Scrambling Quantum Information in Cold Atoms with Light

Monika Schleier-Smith

Emily Davis
Gregory Bentsen
Tracy Li
Brian Swingle
Patrick Hayden

August 28, 2017
Quantum Information Scrambling

How fast can an initially localized quantum bit become entangled with all degrees of freedom, i.e., \textit{scrambled}?
Quantum Information Scrambling

How fast can an initially localized quantum bit become entangled with all degrees of freedom, i.e., scrambled?

Inspiration: information problem in black holes
Hayden, Preskill, Maldacena, Shenker, Susskind, Stanford …
Gauge/Gravity Duality

Quantum many-body system
\(d\) spatial dimensions

Spacetime geometry
\(d+1\) spatial dimensions

Figure adapted from Ramallo, arXiv:1310.4319v3[hep-th].
Gauge/Gravity Duality

Quantum many-body system

\[d \] spatial dimensions

Spacetime geometry

\[d+1 \] spatial dimensions

Can we realize quantum many-body systems in table-top experiments that are holographically dual to black holes? \textit{How would we know?}

Figure adapted from Ramallo, \textit{arXiv}:1310.4319v3[hep-th].
Fast Scrambling Conjecture

Conjecture: black holes are the fastest scramblers in nature

- Relaxation time $\tau = 1 / (2\pi T)$
- Scrambling time $t_s = \tau \log(S)$

$T = \text{Temperature}$

$S = \text{Entropy}$
Conjecture: black holes are the fastest scramblers in nature

- Relaxation time $\tau = \frac{1}{2\pi T}$
- Scrambling time $t_s = \tau \log(S)$

Intuition: random circuit model

- $S =$ number of qubits
- $\tau =$ interaction time
- Time $t_s \gtrsim \tau \log_2(S)$ to connect all pairs

Conjecture: black holes are the fastest scramblers in nature

- Relaxation time $\tau = 1 / (2\pi T)$
- Scrambling time $t_S = \tau \log(S)$

Intuition: random circuit model

- $S = \text{number of qubits}$
- $\tau = \text{interaction time}$
- Time $t_S \gtrapprox \tau \log_2(S)$ to connect all pairs

Conjecture: black holes are the fastest scramblers in nature

- Relaxation time $\tau = 1 / (2\pi T)$
- Scrambling time $t_s = \tau \log(S)$

Intuition: random circuit model

- $S =$ number of qubits
- $\tau =$ interaction time
- Time $t_S \gtrapprox \tau \log_2(S)$ to connect all pairs

Conjecture: black holes are the fastest scramblers in nature

- Relaxation time $\tau = 1 / (2\pi T)$
- Scrambling time $t_S = \tau \log(S)$

Intuition: random circuit model

- $S =$ number of qubits
- $\tau =$ interaction time
- Time $t_S \geq \tau \log_2(S)$ to connect all pairs

Candidates for fast scrambling: chaotic, *non-local* spin models

Outline

Background

Non-local interactions mediated by light
Quantifying many-body chaos

Prospects for Cold-Atom Experiments

Kicked top: intuitions from a simple model system
Non-local hopping & many-body chaos
Outline

Background

Non-local interactions mediated by light
Quantifying many-body chaos

Prospects for Cold-Atom Experiments

Kicked top: intuitions from a simple model system
Non-local hopping & many-body chaos
Photon-Mediated Interactions

optical cavity

cold atoms
Photon-Mediated Interactions

- **Non-local** → entangling atoms *en masse* for quantum metrology*

 → topological encoding of quantum information?*

 → novel quantum simulations: spin glasses*; *black holes?*

* Sorensen & Molmer (2002); MSS, Leroux & Vuletic (2010); Hosten … & Kasevich (2016).
* Gopalakrishnan, Lev; Sachdev; Diehl, …
Photon-Mediated Interactions

- **Non-local** → entangling atoms *en masse* for quantum metrology
 → topological encoding of quantum information?
 → novel quantum simulations: spin glasses; *black holes*?
- Easy to switch on/off and control sign
- Quantitative understanding of interaction-to-dissipation ratio
Photon-Mediated Spin Interactions

Two-level atom as pseudo-spin
Photon-Mediated Spin Interactions

Pairwise correlated spin flips:

\[H \propto \sum_{i,j} (s_i^+ + s_i^-)(s_j^+ + s_j^-) \propto \sum_{i,j} s_x^i s_x^j \]

Sørensen & Mølmer, PRA (2002).
Photon-Mediated Spin Interactions

Pairwise correlated spin flips:

\[
H \propto \sum_{i,j}(s^i_+ + s^-_i)(s^j_+ + s^-_j) \propto \sum_{i,j} s^i_x s^j_x
\]

- Spatial addressing enables controlled interactions between arbitrary pairs
Photon-Mediated Spin Interactions

Pairwise correlated spin flips: \[H \propto \sum_{i,j} (s^i_+ + s^i_-)(s^j_+ + s^j_-) \propto \sum_{i,j} s^i_+ s^j_+ \]

- Spatial addressing enables controlled interactions between arbitrary pairs
- Sign of interaction controlled by sign of detuning \(\delta \)
Photon-Mediated Spin Interactions

Pairwise correlated spin flips: \[H \propto \sum_{i,j} (s^i_+ + s^-_i)(s^j_+ + s^-_j) \propto \sum_{i,j} s^i_x s^j_x \]

- Spatial addressing enables controlled interactions between arbitrary pairs
- Sign of interaction controlled by sign of detuning \(\delta \)
- Coherent interactions for \(\delta \gg \kappa \) and strong coupling \(\eta \equiv 4g^2/(\kappa \Gamma) \gg 1 \)
Experiment Design

• Strong coupling: \(\eta \equiv \frac{4g^2}{\kappa \Gamma} \sim \frac{F \chi^2}{w^2} \gg 1 \)

• Optical access for imaging & addressing

• Confinement in 3D lattice

\(\sim 10^1 - 10^3 \) atoms
Experiment Design

- Strong coupling: \(\eta \equiv \frac{4g^2}{\kappa \Gamma} \sim \frac{F \chi^2}{w^2} \gg 1 \)
- Optical access for imaging & addressing
- Confinement in 3D lattice

\(~ 10^1 - 10^3 \text{ atoms} \)

\(\Rightarrow \) Near-concentric resonator

Length \(L \sim 5 \text{ cm} \)
Waist \(w \sim 12 \mu \text{m} \)
Finesse \(F \sim 10^5 \)
Strong Coupling with Optical Access

Single-atom cooperativity $\eta \sim 50$

Cooperativity η

Finesse 6×10^4

F = 10^6

F = 10^5

F = 10^4

Waist (\(\mu\)m)

Viewport

cavity
Atoms in the Cavity

Shift of the cavity resonance due to refractive index of a cloud of hundreds of atoms
Atoms in the Cavity

Image of atoms

Image of spin texture

S_Φ / S

Shift of the cavity resonance due to refractive index of a cloud of hundreds of atoms
Photon-Mediated Spin Interactions

\[H \propto \sum_{i,j} (s^i_+ + s^i_-)(s^j_+ + s^j_-) \propto \sum_{i,j} s^i_x s^j_x \]

Simple limit: all-to-all interaction

collective spin \(S = \sum_{i=1}^{N} s_i \)

\[H = \chi S_x^2 \] twist
Spin Squeezing

Twisting strength $Q = N \chi t = \left(\text{# of photons scattered into cavity per atom}\right)$

$N = 4 \times 10^4$ atoms

$\eta = 0.1$, $\delta = \kappa / 2$
Global Spin Interactions

Cavity QED

Ion traps

Also: Monz, … & Blatt *PRL* (2011).

BECs

Vision: Non-Local Interactions

- NP-hard optimization problems

\[H = \left(\sum_{i=1}^{N} w_i s_i^x \right)^2 \]

\[\text{partition problem} \]

- Qubit-ensemble interface \(\Rightarrow \) Schrödinger cat states

- Non-local + chaotic \(\Rightarrow \) fast scrambling?

![Diagram with cavity, control light, and states](image-url)
Quantifying Scrambling

How to define chaos in a quantum many-body system?
Quantifying Scrambling

How to define chaos in a quantum many-body system?

Quantum many-body butterfly effect: growth of commutator $[V, W_t]$ between initially commuting operators vs. their separation in time t

How fast does $W_t = e^{-iHt} W e^{iHt}$ fail to commute with V due to interactions H?

Measuring Fast Scrambling

Decay of out-of-time-order correlation function \(F(t) \equiv \langle \psi | W_t^\dagger V^\dagger W_t V | \psi \rangle \) indicates growth of commutator:

\[
\text{Re}[F(t)] = 1 - \langle |[W_t, V]|^2 \rangle / 2
\]
Measuring Fast Scrambling

Decay of out-of-time-order correlation function \(F(t) \) indicates growth of commutator:

\[
\text{Re}[F(t)] = 1 - \frac{\langle [W_t, V]^2 \rangle}{2}
\]

Where \([V, W] = 0 \) at \(t=0 \) and \(V, W \) are simple operators, e.g., spin rotations.
Measuring Fast Scrambling

Decay of out-of-time-order correlation function $F(t) \equiv \langle \psi | W_t^\dagger V^\dagger W_t V | \psi \rangle$

indicates growth of commutator: $\text{Re}[F(t)] = 1 - \langle |[W_t, V]|^2 \rangle / 2$
Measuring Fast Scrambling

B. Swingle, G. Bentsen, MS-S, & P. Hayden,
PRA 040302(R) 2016.

Decay of out-of-time-order correlation function \(F(t) \equiv \langle \psi | W_t^\dagger V^\dagger W_t V | \psi \rangle \)

indicates growth of commutator:

\[
\text{Re}[F(t)] = 1 - \langle |[W_t, V]|^2 \rangle / 2
\]

Tools for measuring \(F \)

- **Time reversal** \((H \rightarrow -H)\)
- **Many-body interferometry**

Also see:

Scrambling in a Cavity?

Photon-mediated interactions can enable...

- qubit-controlled operation
- switchable-sign interactions within ensemble

B. Swingle, G. Bentsen, MS-S, & P. Hayden, *PRA* 040302(R) 2016.
Scrambling in a Cavity?

Photon-mediated interactions can enable...
- qubit-controlled operation
- switchable-sign interactions within ensemble

Non-local spin models: candidates for fast scrambling

B. Swingle, G. Bentsen, MS-S, & P. Hayden,
PRA 040302(R) 2016.
Scrambling in a Cavity?

Photon-mediated interactions can enable...
• qubit-controlled operation
• switchable-sign interactions within ensemble

Non-local spin models: candidates for fast scrambling

Globally interacting models: ease of visualization
• intuition: semiclassical limit
• numerical simulations

B. Swingle, G. Bentsen, MS-S, & P. Hayden, PRA 040302(R) 2016.

Chaotic “Kicked Top”
Chaotic Kicked Top

\[H = \frac{k S^2}{2S} \sum_{n=\infty}^{\infty} \delta(t - n\tau) + \frac{\rho}{\tau} S_z \]

- Expect \(n_{chaos} \sim \log N \) kicks for initial state of solid angle \(\sim 1/N \) to spread over the entire \(N \)-atom Bloch sphere.

- Probe with rotations \(V = W = e^{i\phi S_z} \) by small angle \(\phi = 1/\sqrt{N} \).

Scrambling of a Kicked Top

Reference: time-ordered correlation function \(G = \langle V^\dagger_t V \rangle \)

Scrambling: out-of-time-order correlation \(F = \langle W^\dagger_t V^\dagger W_t V \rangle \)

\[|G| \]

\[|F|, |G| \]

Atom number \(N=2S \)

B. Swingle, G. Bentsen, MS-S, & P. Hayden,
\textit{PRA} 040302(R) 2016.
Scrambling of a Kicked Top

Reference: time-ordered correlation function $G = \langle V_t^\dagger V \rangle$

Scrambling: out-of-time-order correlation $F = \langle W_t^\dagger V^\dagger W_t V \rangle$

B. Swingle, G. Bentsen, MS-S, & P. Hayden, *PRA* 040302(R) 2016.
Scrambling of a Kicked Top

Reference: time-ordered correlation function $G = \langle V_t^† V \rangle$

Scrambling: out-of-time-order correlation $F = \langle W_t^† V^† W_t V \rangle$

- Scrambling time grows as $t_S \sim \log(N)$ \leftrightarrow butterfly effect on Bloch sphere
Scrambling of a Kicked Top

Reference: time-ordered correlation function \(G = \langle V_t^\dagger V \rangle \)

Scrambling: out-of-time-order correlation \(F = \langle W_t^\dagger V^\dagger W_t V \rangle \)

- Scrambling time grows as \(t_S \sim \log(N) \leftrightarrow \) butterfly effect on Bloch sphere
- Accessible for up to \(N \sim e^{\sqrt{\eta}} \sim 10^3 \) atoms at cavity cooperativity \(\eta = 50 \)
Scrambling Experiments

Kicked top with pseudo-spin $J = 5$:
“spin” states = momentum states of BEC

Twisting Hamiltonian of ~100 ions:
Multiple quantum coherence method

NMR experiments:

Wei, Ramanathan & Cappellaro,

cf. Davis, Bentsen, & MS-S PRL (2016).
Engineering Fast Scrambling?

All-to-all interactions restrict us to “single-particle” physics…

…but more complex non-local interactions should allow information to spread fast over exponentially large Hilbert space…

Can a single mode of light mediate more complex interactions?

Entropy:

\[S \leq \ln(N) \]

\[S \sim N \]
Exotic XY Models

Photon-mediated interactions for versatile control of long-range “hopping”:

\[H_I = \sum_{i > j} J(i - j) \sigma_i^+ \sigma_j^- + \text{h.c.} \]

hard-core bosons = spin excitations: \(\bigcirc = \downarrow; \ \bullet = \uparrow \)
Exotic XY Models

Photon-mediated interactions for versatile control of long-range “hopping”:

\[H_I = \sum_{i>j} J(i-j)\sigma^i_+\sigma^j_- + \text{h.c.} \]

hard-core bosons = spin excitations: \(\bigcirc = \downarrow; \ \bullet = \uparrow \)

Approach:

- Suppress hopping with magnetic field gradient
- Restore hopping at arbitrary distances \(i-j \) with modulated control field

Exotic XY Models

Photon-mediated interactions for versatile control of long-range "hopping":

\[H_I = \sum_{i>j} J(i-j)\sigma^i_+\sigma^j_- + \text{h.c.} \]

hard-core bosons = spin excitations: \(\circ = \downarrow; \ \bullet = \uparrow \)

Approach:

- Suppress hopping with magnetic field gradient
- Restore hopping at arbitrary distances \(i-j \) with modulated control field
- Magnon dispersion relation = modulation waveform

Dispersion Engineering

Efficiently spread information over long distances by coupling i^{th} spin to $i\pm 1, i\pm 2, i\pm 4, i\pm 8, \ldots, i \pm 2^l$
Efficiently spread information over long distances by coupling i^{th} spin to $i \pm 1, i \pm 2, i \pm 4, i \pm 8, \ldots, i \pm 2^l$

$$E(k) = -2 \sum_{l=0}^{l_{\text{max}}} J_l \cos(2^l k - \phi_l)$$

$\text{control field spectrum}$

$E(k)$ graph with $l_{\text{max}} = 0$
Efficiently spread information over long distances by coupling i^{th} spin to $i \pm 1, i \pm 2, i \pm 4, i \pm 8, \ldots, i \pm 2^l$

\begin{equation}
E(k) = -2 \sum_{l=0}^{l_{\text{max}}} J_l \cos(2^l k - \phi_l)
\end{equation}

$\text{control field spectrum}$
Efficiently spread information over long distances by coupling \(i^{th} \) spin to \(i \pm 1, i \pm 2, i \pm 4, i \pm 8, \ldots, i \pm 2^l \).

\[
E(k) = -2 \sum_{l=0}^{l_{\text{max}}} J_l \cos(2^l k - \phi_l)
\]

\(l_{\text{max}} = 0 \) \(l_{\text{max}} = 1 \) \(l_{\text{max}} = 2 \)
Dispersion Engineering

Efficiently spread information over long distances by coupling i^{th} spin to $i \pm 1, i \pm 2, i \pm 4, i \pm 8, \ldots, i \pm 2^l$

$$E(k) = -2 \sum_{l=0}^{l_{\text{max}}} J_l \cos(2^l k - \phi_l)$$

$\alpha = 0.686$ for $l_{\text{max}} = 1$

Dispersion relation is a fractal!
“Chaotic” dispersion?

\[E(k) = -2 \sum_{l=0}^{l_{\text{max}}} J_l \cos(2^l k - \phi_l) \]

Looks crazy but must be \textbf{integrable}, since quasimomentum is conserved
“Chaotic” dispersion?

\[E(k) = -2 \sum_{l=0}^{l_{\text{max}}} J_l \cos(2^l k - \phi_l) \]

Looks crazy but must be \textbf{integrable}, since quasimomentum is conserved

\[l_{\text{max}} = 0, 1, 2, 6 \]

\[\text{Energy Level Statistics} \]

\[\text{Poisson distribution of level spacings} \]
Engineered Chaos

Break integrability with disorder potential: \(H = \sum_i h_i \sigma_z^i + \sum_{i-j=2^l} J e^{i \phi_l} \sigma_+^i \sigma_-^j + \text{h.c.} \)

Signature of chaos: level repulsion

Single particle

- \(n=1 \)
- \(n=2 \)
- \(n=3 \)

Strongly interacting

- \(n=4 \)

Diagrams:
- N=9 sites, n=1 spins up
- N=9 sites, n=2 spins up
- N=9 sites, n=3 spins up
- N=9 sites, n=4 spins up

Single hole
Single-Particle vs. Many-Body Chaos?

Speed and depth of scrambling vs. boson number n?

Diagnostic: $F_V(t) = \langle V_t^\dagger V_0^\dagger V_t V_0 \rangle$ for two representative operators
Single-Particle vs. Many-Body Chaos?

$N = 8$ sites

Speed and depth of scrambling vs. boson number n?

Diagnostic: $F_V(t) = \langle V_t^\dagger V_0^\dagger V_t V_0 \rangle$ for two representative operators

$W = \text{nearest-neighbor swap}$

$U = \text{local phase shift}$

$1, 7$

$2, 6$

$3, 5$

4
Single-Particle vs. Many-Body Chaos?

Speed and depth of scrambling vs. boson number \(n \)?

Diagnostic: \(F_V(t) = \langle V_t^\dagger V_0^\dagger V_t V_0 \rangle \) for two representative operators

Deepest scrambling at half filling ("many"-body limit)… How deep?
Depth of Scrambling

How fully is the system scrambled at late times?

$$F \sim \frac{1}{(\text{Hilbert space dimension})}$$

$$\langle R[F]^2 \rangle$$

Dimension $$C_{N,n}$$

$$N = 10 \text{ sites}$$

$$F \sim \frac{1}{\text{dim}^2}$$
Depth of Scrambling

How fully is the system scrambled at late times?

\[F \sim \frac{1}{\text{(Hilbert space dimension)}} \]

\[\langle R[F]^2 \rangle \]

Dimension \(C_{N,n} \)

\(N = 10 \) sites

\(W = \text{nearest-neighbor swap} \)
Depth of Scrambling

$N = 10$ sites

How fully is the system scrambled at late times?

$F \sim 1/(\text{Hilbert space dimension})$

$\langle \mathcal{R}[F]^2 \rangle \\ \frac{1}{\text{dim}^2}$
Depth of Scrambling

How fully is the system scrambled at late times?

\[F \sim \frac{1}{\text{Hilbert space dimension}} \]

\[\langle R[F]^2 \rangle \propto \frac{1}{\text{dim}^2} \]

- **W** = nearest-neighbor swap
- **U** = local phase shift

⇒ *interactions (hard-core)* promote full scrambling
Fast Scrambling?

$N = 10$ sites

$F_U = \langle U_t \dagger U_0 \dagger U_t U_0 \rangle$

$U = \text{local phase shift}$

$F_{\text{min}} \sim 2^{-N}$ at half filling

Scrambling time: $t_S \sim \tau \log(N)$; $\tau = 1 / (2\pi T)$

Extending numerics will help a little…

Quantum simulations will help more!
Scrambling is the ultimate form of thermalization, predicted to be subject to a fundamental speed limit.

Which systems scramble fully and how fast? Many open questions… …ready to be tackled in cold-atom quantum simulations.

Photons can enable versatile engineering of interaction graphs:
• single-particle chaos amenable to semiclassical intuition
• interacting many-body chaos \Rightarrow towards black-hole analogs?
Acknowledgements

Research Group
Emily Davis
Gregory Bentsen
Tracy Li
Tori Borish
Ognjen Markovic
Jacob Hines

Collaborators
Brian Swingle
Patrick Hayden
Norman Yao
Dragos Potirniche

Past visitors
Anna Wang
Thomas Reimann
Sebastian Scherg
Extras
Numerical Simulation: Chaotic Kicked Top

Reference: time-ordered correlation function \(G = \langle V_t^\dagger V \rangle \)

Scrambling: out-of-time-order correlation \(F = \langle W_t^\dagger V^\dagger W_t V \rangle \)

Atom number \(N=2S \)

More dissipation? Hard to calculate!