec{\phi}) = (\lambda - \lambda_c)\phi^2 + u(\phi^2)^2 \]

\[\lambda > \lambda_c \]

Spin \(S = 1 \) “triplon”
Excitation spectrum in the paramagnetic phase

$V(\vec{\phi}) = (\lambda - \lambda_c)\vec{\phi}^2 + u(\vec{\phi}^2)^2$

$\lambda > \lambda_c$

Spin $S = 1$

“triplon”
Excitation spectrum in the Néel phase
Excitation spectrum in the Néel phase

Spin waves
Excitation spectrum in the Néel phase

Spin waves
Excitation spectrum in the Néel phase

\[V(\bar{\varphi}) = (\lambda - \lambda_c)\bar{\varphi}^2 + u(\bar{\varphi}^2)^2 \]

\[\lambda < \lambda_c \]
Excitation spectrum in the Néel phase

Field theory yields spin waves ("Goldstone" modes) but also an additional longitudinal "Higgs" particle

\[V(\bar{\varphi}) = (\lambda - \lambda_c)\bar{\varphi}^2 + u (\bar{\varphi}^2)^2 \]

\(\lambda < \lambda_c \)
TlCuCl$_3$ with varying pressure

Observation of $3 \rightarrow 2$ low energy modes, emergence of new Higgs particle in the Néel phase, and vanishing of Néel temperature at the quantum critical point.

Prediction of quantum field theory

Potential for $\bar{\phi}$ fluctuations: $V(\bar{\phi}) = (\lambda - \lambda_c)\bar{\phi}^2 + u (\bar{\phi}^2)^2$

Paramagnetic phase, $\lambda > \lambda_c$

Expand about $\bar{\phi} = 0$:

$V(\bar{\phi}) \approx (\lambda - \lambda_c)\bar{\phi}^2$

Yields 3 particles with energy gap $\sim \sqrt{(\lambda - \lambda_c)}$
Prediction of quantum field theory

Potential for $\bar{\phi}$ fluctuations: $V(\bar{\phi}) = (\lambda - \lambda_c)\bar{\phi}^2 + u(\bar{\phi}^2)^2$

Paramagnetic phase, $\lambda > \lambda_c$

Expand about $\bar{\phi} = 0$:

$V(\bar{\phi}) \approx (\lambda - \lambda_c)\bar{\phi}^2$

Yields 3 particles with energy gap $\sim \sqrt{(\lambda - \lambda_c)}$

Néel phase, $\lambda < \lambda_c$

Expand $\bar{\phi} = (0, 0, \sqrt{(\lambda_c - \lambda)/(2u)}) + \bar{\phi}_1$:

$V(\bar{\phi}) \approx 2(\lambda_c - \lambda)\bar{\phi}_{1z}^2$

Yields 2 gapless spin waves and one Higgs particle with energy gap $\sim \sqrt{2(\lambda_c - \lambda)}$
Prediction of quantum field theory

\[
\frac{\text{Energy of Higgs particle}}{\text{Energy of triplon}} = \sqrt{2}
\]

\[V(\varphi) = (\lambda - \lambda_c)\varphi^2 + u(\varphi^2)^2\]

\[\sqrt{2E(p < p_c)} \quad \text{unscaled}\]

\[\text{TlCuCl}_3\]
\[p_c = 1.07 \text{ kbar}\]
\[T = 1.85 \text{ K}\]

S. Sachdev, arXiv:0901.4103
The order parameter is given by:

\[S = \int d^2r d\tau \left[(\partial_\tau \varphi)^2 + c^2 (\nabla_r \varphi)^2 + (\lambda - \lambda_c) \varphi^2 + u (\varphi^2)^2 \right] \]

with the O(3) order parameter \(\varphi \).

The critical points are marked by \(\lambda_c \) and \(\lambda \). For \(\lambda > \lambda_c \), the system is in the symmetric phase, and for \(\lambda < \lambda_c \), it is in the broken phase. The state vector is

\[\frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \]
Classical spin waves

Quantum critical

Dilute triplon gas

Neel order

Pressure in TlCuCl$_3$

Classical spin waves

Quantum critical

Dilute triplon gas

CFT3 at $T > 0$

Neel order

Pressure in TlCuCl$_3$

CFT3 at $T>0$

Quantum critical

Classical spin waves

Dilute triplon gas

Neel order

Pressure in TlCuCl$_3$

Strong coupling problem I: dynamics and transport at times \(> \hbar/(k_B T) \) where transport and damping constants are universally determined fundamental constants of nature.
Outline

1. Coupled dimer antiferromagnets
 Introduction to quantum criticality

2. Theory of Ising-nematic ordering in the cuprate metals
 Strongly-coupled field theory

3. The AdS/CFT correspondence
 Phases of quantum matter
 at strong coupling
Outline

1. Coupled dimer antiferromagnets
 Introduction to quantum criticality

2. Theory of Ising-nematic ordering in the cuprate metals
 Strongly-coupled field theory

3. The AdS/CFT correspondence
 Phases of quantum matter at strong coupling
The cuprate superconductors
Square lattice antiferromagnet

\[H = \sum_{\langle ij \rangle} J_{ij} \vec{S}_i \cdot \vec{S}_j \]

Ground state has long-range Néel order

Order parameter is a single vector field \(\vec{\varphi} = \eta_i \vec{S}_i \)

\(\eta_i = \pm 1 \) on two sublattices

\(\langle \vec{\varphi} \rangle \neq 0 \) in Néel state.
Doped square lattice antiferromagnet

\[H = \sum_{\langle ij \rangle} J_{ij} \vec{S}_i \cdot \vec{S}_j \]

Ground state has long-range Néel order

Order parameter is a single vector field \(\vec{\varphi} = \eta_i \vec{S}_i \)

\(\eta_i = \pm 1 \) on two sublattices

\(\langle \vec{\varphi} \rangle \neq 0 \) in Néel state.
Central ingredients in cuprate phase diagram: antiferromagnetism, superconductivity, and change in Fermi surface

K.M. Shen et al., Science 2005

M. Platé et al., PRL 2005

Smaller hole Fermi-pockets

Large hole Fermi surface
Central ingredients in cuprate phase diagram: antiferromagnetism, superconductivity, and change in Fermi surface

Smaller hole Fermi-pockets

Large hole Fermi surface

K.M. Shen et al., Science 2005

M. Platé et al., PRL 2005
Central ingredients in cuprate phase diagram: antiferromagnetism, superconductivity, and change in Fermi surface.

![Phase Diagram Image](image-url)

K.M. Shen et al., Science 2005

M. Pláté et al., PRL 2005

Smaller hole Fermi-pockets

Large hole Fermi surface
STM measurements of $Z(r)$, the energy asymmetry in density of states in Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$.

STM measurements of $Z(r)$, the energy asymmetry in density of states in $\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+\delta}$.

$O_N = Z_A + Z_B - Z_C - Z_D$

STM measurements of $Z(r)$, the energy asymmetry in density of states in Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$.

$O_N^c(r, e = 1)$

Strong anisotropy of electronic states between x and y directions:

Electronic “Ising-nematic” order

$O_N = Z_A + Z_B - Z_C - Z_D$
Central ingredients in cuprate phase diagram: antiferromagnetism, superconductivity, and change in Fermi surface

Strange Metal

K.M. Shen et al., Science 2005

M. Platé et al., PRL 2005

Smaller hole Fermi-pockets

Large hole Fermi surface
Quantum criticality of Ising-nematic ordering

Fermi surface with full square lattice symmetry
Quantum criticality of Ising-nematic ordering

Spontaneous elongation along x direction:
Quantum criticality of Ising-nematic ordering

Spontaneous elongation along y direction:
Ising-nematic order parameter

\[\phi \sim \int d^2 k \left(\cos k_x - \cos k_y \right) c_{k\sigma}^\dagger c_{k\sigma} \]

Measures spontaneous breaking of square lattice point-group symmetry of underlying Hamiltonian
Quantum criticality of Ising-nematic ordering

Spontaneous elongation along x direction:
Ising order parameter $\phi > 0$.

Wednesday, May 5, 2010
Quantum criticality of Ising-nematic ordering

Spontaneous elongation along y direction:
Ising order parameter $\phi < 0$.

Wednesday, May 5, 2010
Quantum criticality of Ising-nematic ordering

Pomeranchuk instability as a function of coupling r

$\langle \phi \rangle \neq 0$

$\langle \phi \rangle = 0$
Quantum criticality of Ising-nematic ordering

Phase diagram as a function of T and r

$T_l \text{n}$

$\langle \phi \rangle \neq 0$

$\langle \phi \rangle = 0$

T_c

Wednesday, May 5, 2010
Quantum criticality of Ising-nematic ordering

Phase diagram as a function of T and r
Quantum criticality of Ising-nematic ordering

Phase diagram as a function of T and r
Quantum criticality of Ising-nematic ordering

Phase diagram as a function of T and r

Classical $d=2$ Ising criticality

T_{I-n}

$\langle \phi \rangle \neq 0$

$\langle \phi \rangle = 0$

$D=2+1$ Ising criticality?
Central ingredients in cuprate phase diagram: antiferromagnetism, superconductivity, and change in Fermi surface
Quantum criticality of Ising-nematic ordering

Phase diagram as a function of T and r
Quantum criticality of Ising-nematic ordering

Phase diagram as a function of T and r

Quantum critical

$\langle \phi \rangle \neq 0$

$\langle \phi \rangle = 0$

T^*

T_{I-n}

$T = 0$

T_c

Wednesday, May 5, 2010
Quantum criticality of Ising-nematic ordering

Phase diagram as a function of T and r
Fermi liquid theory

\[S_{\text{FL}} = \int d\Omega_{\hat{n}} \int dx_{\perp} \psi_{\hat{n}a}^{\dagger}(x_{\perp}) \left(\frac{\partial}{\partial \tau} - iv_{F}(\hat{n}) \frac{\partial}{\partial x_{\perp}} \right) \psi_{\hat{n}a}(x_{\perp}) \]

Infinite number of 1+1 dimensional chiral fermions
Critical point is described by an infinite set of 2+1 dimensional field theories, one for each direction \hat{q}.

- Critical point is described by an infinite set of 2+1 dimensional field theories, one for each direction \hat{q}.

Wednesday, May 5, 2010
Critical point is described by an infinite set of 2+1 dimensional field theories, one for each direction \hat{q}.
Non-Fermi liquid quantum critical point

Strong coupling problem II: Infinite number of 2+1 dimensional field theories at Ising-nematic quantum critical point

- Critical point is described by an infinite set of 2+1 dimensional field theories, one for each direction \hat{q}.
Outline

1. Coupled dimer antiferromagnets
 Introduction to quantum criticality

2. Theory of Ising-nematic ordering in the cuprate metals
 Strongly-coupled field theory

3. The AdS/CFT correspondence
 Phases of quantum matter at strong coupling
Outline

1. Coupled dimer antiferromagnets
 Introduction to quantum criticality

2. Theory of Ising-nematic ordering in the cuprate metals
 Strongly-coupled field theory

3. The AdS/CFT correspondence
 Phases of quantum matter at strong coupling
Field theories in D spacetime dimensions are characterized by couplings g which obey the renormalization group equation

$$u \frac{dg}{du} = \beta(g)$$

where u is the energy scale. The RG equation is local in energy scale, i.e., the RHS does not depend upon u.

Wednesday, May 5, 2010
Field theories in D spacetime dimensions are characterized by couplings g which obey the renormalization group equation

$$u \frac{dg}{du} = \beta(g)$$

where u is the energy scale. The RG equation is local in energy scale, i.e. the RHS does not depend upon u.

Key idea: ⇒ Implement u as an extra dimension, and map to a local theory in $D+1$ dimensions.
At the RG fixed point, $\beta(g) = 0$, the D dimensional field theory is invariant under the scale transformation

$$x^\mu \rightarrow x^\mu / b \quad , \quad u \rightarrow b u$$
At the RG fixed point, $\beta(g) = 0$, the D dimensional field theory is invariant under the scale transformation

$$x^\mu \rightarrow x^\mu / b \quad , \quad u \rightarrow bu$$

This is an invariance of the *metric* of the theory in $D + 1$ dimensions. The unique solution is

$$ds^2 = \left(\frac{u}{L}\right)^2 dx^\mu dx_\mu + L^2 \frac{du^2}{u^2}.$$

Or, using the length scale $z = L^2 / u$

$$ds^2 = L^2 \frac{dx^\mu dx_\mu + dz^2}{z^2}.$$

This is the space AdS_{D+1}, and L is the AdS radius.
Figure 1: The extra (‘radial’) dimension of the bulk is the resolution scale of the field theory. The left figure indicates a series of block spin transformations labelled by a parameter z. The right figure is a cartoon of AdS space, which organizes the field theory information in the same way. In this sense, the bulk picture is a hologram: excitations with different wavelengths get put in different places in the bulk image.
AdS/CFT correspondence

The quantum theory of a black hole in a 3+1-dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions.

3+1 dimensional AdS space

Maldacena, Gubser, Klebanov, Polyakov, Witten
AdS/CFT correspondence
The quantum theory of a black hole in a 3+1-dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions
AdS/CFT correspondence

The quantum theory of a black hole in a 3+1-dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions.

- **3+1 dimensional AdS space**
- **Quantum criticality in 2+1 dimensions**
- **Black hole temperature = temperature of quantum criticality**

Maldacena, Gubser, Klebanov, Polyakov, Witten

Wednesday, May 5, 2010
AdS/CFT correspondence

The quantum theory of a black hole in a 3+1-dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions.

Black hole entropy = entropy of quantum criticality

3+1 dimensional AdS space

Quantum criticality in 2+1 dimensions
AdS/CFT correspondence
The quantum theory of a black hole in a 3+1-dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions

Maldacena, Gubser, Klebanov, Polyakov, Witten
AdS/CFT correspondence

The quantum theory of a black hole in a 3+1-dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions.

3+1 dimensional AdS space

Quantum criticality in 2+1 dimensions

Friction of quantum criticality = waves falling into black hole

Kovtun, Policastro, Son
AdS/CFT correspondence
The quantum theory of a black hole in a 3+1-dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions.

3+1 dimensional AdS space

Quantum criticality in 2+1 dimensions

Friction of quantum criticality = waves falling into black hole

Kovtun, Policastro, Son

Wednesday, May 5, 2010
AdS/CFT correspondence

The quantum theory of a black hole in a 3+1-dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions.

Strong coupling problem I: General solution of magneto-thermo-electric transport in quantum critical region.

C. P. Herzog, P. Kovtun, S. Sachdev, and D. T. Son,

S. A. Hartnoll, P. K. Kovtun, M. Müller, and S. Sachdev,
AdS/CFT correspondence

3+1 dimensional AdS space

Quantum criticality in 2+1 dimensions
AdS/CFT correspondence

Move away from the quantum critical point to a system of matter at non-zero density: equivalent to adding an electrical charge to the black hole.

3+1 dimensional AdS space

Black hole with electrical charge

Finite density matter in 2+1 dimensions
AdS/CFT correspondence

Examine the free energy and Green’s function of a probe particle

3+1 dimensional AdS space

Black hole with electrical charge

Finite density matter in 2+1 dimensions
Green’s function of a fermion

\[G(k, \omega) \approx \frac{1}{\omega - v_F(k - k_F) - i\omega \theta(k)} \]

Green’s function of a fermion

\[G(k, \omega) \approx \frac{1}{\omega - v_F(k - k_F) - i\omega \theta(k)} \]

Similar to our theory of the singular Fermi surface near the Ising-nematic quantum critical point

Wednesday, May 5, 2010
Green’s function of a fermion

\[G(k, \omega) \approx \frac{1}{\omega - v_F(k - k_F) - i\omega^{\theta(k)}} \]

Similar to our theory of the singular Fermi surface near the Ising-nematic quantum critical point

Green’s function of a fermion

\[G(k, \omega) \approx \omega - v_F (k - k_F) - i\omega \theta(k) \]

Similar to our theory of the singular Fermi surface near the Ising-nematic quantum critical point.

Strong coupling problem II:
Suggestive and promising similarities between stringy and cond-mat results. Physical interpretation of string theory results remains unclear.

Wednesday, May 5, 2010
Theories for the onset of Ising-nematic order (and spin density wave order) in metals are strongly coupled in two dimensions
Conclusions

The AdS/CFT offers promise in providing a new understanding of strongly interacting quantum matter at non-zero density