Electrical transport near a pair-breaking superconductor-metal quantum phase transition

Emily Dunkel (Harvard)
Joel Moore (Berkeley)
Daniel Podolsky (Berkeley)
Subir Sachdev (Harvard)
Ashvin Vishwanath (Berkeley)
Philipp Werner (ETH)
Matthias Troyer (ETH)

Physical Review B 73, 085116 (2006)
cond-mat/0510597.

See also talk by Daniel Podolsky,
N38.00007, Wed 9:12 AM
Talk online at http://sachdev.physics.harvard.edu
Standard Abrikosov-Gorkov theory for the suppression of the mean-field BCS critical temperature, T_{c0}, of a superconductor by a pair-breaking frequency α:

$$\ln \left(\frac{T_c}{T_{c0}} \right) = \psi \left(\frac{1}{2} \right) - \psi \left(\frac{1}{2} + \frac{\hbar \alpha}{2\pi k_B T_c} \right)$$
Standard Abrikosov-Gorkov theory for the suppression of the mean-field BCS critical temperature, T_{c_0}, of a superconductor by a pair-breaking frequency α:

$$\ln \left(\frac{T_c}{T_{c_0}} \right) = \psi \left(\frac{1}{2} \right) - \psi \left(\frac{1}{2} + \frac{\hbar \alpha}{2\pi k_B T_c} \right)$$

There is a critical $\alpha = \alpha_c$ such that $T_c = 0$ for $\alpha > \alpha_c$. We are interested in the nature of the crossovers near the quantum phase transition at $\alpha = \alpha_c$ especially in spatial dimensions $d = 1, 2$.
Pairbreaking, α can be be due to a magnetic field, H, applied on a wire of radius r

$$\alpha = D(eHr/c)^2/4,$$

where D is the Cooperon diffusion constant.

On a hollow cylinder with radii r_1 and r_2:

$$\alpha = D \left[\frac{eH}{4c} \left[-4n + \frac{eH}{c} (r_1^2 + r_2^2) \right] + \frac{n^2 \ln(r_2/r_1)}{r_2^2 - r_1^2} \right]$$

where n is an integer. (A. V. Lopatin, N. Shah, and V. M. Vinokur, Phys. Rev. Lett. 94, 037003 (2005)).

Other sources of pairbreaking

- Parallel magnetic field, H, on a film of thickness t, $\alpha = D(eHt/c)^2/6$. Experiments by K. A. Parendo, K. H. Sarwa, B. Tan, and A. M. Goldman, cond-mat/0512704.

- Magnetic impurities.
I. Theory for the superconductor-metal quantum phase transition
At $T = 0$, the Maki-Thomson and density of states corrections to the conductivity, $\delta \sigma$, increase with increasing α (negative magnetoresistance):

$$\delta \sigma \sim (\alpha - \alpha_c)$$

Computation of fluctuation conductivity in metal at low temperatures

At $T = 0$, the Maki-Thomson and density of states corrections to the conductivity, $\delta \sigma$, increase with increasing α (negative magnetoresistance):

$$\delta \sigma \sim (\alpha - \alpha_c)$$

We will argue that these are corrections to scaling to the theory of the quantum critical point. These corrections are dangerously irrelevant, because they dominate at low T.
Computation of fluctuation conductivity in metal at low temperatures

At $T > 0$, Aslamazov-Larkin corrections lead to

$$\delta \sigma \sim \frac{4e^2}{h} \frac{D^{2-d}(k_B T/\hbar)^2}{(\alpha - \alpha_c)^{6-d/2}}$$

Computation of fluctuation conductivity in metal at low temperatures

At $T > 0$, Aslamazov-Larkin corrections lead to

$$\delta \sigma \sim \frac{4e^2}{\hbar} \frac{D^{2-d}(k_B T / \hbar)^2}{(\alpha - \alpha_c)^{(6-d)/2}}$$

We will argue these are contained in the quantum critical theory. Note, however, the leading critical fluctuations vanish at $T = 0$ for $\alpha > \alpha_c$. This leads to a non-monotonic T dependence in critical theory.
Cooperon fluctuations have propagator $\sim 1/(Dq^2 + |\omega| + \alpha)$. Self-interactions between such fluctuations are described by

$$S_{\text{bulk}} = \int d^d x \left[\int \frac{d\omega}{2\pi} \left(D |\nabla_x \psi(x, \omega)|^2 + (|\omega| + \alpha) |\psi(x, \omega)|^2 \right) + \frac{u}{2} \int d\tau |\psi(x, \tau)|^4 \right],$$

In one dimension, theory reduces to the Langer-Ambegaokar-McCumber-Halperin theory (Model A dynamics), near mean-field T_c.

$$\frac{\partial \psi}{\partial t} = - \left[-D \frac{\partial^2 \psi}{\partial x^2} + \alpha \psi + u |\psi|^2 \psi \right]$$

+ thermal Langevin noise
Role of charge conservation in quantum critical theory

(related to the question of why dissipation is not $|\omega|q^2$)

Dynamics of quantum theory (and model A) does not conserve total charge.

Analogous the Fermi-liquid/spin-density-wave transition (Hertz theory), where dynamics of critical theory does not conserve total spin.
Role of charge conservation in quantum critical theory

(related to the question of why dissipation is not \(|\omega|q^2\))

Dynamics of quantum theory (and model A) does not conserve total charge.

Analogous the Fermi-liquid/spin-density-wave transition (Hertz theory), where dynamics of critical theory does not conserve total spin.

Conservation laws place strong constraints for \(\omega/q \to \infty\), but can be ignored in the critical regime, where \(\omega/q \to 0\).

Cooper pairs (SDW) fluctuations decay into fermionic excitations at a finite rate, before any appreciable phase precession due to changes in chemical potential (magnetic field).
II. Quantum criticality in $d=1$
Quantum critical theory obeys strong hyperscaling properties in spatial dimensions \(d < 2 \). Exponents can be determined by an expansion in \(\epsilon = 2 - d \) in a theory with \(n \)-component fields (\(n = 2 \) here).

\[
\begin{align*}
 z &= 2 - \eta \quad ; \quad \eta = \frac{(n + 2)(12 - \pi^2)}{4(n + 8)^2} \epsilon^2 \\
 \nu &= \frac{1}{2} + \frac{(n + 2)}{4(n + 8)} \epsilon + \frac{(n + 2)(n^2 + (38 - 7\pi^2/6)n + 132 - 19\pi^2/3)}{8(n + 8)^3} \epsilon^2
\end{align*}
\]

Results at \(\epsilon = 1 \) in very good agreement with QMC simulations.
Theory for quantum-critical region, and beyond in $d=1$

In $d = 1$, conductivity of critical theory obeys universal scaling form:

$$\delta\sigma = \frac{4e^2}{h} \left(\frac{\hbar D}{k_B T} \right)^{1/z} \Phi_{\sigma} \left(\frac{\alpha - \alpha_c}{T^{1/(zu)}} \right)$$

where Φ_{σ} is a scaling function.
Theory for quantum-critical region, and beyond in $d=1$

Quantum critical T dependence in $d = 1$:

$$\delta \sigma \sim \begin{cases}
\frac{1}{T^{1/z}} & \text{for } T > (\alpha - \alpha_c)^{z\nu} \\
\frac{T^2}{(\alpha - \alpha_c)^{(2z+1)\nu}} & \text{for } T < (\alpha - \alpha_c)^{z\nu}
\end{cases}$$

Non-monotonic dependence on T.
III. Nanowires near the superconductor-metal quantum critical point
Now the conductance, g, of the wire is universal

$$g = \frac{4e^2}{\hbar} F(\omega L^{1/z})$$

where L is the length of the wire, and $L < (\hbar D/k_B T)^{1/2}$.

Nanowires near the quantum critical point in $d=1$
Effect of the leads

\[S_{\text{lead}} = \int d\tau \left[-H^* \psi(0, \tau) - H \psi^*(0, \tau) + C |\Psi(0, \tau)|^2 \right] \]

where \(H \neq 0 \) for a superconducting lead.

Both \(H \) and \(C \) scale to strong-coupling, and therefore we have Dirichlet boundary conditions (\(\Psi = 0 \)) for a N lead, and Fixed boundary conditions for a S lead.

Conductance is independent of the specific bare values of \(H \) and \(C \).
Large n computation of conductance

\[g = \frac{4e^2}{h} F_X(y) \quad ; \quad y = c_1 \omega L^z \]
Quantum Monte Carlo and large n computation of d.c. conductance

$g = \frac{4e^2}{\hbar} C_{SN}$
IV. Quantum criticality in $d=2$
Theory for quantum-critical region, and beyond in $d=2$

To leading logarithmic accuracy, (nearly) all physical properties can be expressed in terms of computable universal functions of two energy scales, R, and U. R measures distance from the quantum critical point, while U is a quartic self-coupling. These are parameters in a classical theory of equal-time correlations with free energy

$$F = \int d^2 x \left[|\nabla \Psi|^2 + \tilde{R} |\Psi|^2 + \frac{U}{2} |\Psi|^4 \right].$$

R and U depend upon the bare values of α, D, T, and logarithmically on a cutoff energy scale Λ, and are determined by solving a simple integral equation.

The loci of points with a fixed U/R has the same physical properties, upto a shift in the overall energy scale, R.
Locus of points with U/R constant

The Kosterlitz-Thouless transition occurs at $T = T_{KT}$, where $U/R \approx 34$ (a universal number).
Locus of points with U/R constant

The conductivity obeys the scaling form

$$\sigma = \frac{4e^2}{\hbar} \frac{k_B T}{R} \Phi_A \left(\frac{U}{R} \right)$$

where Φ_A is a completely universal function which can be (numerically) determined by a classical, continuum Model A theory.
Locus of points with U/R constant

At the quantum-critical point

\[R \sim \frac{k_B T}{\ln(\Lambda/(k_B T))} \]
\[\frac{U}{R} \sim \frac{1}{\ln \ln(\Lambda/(k_B T))} \]
\[\sigma \sim \frac{4e^2}{h} \ln(\Lambda/(k_B T)) \]
Conclusions

• Universal transport in wires near the superconductor-metal transition

• Theory includes contributions from thermal and quantum phase slips ---- reduces to the classical LAMH theory at high temperatures

• Sensitivity to leads should be a generic feature of the "coherent" transport regime of quantum critical points.

• Complete computation of electrical transport in $d=2$ to leading logarithmic accuracy.