Quantum Criticality and Black Holes

Talk online: sachdev.physics.harvard.edu
Particle theorists

Sean Hartnoll, KITP
Christopher Herzog, Princeton
Pavel Kovtun, Victoria
Dam Son, Washington
Condensed matter theorists

Markus Mueller
Geneva

Cenke Xu
Harvard

Yang Qi
Harvard
Three foci of modern physics

Quantum phase transitions
Three foci of modern physics

Quantum phase transitions

Many QPTs of correlated electrons in 2+1 dimensions are described by conformal field theories (CFTs)
Three foci of modern physics

Quantum phase transitions

Black holes
Three foci of modern physics

Quantum phase transitions

Black holes

Bekenstein and Hawking originated the quantum theory, which has found fruition in string theory.
Three foci of modern physics

- Quantum phase transitions
- Hydrodynamics
- Black holes
Three foci of modern physics

Quantum phase transitions

Hydrodynamics
Universal description of fluids based upon conservation laws and positivity of entropy production

Black holes
Three foci of modern physics

- Quantum phase transitions
- Hydrodynamics
- Black holes
Three foci of modern physics

Quantum phase transitions

Hydrodynamics

Canonical problem in condensed matter: transport properties of a correlated electron system

Black holes
Three foci of modern physics

Quantum phase transitions

Hydrodynamics

Canonical problem in condensed matter: transport properties of a correlated electron system

Black holes

New insights and results from detour unifies disparate fields of physics
Three foci of modern physics

- Quantum phase transitions
- Hydrodynamics
- Black holes
Three foci of modern physics

Quantum phase transitions

Many QPTs of correlated electrons in 2+1 dimensions are described by conformal field theories (CFTs)

Hydrodynamics

Black holes
Three foci of modern physics

Quantum phase transitions

Many QPTs of correlated electrons in 2+1 dimensions are described by conformal field theories (CFTs)

Hydrodynamics

Black holes
Square lattice antiferromagnet

\[H = \sum_{\langle ij \rangle} J_{ij} \vec{S}_i \cdot \vec{S}_j \]

Ground state has long-range Néel order

Order parameter is a single vector field \[\vec{\varphi} = \eta_i \vec{S}_i \]

\[\eta_i = \pm 1 \] on two sublattices

\[\langle \vec{\varphi} \rangle \neq 0 \] in Néel state.
Square lattice antiferromagnet

\[H = \sum_{\langle ij \rangle} J_{ij} \vec{S}_i \cdot \vec{S}_j \]

Weaken some bonds to induce spin entanglement in a new quantum phase
Quantum critical point with non-local entanglement in spin wavefunction

The $O(3)$ order parameter $\bar{\varphi}$ is given by:

$$S = \int d^2r d\tau \left[(\partial_\tau \varphi)^2 + c^2(\nabla_r \bar{\varphi})^2 + s \bar{\varphi}^2 + u (\bar{\varphi}^2)^2 \right]$$

And it is related to the transformation:

$$\xi = \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right)$$
Pressure in TlCuCl$_3$
Excitation spectrum in the paramagnetic phase

Spin $S = 1$

“triplon”
Excitation spectrum in the paramagnetic phase

Spin $S = 1$

“triplon”
Excitation spectrum in the paramagnetic phase

Spin $S = 1$ “triplon”
Excitation spectrum in the paramagnetic phase

$\vec{\phi}$

Spin $S = 1$

“triplon”

$V(\vec{\phi})$

λ_c

λ
Excitation spectrum in the paramagnetic phase

Spin $S = 1$ “triplon”
Excitation spectrum in the Néel phase

Spin waves ("Goldstone" modes) and a longitudinal "Higgs" particle
Observation of $3 \rightarrow 2$ low energy modes, emergence of new Higgs particle in the Néel phase, and vanishing of Néel temperature at the quantum critical point

Prediction of quantum field theory

\[
\frac{\text{Energy of “Higgs” particle}}{\text{Energy of triplon}} = \sqrt{2}
\]

![Graph showing the relationship between energy and pressure for TlCuCl₃](image)

TlCuCl₃

\(p_c = 1.07 \text{ kbar}\)

\(T = 1.85 \text{ K}\)

\[Q=(0 4 0)\]

\[E(p < p_c)\]

\[E(p > p_c)\]

\[\sqrt{2} \times E(p < p_c), E(p > p_c) \text{ [meV]}\]

Half-filled band \rightarrow Mott insulator with spin $S = 1/2$

Triangular lattice of $[\text{Pd(dmit)}_2]_2$
\rightarrow frustrated quantum spin system

\[H = \sum_{\langle ij \rangle} J_{ij} \vec{S}_i \cdot \vec{S}_j + \ldots \]

\(\vec{S}_i \Rightarrow \) spin operator with \(S = 1/2 \)
Anisotropic triangular lattice antiferromagnet

Broken spin rotation symmetry

Neel ground state for small J'/J
Anisotropic triangular lattice antiferromagnet

Possible ground state for intermediate J'/J

Anisotropic triangular lattice antiferromagnet

Broken lattice space group symmetry

\[\frac{|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle}{\sqrt{2}} \]

Valence bond solid (VBS)

Possible ground state for intermediate \(J'/J \)

Anisotropic triangular lattice antiferromagnet

Broken lattice space group symmetry

Valence bond solid (VBS)

Possible ground state for intermediate J'/J

Anisotropic triangular lattice antiferromagnet

Broken lattice space group symmetry

\[
\text{Possible ground state for intermediate } J'/J
\]

Valence bond solid (VBS)

Anisotropic triangular lattice antiferromagnet

Broken lattice space group symmetry

Valence bond solid (VBS)

Possible ground state for intermediate J'/J

Magnetic Criticality

Magnetic Criticality

Magnetic Criticality

Observation of a valence bond solid (VBS) in ETMe$_3$P[Pd(dmit)$_2$]$_2$

X-ray scattering

Spin gap \sim 40 K
$J \sim$ 250 K

Magnetic Criticality

Theoretical global phase diagram

Valence bond solid (VBS)

Z\textsubscript{2} spin liquid

Neel antiferromagnet

Spiral antiferromagnet

Cenke Xu and S. Sachdev, arXiv:0811.1220
Theoretical global phase diagram

Valence bond solid (VBS)

Z_2 spin liquid

Neel antiferromagnet

Spiral antiferromagnet

CFTs

Cenke Xu and S. Sachdev, arXiv:0811.1220
Theoretical global phase diagram

CFTs described by a doubled U(1) Chern Simons theory of spinons z_α and visons v_a. (Structure similar to the supersymmetric ABJM theory of the M2 brane)

$$\mathcal{L} = \sum_{\alpha=1}^{2} \left\{ |(\partial_\mu - ia_\mu)z_\alpha|^2 + s_z|z_\alpha|^2 \right\}$$

$$+ \sum_{a=1}^{N_v} \left\{ |(\partial_\mu - ib_\mu)v_a|^2 + s_v|v_a|^2 \right\}$$

$$+ \frac{i}{\pi} \epsilon_{\mu\nu\lambda} a_\mu \partial_\nu b_\lambda + \cdots$$

Cenke Xu and S. Sachdev, arXiv:0811.1220
Magnetic Criticality

$T_N (K)$

$\sqrt{J'/J}$

Magnetic Criticality

Quantum criticality described by CFT

Neel order

Spin gap

VBS order

$X\text{[Pd(dmit)$_2$]}_2$

$\text{Et}_2\text{Me}_2\text{Sb (CO)}$

$\sqrt{J'/J}$

Three foci of modern physics

Quantum phase transitions

Hydrodynamics

Black holes
Three foci of modern physics

Quantum phase transitions

Hydrodynamics

Canonical problem in condensed matter: transport properties of a correlated electron system

Black holes
Three foci of modern physics

Quantum phase transitions

Hydrodynamics

Canonical problem in condensed matter: transport properties of a correlated electron system

Black holes
Superfluid-insulator transition

Indium Oxide films

Superfluid-insulator transition

Ultracold 87Rb atoms - bosons

Superfluid

Insulator

0 \rightarrow g_c \rightarrow g
Graph showing a phase transition between a Superfluid phase and an Insulator phase, with a Quantum critical region defined by the T_{KT} and g_c axes.
Classical vortices and wave oscillations of the condensate

Dilute Boltzmann/Landau gas of particle and holes

Quantum critical

Superfluid

Insulator

T_{KT}

T_c
CFT at $T>0$

Quantum critical

Superfluid

Insulator

T_{KT}

g_c
Quantum critical transport

Quantum “perfect fluid” with shortest possible relaxation time, τ_R

\[\tau_R \gtrsim \frac{\hbar}{k_B T} \]

Quantum critical transport

Transport co-efficients not determined by collision rate, but by universal constants of nature

Electrical conductivity

\[\sigma = \frac{e^2}{\hbar} \times [\text{Universal constant } O(1)] \]

Quantum critical transport

Transport co-efficients not determined by collision rate, but by universal constants of nature

Momentum transport

\[\frac{\eta}{s} \equiv \frac{\text{viscosity}}{\text{entropy density}} = \frac{\hbar}{k_B} \times [\text{Universal constant } \mathcal{O}(1)] \]
Superfluid-insulator transition

Indium Oxide films

Three foci of modern physics

Quantum phase transitions

Hydrodynamics

Black holes
Three foci of modern physics

Quantum phase transitions → Hydrodynamics

Canonical problem in condensed matter: transport properties of a correlated electron system

Black holes

New insights and results from detour unifies disparate fields of physics
Three foci of modern physics

Quantum phase transitions

Canonical problem in condensed matter: transport properties of a correlated electron system

Hydrodynamics

New insights and results from detour unifies disparate fields of physics

Black holes
Objects so massive that light is gravitationally bound to them.
Black Holes

Objects so massive that light is gravitationally bound to them.

The region inside the black hole horizon is causally disconnected from the rest of the universe.

Horizon radius $R = \frac{2GM}{c^2}$
Black Hole Thermodynamics

Bekenstein and Hawking discovered astonishing connections between the Einstein theory of black holes and the laws of thermodynamics.

Entropy of a black hole $S = \frac{k_B A}{4\ell_P^2}$

where A is the area of the horizon, and $\ell_P = \sqrt{\frac{G\hbar}{c^3}}$ is the Planck length.

The Second Law: $dA \geq 0$
Bekenstein and Hawking discovered astonishing connections between the Einstein theory of black holes and the laws of thermodynamics.

Horizon temperature: $4\pi k_B T = \frac{\hbar^2}{2M\ell_P^2}$
AdS/CFT correspondence

The quantum theory of a black hole in a 3+1-dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions.
AdS/CFT correspondence
The quantum theory of a black hole in a 3+1-dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions.
AdS/CFT correspondence
The quantum theory of a black hole in a 3+1-dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions.
AdS/CFT correspondence

The quantum theory of a black hole in a 3+1-dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions.

- **3+1 dimensional AdS space**
- **Quantum criticality in 2+1 dimensions**
- **Black hole entropy = entropy of quantum criticality**

Strominger, Vafa
AdS/CFT correspondence

The quantum theory of a black hole in a 3+1-dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions.
AdS/CFT correspondence

The quantum theory of a black hole in a 3+1-dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions.

- **3+1 dimensional AdS space**
- **Quantum criticality in 2+1 dimensions**
- **Friction of quantum criticality = waves falling into black hole**

Kovtun, Policastro, Son
Three foci of modern physics

Quantum phase transitions

Hydrodynamics

Canonical problem in condensed matter: transport properties of a correlated electron system

Black holes

New insights and results from detour unifies disparate fields of physics
Three foci of modern physics

1. Quantum phase transitions

2. Hydrodynamics

Canonical problem in condensed matter: transport properties of a correlated electron system

3. Black holes

New insights and results from detour unifies disparate fields of physics
Hydrodynamics of quantum critical systems

1. Use quantum field theory + quantum transport equations + classical hydrodynamics

 Uses physical model but strong-coupling makes explicit solution difficult
Three foci of modern physics

1. Quantum phase transitions

2. Hydrodynamics

3. Black holes

Canonical problem in condensed matter: transport properties of a correlated electron system

New insights and results from detour unifies disparate fields of physics.
Three foci of modern physics

1. Quantum phase transitions
2. Canonical problem in condensed matter: transport properties of a correlated electron system
3. Hydrodynamics

New insights and results from detour unifies disparate fields of physics

Black holes
Hydrodynamics of quantum critical systems

1. Use quantum field theory + quantum transport equations + classical hydrodynamics
 Uses physical model but strong-coupling makes explicit solution difficult

2. Solve Einstein-Maxwell equations in the background of a black hole in AdS space
 Yields hydrodynamic relations which apply to general classes of quantum critical systems. First exact numerical results for transport co-efficients (for supersymmetric systems).
Hydrodynamics of quantum critical systems

1. Use quantum field theory + quantum transport equations + classical hydrodynamics
 Uses physical model but strong-coupling makes explicit solution difficult

2. Solve Einstein-Maxwell equations in the background of a black hole in AdS space
 Yields hydrodynamic relations which apply to general classes of quantum critical systems. First exact numerical results for transport co-efficients (for supersymmetric systems).

Find perfect agreement between 1. and 2. In some cases, results were obtained by 2. earlier !!
Applications:

1. Magneto-thermo-electric transport near the superconductor-insulator transition and in graphene
 Hydrodynamic cyclotron resonance
 Nernst effect

2. Quark-gluon plasma
 Low viscosity fluid

3. Fermi gas at unitarity
 Non-relativistic AdS/CFT
Applications:

1. Magneto-thermo-electric transport near the superconductor-insulator transition and in graphene
 - Hydrodynamic cyclotron resonance
 - Nernst effect

2. Quark-gluon plasma
 - Low viscosity fluid

3. Fermi gas at unitarity
 - Non-relativistic AdS/CFT
The cuprate superconductors
The cuprate superconductors

Proximity to an insulator at 12.5% hole concentration
Cuprates

Superconductor

Insulator $x = 1/8$
STM observations of VBS modulations by Y. Kohsaka et al., Nature 454, 1072 (2008)

Insulator $x=1/8$
Cuprates

Superconductor

Insulator $x=1/8$

CFT?
Cuprates

Thermoelectric measurements

Superconductor

Insulator $x = 1/8$

CFT?
Cuprates

Thermoelectric measurements

g

T

Superconductor

Insulator $x=1/8$

CFT?
Hydrodynamic cyclotron resonance at a frequency

\[\omega_c = \frac{e^* B \rho v^2}{c (\varepsilon + P)} \]

and with width

\[\gamma = \sigma_Q \frac{B^2 v^2}{c^2 (\varepsilon + P)} \]

where \(B = \) magnetic field, \(\rho = \) charge density away from density of CFT, \(\varepsilon = \) energy density, \(P = \) pressure, \(v = \) velocity of “light” in CFT, and \(\sigma_Q e^2 / h \) is the universal conductivity of the CFT.

“Wiedemann-Franz”-like relation for thermal conductivity, \(\kappa \) at \(B = 0 \)

\[
\kappa = \sigma Q \left(\frac{k_B^2 T}{e^{\ast 2}} \right) \left(\frac{\varepsilon + P}{k_B T \rho} \right)^2.
\]

At \(B \neq 0 \) and \(\rho = 0 \) we have a “Wiedemann-Franz” relation for “vortices”

\[
\kappa = \frac{1}{\sigma Q} k_B^2 T \left(\frac{\nu(\varepsilon + P)}{k_B T B} \right)^2.
\]

Nernst experiment
Nernst signal (transverse thermoelectric response)

\[e_N = \left(\frac{k_B}{e^*} \right) \left(\frac{\varepsilon + P}{k_B T \rho} \right) \left[\frac{\omega_c/\tau_{\text{imp}}}{(\omega_c^2/\gamma + 1/\tau_{\text{imp}})^2 + \omega_c^2} \right] \]

where \(\tau_{\text{imp}} \) is the momentum relaxation time due to impurities or umklapp scattering.

LSCO Experiments

B and T dependencies are in semi-quantitative agreement with observations on cuprates, with reasonable values for only 2 adjustable parameters, τ_{imp} and v.

B and T dependencies are in semi-quantitative agreement with observations on cuprates, with reasonable values for only 2 adjustable parameters, τ_{imp} and v.

Similar results apply to electronic transport in graphene, where the relativistic Dirac spectrum of the electrons leads to analogies with the hydrodynamics of CFTs. We have made specific quantitative predictions for THz experiments on graphene at room temperature in the presence of a modest applied magnetic field.
Applications:

1. Magneto-thermo-electric transport near the superconductor-insulator transition and in graphene
 - Hydrodynamic cyclotron resonance
 - Nernst effect

2. Quark-gluon plasma
 - Low viscosity fluid

3. Fermi gas at unitarity
 - Non-relativistic AdS/CFT
Applications:

1. Magneto-thermo-electric transport near the superconductor-insulator transition and in graphene
 - Hydrodynamic cyclotron resonance
 - Nernst effect

2. Quark-gluon plasma
 - Low viscosity fluid

3. Fermi gas at unitarity
 - Non-relativistic AdS/CFT
Au+Au collisions at RHIC

Quark-gluon plasma can be described as “quantum critical QCD”
Phases of nuclear matter
S=1/2 Fermi gas at a Feshbach resonance
detuning from Feshbach resonance
detuning from Feshbach resonance

RG fixed point described by a “non-relativistic” CFT

= detuning from Feshbach resonance
CFT is dual to quantum gravity models on AdS space. Explicit solutions of such gravity models with supersymmetry have been obtained

\[\eta / s \equiv \text{viscosity} / \text{entropy density} \]

Ultracold 6Li gas at Feshbach resonance

\[\frac{\eta}{s} \equiv \frac{\text{viscosity}}{\text{entropy density}} \]

Ultracold 6Li gas at Feshbach resonance

Quark gluon plasma

\frac{\eta}{s} \equiv \text{viscosity} \over \text{entropy density}

Ultracold 6Li gas at Feshbach resonance

Quark gluon plasma

Supersymmetric black hole theory

\[\eta \equiv \frac{\text{viscosity}}{\text{entropy density}} \]

- Ultracold 6Li gas at Feshbach resonance
- He near λ-transition
- Quark gluon plasma
- Supersymmetric black hole theory

A black hole full of answers

Jan Zaanen

A facet of string theory, the currently favoured route to a ‘theory of everything’, might help to explain some properties of exotic matter phases — such as some peculiarities of high-temperature superconductors.

NATURE|Vol 448|30 August 2007
Conclusions

- Theory for transport near quantum phase transitions in superfluids and antiferromagnets
- Exact solutions via black hole mapping have yielded first exact results for transport co-efficients in interacting many-body systems, and were valuable in determining general structure of hydrodynamics.
- Theory of Nernst effect near the superfluid-insulator transition, and connection to cuprates.
- Quantum-critical magnetotransport in graphene.