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Abstract. This review describes how topological order associated with the presence

of emergent gauge fields can reconstruct Fermi surfaces of metals, even in the absence

of translational symmetry breaking. We begin with an introduction to topological

order using Wegner’s quantum Z2 gauge theory on the square lattice: the topological

state is characterized by the expulsion of defects, carrying Z2 magnetic flux. The

interplay between topological order and the breaking of global symmetry is described

by the non-zero temperature statistical mechanics of classical XY models in dimension

D = 3; such models also describe the zero temperature quantum phases of bosons with

short-range interactions on the square lattice at integer filling. The topological state

is again characterized by the expulsion of certain defects, in a state with fluctuating

symmetry-breaking order, along with the presence of emergent gauge fields. The phase

diagrams of the Z2 gauge theory and the XY models are obtained by embedding them

in U(1) gauge theories, and by studying their Higgs and confining phases. These

ideas are then applied to the single-band Hubbard model on the square lattice. A

SU(2) gauge theory describes the fluctuations of spin-density-wave order, and its

phase diagram is presented by analogy to the XY models. We obtain a class of zero

temperature metallic states with fluctuating spin-density wave order, topological order

associated with defect expulsion, deconfined emergent gauge fields, reconstructed Fermi

surfaces (with ‘chargon’ or electron-like quasiparticles), but no broken symmetry. We

conclude with the application of such metallic states to the pseudogap phase of the

cuprates, and note the recent comparison with numerical studies of the Hubbard model

and photoemission observations of the electron-doped cuprates. In a detour, we also

discuss the influence of Berry phases, and how they can lead to deconfined quantum

critical points: this applies to bosons on the square lattice at half-integer filling, and

to quantum dimer models.
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1. Introduction

The traditional theory of phase transitions relies crucially on symmetry: phases with

and without a spontaneously broken symmetry must be separated by a phase transition.

However, recent developments have shown that the ‘topological order’ associated with

emergent gauge fields can also require a phase transition between states which cannot

be distinguished by symmetry.

Another powerful principle of traditional condensed matter physics is the Luttinger

theorem [1]: in a system with a globally conserved U(1) charge, the volume enclosed by

all the Fermi surfaces with quasiparticles carrying the U(1) charge, must equal the total

conserved density multiplied by a known phase-space factor, and modulo filled bands.

Spontaneous breaking of translational symmetry (e.g. by a spin or charge density wave)

can reconstruct the Fermi surface into small pockets, because the increased size of the

unit cell allows filled bands to account for a larger fraction of the fermion density. But

it was long assumed that in the absence of translational symmetry breaking, the Fermi

surface cannot reconstruct in a Fermi volume changing transition.

More recently, it was realized that the Luttinger theorem has a topological character

[2], and that it is possible for topological order associated with emergent gauge fields

to change the volume enclosed by the Fermi surface [3, 4]. So we can have a phase

transition associated with the onset of topological order, across which the Fermi surface

reconstructs, even though there is no symmetry breaking on either side of the transition.

This review will present a sequence of simple models which introduce central concepts

in the theory of emergent gauge fields, and give an explicit demonstration of the

reconstruction of the Fermi surface by such topological order [5].

Evidence for Fermi surface reconstruction has recently appeared in photoemission

experiments [6] on the electron-doped cuprate superconductor Nd2−xCexCuO4, in a

region of electron density without antiferromagnetic order. Given the theoretical

arguments [3, 4], this constitutes direct experimental evidence for the presence of

topological order. In the hole-doped cuprates, Hall effect measurements [7] on

YBa2Cu3Oy indicate a small Fermi surface at near optimal hole densities without any

density wave order, and the doping dependence of the Hall co-efficient fits well a theory

of Fermi surface reconstruction by topological order [8, 9]. Also in YBa2Cu3Oy, but at

lower hole-doping, quantum oscillations have been observed, and are likely in a region

where there is translational symmetry breaking due to density wave order [10]; however,

the quantum oscillation [11] and specific heat [12] observations indicate the presence of

only a single electron pocket, and these are difficult to understand in a model without

prior Fermi surface reconstruction [13] (and pseudogap formation) due to topological

order.

This is a good point to pause and clarify what we mean here by ‘topological order’,

a term which has acquired different meanings in the recent literature. Much interest

has focused recently on topological insulators and superconductors [14, 15, 16] such

as Bi1−xSbx. The topological order in these materials is associated with protected
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electronic states on their boundaries, while the bulk contains only ‘trivial’ excitations

which can composed by ordinary electrons and holes. They are, therefore, analogs

of the integer quantum Hall effect, but in zero magnetic field and with time-reversal

symmetry preserved; we are not interested in this type of topological order here. Instead,

our interest lies in analogs of the fractional quantum Hall effect, but in zero magnetic

field and with time-reversal symmetry preserved. States with this type of topological

order have fractionalized excitations in the bulk i.e. excitations which cannot be created

individually by the action any local operator; protected boundary excitations may or

may not exist, depending upon the flavor of the bulk topological order. The bulk

fractionalized excitations carry the charges of deconfined emergent gauge fields in any

effective theory of the bulk. Most studies of states with this type of topological order

focus on the cases where there is a bulk energy gap to all excitations, and examine

degeneracy of the ground state on manifolds with non-trivial topology. However, we

are interested here (eventually) in states with gapless excitations in the bulk, including

metallic states with Fermi surfaces: the bulk topological order and emergent gauge fields

remain robustly defined even in such cases.

We will begin in Section 2 by describing the earliest theory of a phase transition

without a local symmetry breaking order parameter: Wegner’s Z2 gauge theory in D = 3

[17, 18]. Throughout, the symbol D will refer to the spatial dimensionality of classical

models at non-zero temperature, or the spacetime dimensionality of quantum models

at zero temperature; we will use d = D − 1 to specify the spatial dimensionality of

quantum models. Wegner distinguished the two phases of the gauge theory, confining

and deconfining, by computing the behavior of Wegner-Wilson loops, and finding area-

law and perimeter-law behaviors respectively. However, this distinction does not survive

the introduction of various dynamical matter fields, whereas the phase transition does

[19]. The modern perspective on Wegner’s phase transition is that it is a transition

associated with the presence of topological order in the deconfined phase: this will

be presented in Section 2.1, along with an introduction to the basic characteristics of

topological order. In particular, a powerful and very general idea is that the expulsion

of topological defects leads to topological order: for the quantum Z2 gauge theory in

D = 2 + 1, Z2 fluxes in a plaquette are expelled in the topologically ordered ground

state, in a manner reminiscent of the Meissner flux expulsion in a superconductor [19]

(as will become clear in the presentation of Section 5.1).

Section 3 will turn to the other well-known example of a phase transition

without a symmetry-breaking order parameter, the Kosterlitz-Thouless (KT) transition

[20, 21, 22, 23] of the classical XY model at non-zero temperature in D = 2. The

low temperature (T ) phase was explicitly recognized by KT as possessing topological

order due to the expulsion of free vortices in the XY order, and an associated power-law

decay of correlations of the XY order parameter. KT stated in their abstract [22] “A

new definition of order called topological order is proposed for two-dimensional systems

in which no long-range order of the conventional type exists”. Despite the absence of

conventional long-range-order (LRO), KT showed that there was a phase transition, at
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a temperature TKT , driven by the proliferation of vortices, which led to the exponential

decay of XY correlations for T > TKT .

Section 4 turns to XY models in D = 3, where we show that topological order,

similar to that found by KT in D = 2, is possible also in three (and higher) dimensions.

We examine D = 3 classical XY models at non-zero temperature with suitable short-

range couplings between the XY spins; these models are connected to d = 2 quantum

models at zero temperature of bosons with short-range interactions on the square lattice

at integer filling [24, 25, 26, 27]. The situation is however more subtle than in D = 2:

the topologically ordered phase in D = 3 has exponentially decaying XY correlations,

unlike the power-law correlations in D = 2. There is also a ‘trivial’ disordered phase

with exponentially decaying correlations, as shown in Fig. 1; but the two phases with

short-range order (SRO) in Fig. 1 are distinguished by the power-law prefactor of the

exponential decay. More importantly, the topological phase only expels vortices with a

winding number which is an odd multiple of 2π; the latter should be compared with the

expulsion of all vortices in the KT topological phase of the XY model in D = 2. The

topological phase also has an emergent Z2 gauge field, and the topological order is the

same as that in the Z2 gauge theory of Section 2 at small g. Including the phase with

XY long-range order (LRO), we have 3 possible states, arranged schematically as in

Fig. 1. This phase diagram will form a template for subsequent phase diagrams of more

complex models that are presented in this review; in particular the interplay between

topological and symmetry-breaking phase transitions will be similar to that in Fig. 1.

Section 5.1 introduces a powerful technical tool in the analysis of topological states

and their phase transitions. We embed the model into a related theory with a large

local gauge invariance, and then use the Higgs mechanism to reduce the residual gauge

invariance: this leads to states with the topological order of interest. The full gauge

theory allows one to more easily incorporate matter fields, including gapless matter,

and to account for global symmetries of the Hamiltonian. In Section 5.2, we apply

this method to the D = 3 XY models of Section 4; after incorporating the methods of

particle-vortex duality, we will obtain a field-theoretic description of all the phases in

Fig. 1, and potentially also of the phase transitions.

Sections 6.1 and 6.2 are a detour from the main presentation, and may be skipped

on an initial reading. Here we consider the influence of static background electric charges

on the gauge theories of topological phases. These charges introduce Berry phases, and

we describe the subtle interplay between these Berry phases and the manner in which the

square lattice space group symmetry is realized. Such background charges are needed

to describe the boson/XY models of Section 4 for the cases when the boson density

is half-integer; these models also correspond to easy-plane S = 1/2 antiferromagnets

on the square lattice, and to quantum dimer models [28, 29, 30, 24, 25], and so are

of considerable physical importance. We find several new phenomena: the presence of

‘symmetry-enriched’ topological (SET) phases [31, 32] with a projective symmetry group

D8 (the 16 element non-abelian dihedral group) [33], the necessity of broken translational

symmetry (with valence bond solid (VBS) order) in the confining phase [34, 30, 24, 25],
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Figure 1: Schematic picture of ferro- and antiferromagnets. The chequerboard pat-
tern in the antiferromagnet is called a Néel state.

the role of symmetry in physics. Using new experimental techniques, hidden
patterns of symmetry were discovered. For example, there are magnetic mate-
rials where the moments form a chequerboard pattern where the neighbouring
moments are anti-parallel, see Fig. 1. In spite of not having any net magneti-
zation, such antiferromagnets are nevertheless ordered states, and the pattern
of microscopic spins can be revealed by neutron scattering. The antiferro-
magnetic order can again be understood in terms of the associated symmetry
breaking.

In a mathematical description of ferromagnetism, the important variable is
the magnetization, ~mi = µ ~Si, where µ is the magnetic moment and ~Si the spin
on site i. In an ordered phase, the average value of all the spins is different from
zero, h~mii 6= 0. The magnetization is an example of an order parameter, which
is a quantity that has a non-zero average in the ordered phase. In a crystal it
is natural to think of the sites as just the atomic positions, but more generally
one can define “block spins” which are averages of spins on many neighbouring
atoms. The “renormalization group” techniques used to understand the theory
of such aggregate spins are crucial for understanding phase transitions, and
resulted in a Nobel Prize for Ken Wilson in 1982.

It is instructive to consider a simple model, introduced by Heisenberg, that
describes both ferro- and antiferromagnets. The Hamiltonian is

HF = �J
X
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Figure 1. Schematic phase diagram of the classical D = 3 XY model at non-zero

temperature in Eq. (15), or the quantum D = 2 + 1 XY model at zero temperature

in Eq. (18) along with the constraint in Eq. (20). The XY order parameter is Ψ

(Eq. (11). These models correspond to the case of bosons on the square lattice with

short-range interactions, and at integer filling. The meaning of the Higgs field H,

and half-boson-number field ψ will become clear in Section 5.2, but we note here that

Ψ = Hψ2 (Eq. (38)). The two SRO phases differ in the prefactor of exponential decay

of correlations of the order parameter. But more importantly, the large K phase has

topological order associated with the expulsion of odd vortices: this topological order

is associated with an emergent Z2 gauge field, and is the same as that in the Z2 gauge

theory of Section 2 at small g. The transition between the SRO phases is also in

the same university class as the confinement-deconfinement transition of the Z2 gauge

theory of Section 2. A numerical simulation of a model with the same phase diagram

is in Ref. [26].

and the presence of deconfined critical points [24, 25, 35, 36]. In particular, the larger

gauge groups of Section 5 are not optional at the deconfined critical points, and remain

unbroken in the deconfined critical theory.

Section 7 will turn finally to the important case of electronic Hubbard models on the

square lattice. Here, we will present a SUs(2) gauge theory [37] which contains phases

closely analogous to those of the D = 3 XY model in Fig. 1, as is clear from Fig. 2.

We use the subscript s in the gauge theory to distinguish from the global SU(2) spin

rotation symmetry (which will have no subscript). Note the similarity between Figs. 1

and 2 in the placement of the topological and symmetry-breaking phase transitions.

The simplest state of the Hubbard model is the one adiabatically connected to the free

electron limit. This has no broken symmetries, and has a ‘large’ Fermi surface which

obeys the Luttinger theorem. The Hubbard model also has states with conventional
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Figure 2. Schematic phase diagram of the electronic Hubbard model at generic

density, to be discussed in Section 7. Note the similarity to Fig. 1. These phases

are realized in a formulation with an emergent SUs(2) gauge field. The condensation

of the Higgs field, Hb, can break the gauge invariance down to smaller groups. The

‘spinon’ field, R carries charges under both the gauge SUs(2), and the global SU(2)

spin, and it is the analog of ψ in Fig. 1. The SDW order Sa is related to Hb and ψ via

Eq. (65), which is the analog of Eq. (38) for the XY model. The emergent gauge fields

and topological order are associated with the expulsion of defects in the SDW order.

The reconstructed Fermi surface in the state with topological order can have ‘chargon’

(fp) or electron-like quasiparticles. At half-filling, the states with reconstructed Fermi

surfaces can become insulators without Fermi surfaces (in this case, the insulator with

U(1) topological order is unstable to confinement and valence bond solid (VBS) order).

broken symmetry, and we focus on the case with spin-density wave (SDW) order: the

SDW order breaks translational symmetry, and so the Fermi surface can reconstruct in

the conventional theory, as we review in Section 7.1. But the state of greatest interest

in the present paper is the one with topological order and no broken symmetries, shown

at the top of Fig. 2. We will show that this state is also characterized by the expulsion

of topological defects, and a deconfined emergent Z2 or U(1) gauge field. The expulsion

of defects will be shown to allow reconstruction of the Fermi surface into small pocket

Fermi surfaces with ‘chargon’ (fp) or electron-like quasiparticles.

Finally, Section 8 will briefly note application of these results on fluctuating SDW

order to the pseudogap phase of the cuprate superconductors [38, 39, 40, 41, 42, 43, 44].

Experimental connections [6, 7, 10, 11, 12] were already noted above. We will also
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mention extensions [45] which incorporate pairing fluctuations into more general theories

of fluctuating order for the pseudogap.

2. Z2 gauge theory in D = 2 + 1

Wegner defined the Z2 gauge theory as a classical statistical mechanics partition function

on the cubic lattice. We consider the partition function [17]

Z̃Z2 =
∑

{σij}=±1

exp
(
−H̃Z2/T

)

H̃Z2 = −K
∑

�

∏

(ij)∈�
σij , (1)

The degrees of freedom in this partition function are the binary variables σij = ±1 on

the links ` ≡ (ij) of the cubic lattice. The � indicates the elementary plaquettes of the

cubic lattice.

We will present our discussion in this section entirely in terms of the corresponding

quantum model on the square lattice. This degrees of freedom of the quantum model

are qubits on the links, `, of a square lattice. The Pauli operators σα` (α = x, y, z) act

on these qubits, and σij variables in Eq. (1) are promoted to the operators σz` on the

spatial links. We set σij = 1 on the temporal links as a gauge choice. The Hamiltonian

of the quantum Z2 gauge theory is [17, 18]

HZ2 = −K
∑

�

∏

`∈�
σz` − g

∑

`

σx` , (2)

where � indicates the elementary plaquettes on the square lattice, as indicated in Fig. 3a.

Gi =

(a)

(b)

�x
�x

�x

�x

�z

�z

�z

�z

Figure 3. (a) The plaquette term of the Z2 lattice gauge theory. (b) The operators

Gi which generate Z2 gauge transformations.

On the infinite square lattice, we can define operators on each site, i, of the lattice

which commute with HZ2 (see Fig. 3b)

Gi =
∏

`∈+

σx` , (3)
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which clearly obey G2
i = 1. We have Giσ

z
`Gi = %iσ

z
` , where %i = −1 only if the site i is

at the end of link `, and %i = 1 otherwise: the Gi generates a space-dependent Z2 gauge

transformation on the site i. There are an even number of σz` emanating from each site

in the K term in HZ2 , and so

[HZ2 , Gi] = 0 . (4)

The spectrum of HZ2 depends upon the values of the conserved Gi, and here we will

take

Gi = 1 ; (5)

this corresponds to a ‘pure’ Z2 gauge theory with no matter fields. We will consider

matter fields later.

Wegner [17] showed that there were two gapped phases in the theory, which are

necessarily separated by a phase transition. Remarkably, unlike all previously known

cases, this phase transition was not required by the presence of a broken symmetry in one

of the phases: there was no local order parameter characterizing the phase transition.

Instead, Wegner argued for the presence of a phase transition using the behavior of

the Wegner-Wilson loop operator WC, which is the product of σz on the links of any

closed contour C on the direct square lattice, as illustrated in Fig. 4. (WC is usually,

and improperly, referred to just as a Wilson loop.) The two phases are:

C

g

Deconfined phase
WC ⇠ Perimeter Law

Confined phase
WC ⇠ Area Law

gc

WC =
Y

C
�z

Figure 4. The Wegner-Wilson loop operator WC on the closed loop C. Shown below

is a schematic ground state phase diagram of HZ2 , with the distinct behaviors of WC
in the deconfined and confined phases.

(i) At g � K we have the ‘confining’ phase. In this phase WC obeys the area law:

〈WC〉 ∼ exp(−αAC) for large contours C, where AC is the area enclosed by the contour C
and α is a constant. This behavior can easily be seen by a small K expansion of 〈WC〉:
one power of K is needed for every plaquette enclosed by C for the first non-vanishing

contribution to WC . The rapid decay of 〈WC〉 is a consequence of the large fluctuations

in the Z2 flux,
∏

`∈� σ
z
` , through each plaquette
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(ii) At K � g we have the ‘deconfined’ phase. In this phase, the Z2 flux is expelled, and∏
`∈� σ

z
` usually equals +1 in all plaquettes. We will see later that the flux expulsion is

analogous to the Meissner effect in superconductors. The small residual fluctuations of

the flux lead to a perimeter law decay, 〈WC〉 ∼ exp(−α′PC) for large contours C, where

PC is the perimeter of the contour C and α′ is a constant.

Along with establishing the existence of a phase transition using the distinct

behaviors of the Wegner-Wilson loop, Wegner also determined the critical properties of

the transition. He performed a Kramers-Wannier duality transformation, and showed

that the Z2 gauge theory was equivalent to the classical Ising model. This establishes

that the confinement-deconfinement transition is in the universality class of the the

Ising Wilson-Fisher [46] conformal field theory in 3 spacetime dimensions (a CFT3).

The phase with the dual Ising order is the confining phase, and the phase with Ising

‘disorder’ is the deconfined phase. We will derive the this Ising criticality in Section 5.1

by a different method. For now, we note that the critical theory is not precisely the

Wilson-Fisher Ising CFT, but what we call the Ising* theory. In the Ising* theory, the

only allowed operators are those which are invariant under φ→ −φ, where φ is the Ising

primary field [47, 48].

2.1. Topological order

While Wegner’s analysis yields a satisfactory description of the pure Z2 gauge theory,

the Wegner-Wilson loop is, in general, not a useful diagnostic for the existence of a phase

transition. Once we add dynamical matter fields (as we will do below), WC invariably

has a perimeter law decay, although the confinement-deconfinement phase transition

can persist.

The modern interpretation of the existence of the phase transition in the Z2 lattice

gauge theory is that it is present because the deconfined phase has Z2 ‘topological’ order

[49, 50, 51, 52, 53, 54, 55], while the confined phase is ‘trivial’. We now describe two

characteristics of this topological order: both characteristics can survive the introduction

of additional degrees of freedom; but we will see that the first is more robust, and is

present even in cases with gapless excitations carrying Z2 charges.

The first characteristic is that there are stable low-lying excitations of the

topological phase in the infinite lattice model which cannot be created by the action of

any local operator on the ground state (i.e. there are ‘superselection’ sectors [53]). This

excitation is a particle, often called a ‘vison’, which carries Z2 flux of -1 [56, 57, 58].

Recall that the ground state of the deconfined phase expelled the Z2 flux: at g = 0 the

state with all spins up, |⇑〉, (i.e. eigenstates of σz` with eigenvalue +1) is a ground state,

and this has no Z2 flux. This state is not an eigenstate of the Gi, but this is easily

remedied by a gauge transformation:

|0〉 =
∏

i

(1 +Gi) |⇑〉 (6)

is an eigenstate of all the Gi. Now we apply the σx` operator on a link `, the neighboring
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plaquettes acquire Z2 flux of -1. We need a non-local ‘string’ of σx operators to separate

these Z2 fluxes so that we obtain 2 well separated vison excitations; see Fig. 5. Each vison

-1

-1

Figure 5. Two visons (indicated by the −1’s in the plaquettes) connected by an

invisible string. The dashed lines indicate the links, `, on which the σx` operators acted

on |0〉 to create a pair of separated visons. The plaquettes with an even number of

dashed lines on their edges carry no Z2 fluxes, and so are ‘invisible’.

is stable in its own region, and it can only be annihilated when it encounters another

vison. Such a vison particle is present only in the deconfined phase: all excitations in

the confined phase can be created by local operators, as is easily verified in a small K

expansion.

The second topological characteristic emerges upon considering the low-lying states

of HZ2 on a topologically non-trivial geometry, like the torus. A key observation in such

geometries is that the Gi (and their products) do not exhaust the set of operators which

commute with HZ2 . On a torus, there are 2 additional independent operators which

commute with HZ2 : these operators, Vx, Vy, are illustrated in Fig. 6 (these are analogs

of ’tHooft loops). The operators are defined on contours, Cx,y which reside on the dual

Cx

Cy Cy

Cx

VxWy = �WyVx , VyWx = �WxVy

[H, Vx] = [H, Vy] = 0

and all other pairs commute.

Vx =
Y

Cx

�x , Vy =
Y

Cy

�x

Wx =
Y

Cx

�z , Wy =
Y

Cy

�z

Figure 6. Operators in a torus geometry: periodic boundary conditions are implied

on the lattice.
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square lattice, and encircle the two independent cycles of the torus. The specific contours

do not matter, because we can deform the contours locally by multiplying them with

the Gi. It is also useful to define Wegner-Wilson loop operators Wx,y on direct lattice

contours Cx,y which encircle the cycles of the torus; note that the Wx,y do not commute

with HZ2 , while the Vx,y do commute. Because the contour Cx intersects the contour Cy
an odd number of times (and similarly with Cy and Cx) we obtain the anti-commutation

relations

WxVy = −VyWx , WyVx = −VxWy , (7)

while all other pairs commute.

With this algebra of topologically non-trivial operators at hand, we can now identify

the distinct signatures of the phases without and with topological order. All eigenstates

of HZ2 must also be eigenstates of Vx and Vy. First, consider the non-topological

confining phase at large g. At g = ∞, the ground state, |⇒〉, has all spins pointing to

the right (i.e. all qubits are eigenstates of σx` with eigenvalue +1). This state clearly

has eigenvalues Vx = Vy = +1. States with Vx = −1 or Vy = −1 must have at least one

spin pointing to the left, and so cost a large energy g: such states cannot be degenerate

with the ground state, even in the limit of an infinite volume for the torus.

Next, consider the topological deconfined phase at small g. The ground state |0〉 is

not an eigenstate of Vx,y, but is instead an eigenstate of Wx,y with Wx = Wy = 1. The

state Vx |0〉 is easily seen to be an eigenstate of Wx,y with Wx = 1 and Wy = −1: so

this state has Z2 flux of −1 through one of the holes of the torus. At g = 0, the state

Vx |0〉 is also a ground state of HZ2 , degenerate with |0〉: see Fig. 7. Similarly, we can

Cx

Figure 7. The state Vx |0〉 (the dashed lines indicate σx operators on the ground state:

periodic boundary conditions are implied on the lattice. Notice that every plaquette

has Z2 flux +1, and so this is a ground state at g = 0. This state has Wx = 1 and

Wy = −1. At small non-zero g, there is a non-zero tunnelling amplitude between |0〉
and Vx |0〉 of order gLx , where Lx is the length of Cx.

create two other ground states, Vy |0〉 and VyVx |0〉, which are also eigenstates of Wx,y

with distinct eigenvalues. So at g = 0, we have a 4-fold degeneracy in the ground state,
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and all other states are separated by an energy gap. When we turn on a non-zero g,

the ground states will no longer be eigenstates of Wx,y because these operators do not

commute with HZ2 . Instead the ground states will become eigenstates of Vx,y; at g = 0

we can take the linear combinations (1 ± Vx)(1 ± Vy) |0〉 to obtain degenerate states

with eigenvalues Vx = ±1 and Vy = ±1. At non-zero g, these 4 states will no longer be

degenerate, but will acquire an exponentially small splitting of order g(g/K)L, where L

is a linear dimension of the torus: this is due to a non-zero tunneling amplitude between

states with distinct Z2 fluxes through the holes of the torus.

The presence of these 4 lowest energy states, which are separated by an energy

splitting which vanishes exponentially with the linear size of the torus, is one of the

defining characteristics of Z2 topological order. We can take linear combinations of

these 4 states to obtain distinct states with eigenvalues Wx = ±1, Wy = ±1 of the

Z2 flux through the holes of the torus; or we can take energy eigenvalues, which are

also eigenstates of Vx,y with Vx = ±1, Vy = ±1. These feature are present throughout

the entire deconfined phase, while the confining state has a unique ground state with

Vx = Vy = 1. See Fig. 8.

g

Confined phase.
Unique ground state
has Vx = 1, Vy = 1.
No topological order

gc

Deconfined phase.
4-fold degenerate ground state: Vx = ±1, Vy = ±1.

Can take linear combinations to make
eigenstates with Wx = ±1, Wy = ±1.

Z2 flux expelled.
Topological order.
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Figure 8. An updated version of the phase diagram ofHZ2
in Fig. 4. The confinement-

deconfinement phase transition is described by the Ising∗ Wilson-Fisher CFT, as is

described in Fig. 13.

We close this section by noting that the Z2 topological order described above can

also be realized in a U(1)×U(1) Chern-Simons gauge theory [54, 52]. This is the theory

with the 2+1 dimensional Lagrangian

Lcs =
i

π

∫
d3x εµνλAµ∂νbλ , (8)

where Aµ and bµ are the 2 U(1) gauge fields. The Wilson loop operators of these gauge

fields

Wi = exp

(
i

∫

Ci
Aµdxµ

)
, Vi = exp

(
i

∫

Ci
bµdxµ

)
, (9)

are precisely the operators Wx,y and Vx,y when the contours Ci and Ci encircle the cycles

of the torus. This can be verified by reproducing the commutation relations in Eq. (7)

from Eq. (8). We will present an explicit derivation of Lcs in Section 5.2.
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3. The classical XY models

This section recalls some well-established results on the classical statistical mechanics

of the XY model at non-zero temperature in dimensions D = 2 and D = 3. Later,

we will extend these models to studies of topological order in quantum models at zero

temperature.

The degrees of freedom of the XY model are angles 0 ≤ θi < 2π on the sites i of a

square or cubic lattice. The partition function is

ZXY =
∏

i

∫ 2π

0

dθi
2π

exp (−HXY /T )

HXY = − J
∑

〈ij〉
cos(θi − θj) , (10)

where the coupling J > 0 is ferromagnetic and so the θi prefer to align at low

temperature. A key property of the model is that the HXY is invariant under

θi → θi + 2πni, where the ni are arbitrary integers.

3.1. Symmetry breaking in D = 3

There is a well-studied phase transition in D = 3, associated with the breaking of

the symmetry θi → θi + c, where c is any i-independent real number. As shown in

Fig. 9, below a critical temperature Tc, the symmetry is broken and there are long-

range correlations in the complex order parameter

Ψj ≡ eiθj (11)

with

lim
|ri−rj |→∞

〈
ΨiΨ

∗
j

〉
= |Ψ0|2 6= 0 . (12)

T Tc 

h ii =  0 6= 0
h ii = 0

XY LRO

Figure 1: Schematic picture of ferro- and antiferromagnets. The chequerboard pat-
tern in the antiferromagnet is called a Néel state.

the role of symmetry in physics. Using new experimental techniques, hidden
patterns of symmetry were discovered. For example, there are magnetic mate-
rials where the moments form a chequerboard pattern where the neighbouring
moments are anti-parallel, see Fig. 1. In spite of not having any net magneti-
zation, such antiferromagnets are nevertheless ordered states, and the pattern
of microscopic spins can be revealed by neutron scattering. The antiferro-
magnetic order can again be understood in terms of the associated symmetry
breaking.

In a mathematical description of ferromagnetism, the important variable is
the magnetization, ~mi = µ ~Si, where µ is the magnetic moment and ~Si the spin
on site i. In an ordered phase, the average value of all the spins is different from
zero, h~mii 6= 0. The magnetization is an example of an order parameter, which
is a quantity that has a non-zero average in the ordered phase. In a crystal it
is natural to think of the sites as just the atomic positions, but more generally
one can define “block spins” which are averages of spins on many neighbouring
atoms. The “renormalization group” techniques used to understand the theory
of such aggregate spins are crucial for understanding phase transitions, and
resulted in a Nobel Prize for Ken Wilson in 1982.

It is instructive to consider a simple model, introduced by Heisenberg, that
describes both ferro- and antiferromagnets. The Hamiltonian is

HF = �J
X

hiji

~Si · ~Sj � µ
X

i

~B · ~Si (1)

2

XY SRO

⌦
 i 

⇤
j

↵
⇠ exp(�|ri � rj |/⇠)

|ri � rj |

Figure 9. Phase diagram of the classical XY model in Eq. (10) in D = 3 dimensions.

The low T phase has long-range order (LRO) in Ψ, while the high T has only short-

range order (SRO).

For T > Tc, the symmetry is restored and there are exponentially decaying correlations,

along with a power-law prefactor, as indicated in Fig. 9. This prefactor is the
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Ornstein-Zernike form [59], and arises from the three-dimensional Fourier transform of

(~p2 + ξ−2)−1, where ~p is a three-dimensional momentum. The critical theory at T = Tc
is described by the XY Wilson-Fisher CFT [46].

3.2. Topological phase transition in D = 2

In dimension D = 2, the symmetry θi → θi + c is preserved at all non-zero T . There is

no LRO, and

〈Ψi〉 = 0 for all T > 0.

Nevertheless, as illustrated in Fig. 10, there is a Kosterlitz-Thouless (KT) phase

transition at T = TKT [20, 21, 22, 23], where the nature of the correlations changes

from a power-law decay at T < TKT , to an exponential decay (with an Ornstein-Zernike

prefactor) for T > TKT . At low T , long-wavelength spin-wave fluctuations in the θi are

T TKT 

XY QLRO
Topological order

Figure 3: To the left a single vortex configuration, and to the right a vortex-
antivortex pair. The angle ✓ is shown as the direction of the arrows, and the cores of
the vortex and antivortex are shaded in red and blue respectively. Note how the arrows
rotate as you follow a contour around a vortex. (Figure by Thomas Kvorning.)

by the Hamiltonian,

HXY = �J
X

hiji
cos(✓i � ✓j) (3)

where hiji again denotes nearest neighbours and the angular variables, 0 
✓i < 2⇡ can denote either the direction of an XY-spin or the phase of a
superfluid. We shall discuss this model in some detail below.

Although the GL and BCS theories were very successful in describing many
aspects of superconductors, as were the theories developed by Lev Landau
(Nobel Prize 1962), Nikolay Bogoliubov, Richard Feynman, Lars Onsager and
others for the Bose superfluids, not everything fit neatly into the Landau
paradigm of order parameters and spontaneous symmetry breaking. Problems
occur in low-dimensional systems, such as thin films or thin wires. Here, the
thermal fluctuations become much more important and often prevent ordering
even at zero temperature [39]. The exact result of interest here is due to
Wegner, who showed that there cannot be any spontaneous symmetry breaking
in the XY-model at finite temperature [53].

So far we have discussed phenomena that can be understood using classical
concepts, at least as long as one accepts that superfluids are characterised
by a complex phase. There are however important macroscopic phenomena
that cannot be explained without using quantum mechanics. To find the
ground state of a quantum many-body problem is usually very difficult, but
there are some important examples where solutions to simplified problems give
deep physical insights. Electromagnetic response in crystalline materials is an

6

Vortices expelled Vortices proliferate

⌦
 i 

⇤
j

↵
⇠ exp(�|ri � rj |/⇠)

|ri � rj |1/2

⌦
 i 

⇤
j

↵
⇠ 1

|ri � rj |↵

XY SRO
No 

topological 
order

Figure 10. Phase diagram of the classical XY model in Eq. (10) in D = 3 dimensions.

There is no LRO at any T . The low T phase has quasi long-range order (QLRO) in Ψ,

while the high T has SRO. The KT transition is associated with the proliferation of

vortices, and also a change in the form of the correlations of the XY order parameter

from power-law to exponential.

sufficient to destroy the LRO and turn it into quasi-LRO (QLRO) with a power-law

decay of fluctuations. At high T , there is SRO with exponential decay of correlations.

KT showed that the transition between these phases occurs as a consequences of the

proliferations of point-like vortex and anti-vortex defects, illustrated in Fig. 10. Each

defect is associated with a winding in the phase gradient far from the core of the defect:
∮
dxi ∂iθ = 2πnv , (13)

where the integer nv is a topological invariant characterizing the vorticity. In the QLRO

phase, the vortices occur only in tightly bound pairs of nv = ±1 so that there is no net

vorticity at large scales; and in the SRO phase, these pairs undergo a deconfinement
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transition to a free plasma. So the QLRO phase is characterized by the suppression

of the topological vortex defects. By analogy with the suppression of Z2 flux defects

in the topological-ordered phase of the Z2 gauge theory discussed in Section 2.1, we

conclude that the low T phase of the D = 2 XY model has topological order, and the

KT transition is a topological phase transition [22]. Of course, in the present case,

the phase transition can also be identified by the two-point correlator of Ψi changing

from the QLRO to the SRO form, but KT showed that the underlying mechanism is

the proliferation of vortices and so it is appropriate to identify the KT transition as a

topological phase transition.

4. Topological order in XY models in D = 2 + 1

In the study of classical XY models in Section 3, we found only a symmetry breaking

phase transition in D = 3 dimensions. In contrast, the D = 2 case exhibited a

topological phase transition without a symmetry breaking order parameter. This section

shows that modified XY models can also exhibit a topological phase transition in D = 3

dimensions.

Classical XY models also have an interpretation as quantum XY models at zero

temperature in spatial dimensionality d = D − 1, where one of the classical dimensions

is interpreted as the imaginary time of the quantum model. And the quantum XY

models have the same phases and phase transitions as models of lattice bosons with

short-range interactions. Specifically, the classical D = 3 XY models we study below

map onto previously studied models of bosons on the square lattice at an average boson

number density, 〈N̂b〉, which is an integer [24, 25, 26, 27]. These boson models are

illustrated in Fig. 11. As indicated in Fig. 11, it is possible for such boson models to

have topologically ordered phases which have excitations with a fractional boson number

δN̂b = 1/2. We will also describe the physics for the case of half-integer boson density

later in Section 6.2; this case is also related to quantum dimer models [28, 29, 30, 24, 25].

We now return to the discussion of classical XY models in D = 3 because they

offer a transparent and intuitive route to describing the nature of topological order in

D = 2 + 1 dimensions. The quantum extension of the discussion below will appear in

Section 4.1. We consider an XY model which augments the Hamiltonian in Eq. (10) by

longer-range couplings between the θi, e.g.:

H̃XY = −J
∑

〈ij〉
cos(θi − θj) +

∑

ijk`

Kijk` cos(θi + θj − θk − θ`) + . . . . . . (14)

The additional couplings Kijk` preserve the basic properties of the XY model: invariance

under the global U(1) symmetry θi → θi + c, and periodicity in θi → θi + 2πni. We

will not work out the specific forms of the Kijk` needed for our purposes, but instead

use an alternative form in Eq. (15) below, in which these couplings are decoupled by

an auxiliary Ising variable, and they all depend upon a single additional coupling K.

At small K, the model will have the same phase diagram as that in Fig. 9. But at

larger K, we will obtain an additional phase with topological order, as shown in Fig. 1.
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Figure 11. Schematic representation of a topologically ordered, ‘resonating valence

bond’ state in the boson models of Refs. [24, 25, 26, 27]. The boson b† can reside

either on sites (indicated by the filled circles) or in a bonding orbital (a‘valence bond’)

between sites (indicated by the ellipses). The average boson density of the ground

state is 1. A single additional boson has been added above, and it has fractionalized

into 2 excitations carrying boson number δN̂b = 1/2 (this becomes clear when we

consider each bonding orbital as contributing a density of 1/2 to each of the two sites

it connects).

We will design the additional couplings so that the topological phase proliferates only

even line vortex defects i.e. vortex lines for which the integer nv in Eq. (13) is even.

So the transition to topological order from the non-topological SRO phase occurs via

the expulsion of odd vortex defects, including the elementary vortices with nv = ±1.

The additional K-dependent couplings in the XY model will be designed to suppress

vortices with nv = ±1. This transition should be compared to the KT transition in

D = 2, where both even and odd vortices are suppressed as the temperature is lowered

into the topological phase. Note that the new topological phase only has SRO with

exponentially decaying correlations of the order parameter, unlike the QLRO phase of

the D = 2 XY model. But, there is a subtle difference between the two-point correlators

of Ψi in the two SRO phases in Fig. 1: the power-law prefactors of the exponential are

different between the topological and non-topological phases.

We now present the partition function of the XY model of Fig. 1, related to models

in several previous studies [60, 24, 61, 62, 63, 64, 25, 58, 65, 26, 27, 66, 67]:

Z̃XY =
∑

{σij}=±1

∏

i

∫ 2π

0

dθi
2π

exp
(
−H̃XY /T

)

H̃XY = − J
∑

〈ij〉
σij cos [(θi − θj)/2]−K

∑

�

∏

(ij)∈�
σij , (15)
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where sites i reside on the D = 3 cubic lattice. This partition function is the basis for

the schematic phase diagram in Fig. 1, and numerical results for such a phase diagram

appear in Ref. [26].

As written, the partition function has an additional degree of freedom σij = ±1 on

the links ` ≡ (ij) of the cubic lattice: these are Ising gauge fields similar to those in

Eq. (1). It is not difficult to sum over the σij explicitly order-by-order in K, and then the

resulting effective action for θi has all the properties required of a XY model: periodicity

in θ → θ + 2π and global U(1) symmetry. We can view the σij as a discrete Hubbard-

Stratanovich variable which has been used to decouple the Kijk` term in Eq. (14). So

we are justified in describing Z̃XY as a modified XY model. However, for our purposes,

it will be useful to keep the σij explicit.

In the form in Eq. (15), a crucial property of Z̃XY is its invariance under Z2 gauge

transformations generated by %i = ±1:

θi → θi + π(1− %i) , σij → %iσij%j . (16)

It will turn out that σij is the advertized emergent Z2 gauge field of the topological

phase. Note that the XY order parameter, Ψi, is gauge-invariant.

The rationale for our choice of H̃XY becomes evident upon considering the structure

of a 2π vortex in θi, sketched in Fig. 12. Let us choose the values of θi around the central

-1

Figure 12. A 2π vortex in θi. The Z2 gauge field σij = −1 on links (indicated by

thick dashed lines) across which θi has a branch cut, and σij = 1 otherwise. The Z2

flux of -1 is present only in the central plaquette, and so a vison is present at the vortex

core. If the contour of σij = −1 deviates from the branch cut in θi, there is an energy

cost proportional to the length of the deviation. Consequently, the vison is confined

to the vortex core.

plaquette of this vortex as (say) θi = π/4, 3π/4, 5π/4, 7π/4. Then we find that the values

of cos [(θi − θj)/2] > 0 on all links except for that across the branch cut between π/4

and 7π/4. For J > 0, such a vortex will have σij = −1 only for the link across the

branch cut. So a 2π vortex will prefer
∏

(ij)∈� σij = −1, i.e. a 2π vortex has Z2 flux

= −1 in its core, and then a large K > 0 will suppress (odd) 2π vortices. Note that
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there is no analogous suppression of (even) 4π vortices. This explains why it is possible

for H̃XY to have large K phase with odd vortices suppressed, as indicated in Fig. 1.

The existence of a phase transition between the two SRO phases of Fig. 1 can be

established by explicitly performing the integral over the θi in Z̃XY order-by-order in J .

Such a procedure should be valid because correlations in θi decay exponentially. Then,

it is easy to see that the resulting effective action for the σij is just the Z2 gauge theory

of Section 2, in Wegner’s classical cubic lattice formulation; this is evident from the

requirements imposed by the gauge invariance in Eq. (16). To leading order, the main

effect of the θi integral is a renormalization in the coupling K. The Z2 gauge theory

has a confinement-to-deconfinement transition with increasing K, and this is just the

transition for the onset of topological order in the SRO regime.

4.1. Quantum XY models

Further discussions on the nature of topological phase are more easily carried out in

the language of the corresponding quantum model in d = 2 spatial dimensions. The

quantum language will also enable us to connect with the discussion on the Z2 gauge

theory in Section 2.

The quantum form of H̃XY in Eq. (15) is obtained by transforming the temporal

direction of the partition function into a ‘kinetic energy’ expressed in terms of canonically

conjugate quantum variables. We introduce the half-angle:

ϑi ≡ θi/2 , (17)

and a canonically conjugate number variable n̂i with integer eigenvalues. Just as in

Eq. (2), the σij are promoted to the Pauli matrices σzij, and we will also need the Pauli

matrix σxij. So we obtain

HXY = − J
∑

〈ij〉
σzij cos(ϑi − ϑj)−K

∑

�

∏

(ij)∈�
σzij

+ U
∑

i

(n̂i)
2 − g

∑

〈ij〉
σxij ;

[ϑi, n̂j] = iδij . (18)

The set of operators which commute with HXY are now modified from Eq. (3) to

GXY
i = eiπn̂i

∏

`∈+

σx` . (19)

Each eiϑ boson carries unit Z2 electric charge, and so the Gauss law has been modified

by the total electric charge on site i. The Gauss law constraint in Eq. (5) now becomes

GXY
i = 1 . (20)

The properties of the large K topological phase of HXY are closely connected to

those of the deconfined phase of the Z2 gauge theory in Section 2. There is four-fold

degeneracy on the torus, and a stable ‘vison’ excitations carrying magnetic Z2 flux of

-1. In the present context, the ‘vison’ can also be interpreted as gapped odd vortex in
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the θi; because of the condensation of even vortices, there is only a single independent

odd vortex excitation.

A significant new property is the presence of fractionalized bosonic excitations which

carry ‘electric’ charges under the Z2 gauge field. These are the particles created by the

ψ = eiϑ (21)

operator, and the anti-particles created by ψ∗ = e−iϑ. These are the excitations

illustrated in the boson models of Fig. 11, and they carry boson number N̂ = 1/2.

Note that the XY order parameter, Ψ, and correspondingly the XY boson number, N̂b,

obey

Ψ = ψ2 , N̂b = n̂/2. (22)

It is clear from Eq. (16) that the ψ particles carry Z2 charges. Also, parallel transporting

an electric charge around a vison leads to a Berry phase of −1, and hence the ψ and

the visons are mutual semions. This structure of electric and magnetic excitations, and

of the degeneracy on the torus, is that found in the solvable ‘toric code’ model [53].

The presence of the ψ excitations also helps us understand the nature of the XY

order parameter correlations in the topological SRO phase, as indicated in Fig. 1.

The ψ are deconfined, gapped, bosonic excitations, and the Hamiltonian has a charge

conjugation symmetry under ψ → ψ∗: so the ψ are described at low energies as massive

relativistic charge particles, and this implies that the 2-point ψ correlator has a Ornstein-

Zernike form, with a 1/r prefactor. Then using Ψ = ψ2, we find the exponential decay

of the XY order, with the 1/r2 prefactor, as shown in Fig. 1.

5. Embedding into Higgs phases of larger gauge groups

Sections 2 and 4 have so far described states with Z2 topological order using a Z2

gauge theory. However, as we will be amply demonstrated below, it is often useful to

consider the topological state arising as a phase of a theory with a larger gauge group,

in which condensation of a Higgs field breaks the gauge group back down to Z2. Such

an approach yields a powerful method of analyzing the influence of additional matter

fields in the topological state, and also of describing ‘deconfined’ critical points at which

the topological order is lost: often, the larger gauge group emerges as unbroken in the

theory of deconfined criticality [35, 36].

We will begin in Section 5.1 by recasting the Z2 gauge theory of Section 2 as

a U(1) gauge theory [19]. This does not immediately offer advantages over the Z2

formulation, but does allow us to address the nature of the confinement-deconfinement

phase transition using the well-studied methods of particle-vortex duality. Section 6.1

will then consider an extension of the Z2 gauge theory to include static matter with a

net density of one electric charge per site: this is the so-called ‘odd’ Z2 gauge theory

[68] (correspondingly, the original Z2 gauge theory of Section 2 is called an ‘even’ gauge

theory). We will show that the deconfinement-confinement transition in the odd Z2

gauge theory is described by a deconfined critical U(1) gauge theory.
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5.1. Even Z2 gauge theory

This is section will reconsider the Z2 gauge theory HZ2 in Eq. (2) for the case with no

background Z2 gauge charges, as specified by Eq. (5).

We introduce a U(1) gauge field Aiα on the link of the square lattice between

the sites i and i + êα, where α = ±x,±y and êα are the unit vectors to the nearest

neighbors of site i. Unlike the Z2 gauge field, the U(1) gauge field is oriented, and so

Ai+êα,−α = −Aiα. The Aiα are compact variables with period 2π. We will reduce them

to nearly discrete variables by applying a potential ∼ − cos(2Aiα) so that the values

Aiα = 0, π are preferred. Then we choose the mapping between the gauge fields of the

Z2 and U(1) gauge theories

σzix → exp (iηiAix) , σziy → exp (−iηiAiy) (23)

where

ηi = (−1)ix+iy , (24)

takes opposite signs on the two sublattices of the square lattice.

We also introduce a canonically conjugate ‘electric field’, Eiα, on each link of the

lattice,

[Aiα, Ejβ] = iδijδαβ , (25)

so that the Eiα have integer eigenvalues. As the σx` flip the eigenvalues of σz` , the

corresponding operator in the U(1) gauge field should shift Aiα by π. So we have the

mapping

σxiα → exp (iπηiEiα) . (26)

We apply the mapping in Eq. (23) to the plaquette term in Eq. (2), and include

the potential to favor gauge fields at 0, π, to obtain the Hamiltonian

HU(1) = −K
∑

�

cos (εαβ∆αAiβ) + h
∑

i,α

E2
iα − L

∑

iα

cos(2Aiα) , (27)

where ∆α is a discrete lattice derivative (i.e. ∆αf(i) ≡ f(i+ êα)− f(i)), and εαβ is the

unit antisymmetric tensor.

Eq. (27) also contains a ‘kinetic energy’ term for the U(1) gauge field ∼ E2
iα. With

this term included, the Hamiltonian on each link becomes hE2−L cos(2A), where (via

Eq. (25)) A and E are canonically conjugate variables. This Hamiltonian describes

a ‘particle’ moving on a circle with periodic co-ordinate 0 ≤ A ≤ 2π in a potential

with degenerate minima at A = 0, π. Such a particle will have 2 low-lying states in its

spectrum, and we map these two states to the two eigenstates of the σx` operator on

each link of the Z2 gauge theory in Eq. (2).

While the form of HU(1) in Eq. (27) is, in principle, adequate for our purposes,

it is inconvenient to work with because the L term is not invariant under U(1) gauge

transformations (it is invariant only under Z2 gauge transformations). However, it is

possible to make it U(1) gauge invariant: we generate a U(1) gauge transformation of
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Aiα by the angular variable Θi, and make Θi a dynamical degree of freedom. This

introduces redundant degrees of freedom which allow for full U(1) gauge invariance.

Explicitly, the modified Hamiltonian is

HU(1) = −K
∑

�

cos (εαβ∆αAiβ) + h
∑

i,α

E2
iα

− L
∑

iα

cos(∆αΘi − 2Aiα) + h̃
∑

i

N̂2
i , (28)

where N̂i is the conjugate integer-valued number operator to Θi

[Θi, N̂j] = iδij . (29)

The spectrum of Eq. (28) at h̃ = 0 is identical to that of Eq. (27). The form in Eq. (27)

is invariant under U(1) gauge transformations generated by the arbitrary field fi, where

Aiα → Aiα + ∆αfi , Θi → Θi + 2fi , (30)

and so

Hi ≡ eiΘi (31)

transforms as a charge 2 scalar field. We will refer to Hi as a ‘Higgs’ field, for reasons

that will become clear below.

To complete our description of our U(1) gauge theory, we need to present the fate

of the site constraints in Eq. (5). Just like the Z2 gauge theory, there are an infinite

number of operators that commute with HU(1), associated with the gauge invariance in

Eq. (30). If we use the mapping in Eq. (26), the constraint transforms simply to the

Gauss Law ∆αEiα = 0. However this constraint does not commute with HU(1) because

of the contribution of the Higgs field. The proper Gauss law constraint is

∆αEiα − 2N̂i = 0 , (32)

which is expected, given the presence of a charge 2 matter field. It can be verified that

Eq. (32) commutes with Eq. (28).

We can now state the main result of this subsection, obtained by Fradkin and

Shenker [19]: the phases and phase transitions of the U(1) gauge theory with a charge 2

Higgs field, defined by Eqs. (25,28,29,32), are the same as those of the Z2 gauge theory,

defined by Eqs. (2,5). The U(1) formulation allows easy access to a continuum limit,

which then allows us to use the powerful methods of field theory and particle-vortex

duality.

Let us analyze the properties of the U(1) gauge theory in such a continuum theory.

We impose the constraint in Eq. (32) by a Lagrange multiplier Aiτ , which will serve as a

time component of the gauge field. The continuum limit is expressed in terms of a U(1)

gauge field Aµ (µ = x, y, τ) and the Higgs field H, and takes the form of a standard

relativistic theory of the Higgs field with the Lagrangian density

LU(1) = LH + Lmonopole

LH = |(∂µ − 2iAµ)H|2 + g|H|2 + u|H|4 +K(εµνλ∂νAλ)
2 . (33)
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The gauge invariance in Eq. (30) has now been lifted to the continuum

Aµ → Aµ + ∂µf , H → He2if . (34)

This theory is similar to the conventional Landau-Ginzburg theory of a superconductor

coupled to an electromagnetic field, but with two important differences: the fluctuations

of the gauge field are not weak, and we have to allow for Dirac monopole instantons in

which the U(1) gauge flux changes by 2π. The latter are represented schematically by

the source term Lmonopole, and such instantons are present because of the periodicity of

the gauge field on the lattice.

The two phases of LU(1) correspond to the two phases of the Z2 gauge theory in

Figs. 4 and 8, and are sketched in Fig. 13. For g > gc, we have no Higgs condensate,

ggceg

U(1) confined.
Monopoles proliferate.

hHi = 0
No topological order.

h�i 6= 0

Higgs phase.
hHi = H0 6= 0

Z2 flux and monopoles expelled.
Emergent Z2 gauge field.

Topological order.
h�i = 0
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Figure 13. Phase diagram of the U(1) gauge theory in Eq. (33), which corresponds

to the phase diagrams of the Z2 gauge theory in Figs. 4 and 8. The vison field Φ

represents a 2π vortex in H, corresponding to p = ±1 in Fig. 14. The above is also the

phase diagram of the theory for the visons in Eq. (35), as a function of g̃; this vison

theory shows that the critical points is described by the Ising∗ Wilson-Fisher CFT.

〈H〉 = 0, and then LU(1) reduces to a pure U(1) gauge theory will monopole sources

in the action: such a theory was shown by Polyakov [69] to be confining, and this

corresponds to the confining phase of the Z2 gauge theory. For g < gc, we realize the

Higgs phase with 〈H〉 = H0 6= 0, which corresponds to the deconfined phase of the

Z2 gauge theory. Because of the presence of a gauge field, such a condensate does not

correspond to a broken symmetry. But the Higgs phase is topological because there

is a stable point-like topological defect, realizing the vison of the deconfined phase of

the Z2 gauge theory. This defect is similar to the finite energy Abrikosov vortex of

the Landau-Ginzburg theory, and is sketched in Fig. 14: the phase of H winds by 2πp

around the core the defect (p is an integer), and this traps a U(1) gauge flux of πp.

However, because of the presence of monopoles, the flux is conserved only modulo 2π,

and so there is only a single ±π flux defect, which preserves time-reversal symmetry.

This π flux is clearly the analog of the Z2 flux of −1 for the vison.

A dual description of the above Higgs transition provides an elegant route to

properly treat the monopole insertion within the theory, rather than as an afterthought

above. We apply the standard 2+1 dimensional duality [70, 71] between a complex
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Figure 14. Structure of an Abrikosov vortex saddle point of Eq. (33). The Higgs

field magnitude |〈H〉| → 0 as r → 0. Far from the vortex core, |〈H〉| → |H0| 6= 0,

and the phase of H0 winds by 2πp, where p is an integer. There is gauge flux trapped

in the vortex core; far from the core, the gauge field screens the Higgs field gradients,

and so the energy of the vortex is finite. The trapped flux is defined only modulo 2π

because of the monopole source term, and so ultimately all odd values of p map to the

same vortex (the vison). The dashed line indicated the Berry phase picked up by a

ψ excitation upon parallel transport around the vortex, as discussed below Eqs. (22)

and (38). Because this Berry phase equals −1 for a vison, it is not possible for the ψ

field to condense in the phase with topological order.

scalar (H) coupled to a U(1) gauge field (Aµ) and just a complex scalar (Φ). Here, the

field Φ represents the π flux vortex illustrated in Fig. 14. A monopole insertion carries

flux 2π, and so turns out to correspond here to the operator Φ2. In this manner, we

obtain the following theory, which is the particle-vortex dual of Eq. (33), including the

monopole insertion [24, 25]

Ld,U(1) = LΦ + Lmonopole

LΦ = |∂µΦ|2 + g̃|Φ|2 + ũ|Φ|4

Lmonopole = − λ
(
Φ2 + Φ∗2

)
. (35)

It is also possible [25] to explicitly derive Eq. (35) by carrying out the duality

transformation on the lattice using a Villain form of the original lattice gauge theory in

Eq. (28). The interesting feature here is the explicit form of the Lmonopole term, which

inserts monopoles and anti-monopoles, and which is always strongly relevant. For λ > 0

(say), Lmonopole prefers the real part of Φ over the imaginary part of Φ: so effectively,

at low energies, Ld,U(1) is actually the theory of a real (and not complex) scalar. The

phase where Φ is condensed, corresponding to the proliferation of Z2 flux in the Z2

gauge theory, is the confining phase, as illustrated in Fig. 13. And the phase where Φ is

gapped is the deconfined phase: this has is a gapped real particle carrying Z2 flux, the

vison.
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The new result which can be obtained from Eq. (35) is the universality class of the

confinement-deconfinement transition. We integrate out the always gapped imaginary

part of Φ, and then Ld,U(1) becomes the Wilson-Fisher theory of the Ising transition in

2+1 dimensions. So the phase transition is in the Ising universality class, a result already

obtained by Wegner [17, 72], using a Kramers-Wannier duality on the lattice Z2 gauge

theory. Strictly speaking, as we briefly noted in Section 2, the transition is actually is in

the Ising∗ universality class [47, 48]. This differs from the Ising universality by dropping

operators which are odd under Φ→ −Φ, because the topological order prohibits creation

of single visons.

5.2. Quantum XY model at integer filling

We can easily extend the U(1) gauge theory mapping of Section 5.1 to the D = 3 XY

models of Section 4. The key additional feature we need is the presence of the half-

boson-number, N̂ = 1/2, excitations ψ, defined in Eq. (21). These carry Z2 electric

charges, and from the structure of the J term in Eq. (18), we see that they should also

carry a unit U(1) charge. Combined with gauge invariance and symmetry arguments,

we conclude that the continuum Lagrangian of the XY models at integer filling, defined

by the Hamiltonian in Eq. (18) and the constraint in Eq. (20), is obtained by extending

Eq. (33) to

LXY = LH + Lψ + Lmonopole

LH = |(∂µ − 2iAµ)H|2 + g|H|2 + u|H|4 +K(εµνλ∂νAλ)
2

Lψ = |(∂µ + iAµ)ψ|2 + s|ψ|2 + u′|ψ|4 . (36)

The gauge invariance in Eq. (34) is now extended to

Aµ → Aµ + ∂µf , H → He2if , ψ → ψe−if . (37)

Note that a term of the form H ψ2, although gauge invariant under Eq. (37), is not

allowed in the Lagrangian, because such a term carries a charge under the global U(1)

symmetry of the XY model, which is linked to number conservation in the boson models

of Fig. 11. Indeed, this combination is the gauge-invariant XY order parameter, which

is modified from the Z2 gauge theory form in Eq. (22) to the U(1) gauge theory form

Ψ = H ψ2 , N̂b = N̂ + n̂/2 . (38)

We can now identify the phases in the phase diagram of Fig. 1 using the degrees of

freedom in the U(1) gauge theory in Eq. (36); the updated phase diagram is shown in

Fig. 15. As in Fig. 13, the topological phase is the ‘Higgs phase’, where the U(1) Higgs

field, H, is condensed, but the ψ excitations remain gapped. Because of the unit U(1)

charge of ψ in Eq. (36), the gapped ψ excitations pick up a Berry phase of -1 around a

vison, as indicated in Fig. 14. Also, as in Fig. 13, the confining phase has proliferation

of U(1) monopoles; a confining phase is smoothly connected to a Higgs phase where unit

charges are condensed [19], and so we have also identified this phase with the presence

of a ψ condensate in Fig. 15. The new phase in Fig. 15, not present in Fig. 13, is the
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Figure 15. The schematic phase diagram of the XY model at integer filling in Fig. 1,

presented in the language of the U(1) gauge theory in Eq. (36), and its dual vortex

representation in Eq. (40). Φ is a vortex in H, and φ is a vortex in ψ. In terms of the

gauge-invariant XY order parameter Ψ, Φ is a 2π vortex in Ψ, and φ is a 4π vortex in

Ψ. Note that the condensates in Φ and φ specify the same vortex proliferations as in

Fig. 1.

phase with XY LRO: as is clear from Eq. (38), LRO order is only present when both H

and ψ are condensed.

As in Section 5.1, for a complete continuum action which can account for Lmonopole,

and capture all the phases and phase transitions in Fig. 15, we need to perform a

duality transform of LXY to vortices. Such a duality mapping of Eq. (36) proceeds as

that outlined for Eq. (33). In addition to vortex field Φ, dual to H, we need a vortex

field, φ, dual to ψ. Because the ψ particle carries XY boson number N̂b = 1/2, the dual

vortex φ will be a 4π vortex. Further details of the mapping appear in Refs. [73, 65, 74],

but most features can be deduced from gauge invariance and general arguments. In

particular, the dual theory must have a remnant U(1) gauge field bµ, so that the flux of

bµ is the number current of the original bosons:

Jµ =
1

2π
εµνλ∂νbλ , Jτ = N̂b . (39)

Because Jµ is conserved, there can be no source terms for monopoles of bµ in the

action. This is an important advantage of the dual formalism, which enables a common

continuum limit across the phase diagram of Fig. 15. In this manner, we deduce the

following theory dual to Eq. (36), which generalizes Eq. (35):

Ld,XY = LΦ + Lφ + Lmonopole
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LΦ = |(∂µ − ibµ)Φ|2 + g̃|Φ|2 + ũ|Φ|4

Lφ = |(∂µ − 2ibµ)φ|2 + s̃|φ|2 + ũ′|φ|4

Lmonopole = − λ
(
φ∗Φ2 + φΦ∗2

)
(40)

As before Lmonopole represents the source terms for monopoles and anti-monopoles in

the Aµ gauge field, as in Eq. (35); the additional factors of φ and φ∗ in these terms are

required for bµ gauge invariance. Alllowing for condensates in one or both of Φ and φ,

we obtain all the phases in Fig. 15. Because of the λ term, a φ condensate must be

present when there is a Φ condensate, and that is why there are only 3 phases in Fig. 15:

a phase with Φ condensate but no φ condensate is not allowed.

It is useful to obtain an effective theory for the excitations of the topological phase

in this language. The Φ field is gapped, and its quanta are evidently the visons.

The original ψ particles are also valid gapped excitations (because the dual φ field

is condensed), and so should be kept ‘alive’ in the effective theory. We can obtain the

needed theory by performing a partial duality transform on the original theory LXY
in Eq. (36): we apply the particle-vortex duality [70, 71] on LH but not on Lψ, while

viewing Aµ as a background gauge field. In this manner we obtain a Lagrangian for the

topological phase

Ltopo = Lψ + LΦ + Lmonopole + Lcs , (41)

where Lψ (defined in Eq. (36)) describes the gapped ψ particle, LΦ +Lmonopole (defined

in Eq. (40) with φ replaced by its condensate value) describes the gapped Φ particle, and

Lcs is precisely the U(1)×U(1) Chern-Simons term postulated earlier in Eq. (8). Here

Lcs accounts for the mutual semionic statistics between the ψ and Φ particles. When

we neglect the gapped Φ and ψ excitations, then Ltopo reduces to the purely topological

Chern-Simons theory, which describes the ground state degeneracy on the torus and

other manifolds, as in Section 2.1.

We close this subsection by noting the universality classeses of the 3 phase

transitions in Fig. 1 or Fig. 15.

• The topological transition between the two XY SRO phases: φ is condensed on both

sides, and this gaps out the gauge field bµ. Then the theory in Eq. (40) reduces to

a theory for Φ alone with the same Lagrangian as in Eq. (35). This implies that

this confinement transition is just as in the pure Z2 gauge theory, in the Ising∗

universality class.

• The symmetry breaking transition between XY LRO and the non-topological XY

SRO: this is the conventional transition already discussed in Section 3.1, and is in

the Wilson-Fisher XY universality class

• The symmetry breaking and topological transition between XY LRO and the Z2

topological order: we return to the undualized description in Eq. (36), and note

that H is condensed on both sides of the transition, gapping out Aµ. Then we have

a theory for ψ alone, and this is in the XY∗ universality class [62], because only

operators even in ψ are observable.
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6. Half-filling, Berry phases, and deconfined criticality

This section will consider a new set of models, with properties distinct from those we

have considered so far. These models are ultimately related to the square lattice boson

models illustrated in Fig. 11, at an average boson density, 〈N̂b〉, which is an half-integer

[24, 25, 58, 68, 26, 27], and also to quantum dimer models [28, 29, 30, 24, 25]. Readers

may skip ahead to Section 7 without significant loss of continuity.

Section 6.1 will generalize the Z2 gauge theory of Section 2, and Section 6.2 will

extend the analysis of Section 5.2 to the XY model at half-integer filling.

6.1. Odd Z2 gauge theory

For the simplest of these models, we return to the square lattice Z2 gauge theory in

Eq. (2), and replace the Gauss law constraint in Eq. (5) by

Gi = −1 (42)

on all sites, i. This corresponds to placing a static background Z2 electric charge on each

lattice site. The system has to be globally neutral, and so on a torus of size Lx×Ly, the

number of sites, LxLy, has to be even for there to be any states which satisfy Eq. (42).

Such an ‘odd’ Z2 gauge theory was not considered by Wegner [17]. As with the even

gauge theory in Section 2, performing the Kramers-Wannier duality with the condition

in Eq. (42) leads to an Ising model in a transverse field on the dual lattice; however in

the odd gauge theory, the signs of the couplings in each spatial plaquette are frustrated

[58, 24]. Such a fully frustrated Ising model has been investigated in recent experiments

on superconducting qubits [75].

The seemingly innocuous change between Eq. (5) and Eq. (42) turns out to have

very significant consequences when combined with lattice space group symmetries:

• The topological phase with no broken symmetries is present, but its fractionalized

excitations are endowed with additional degeneracies and transform non-trivially

under lattice symmetries. This is a ‘symmetry enriched’ topological (SET) phase

with a D8 symmetry.

• The confining phase must spontaneously break square lattice symmetries: we will

find valence bond solid (VBS) order in the confining phase. A ‘trivial’ confining is

not possible.

• The phase transition between the topological and confining phase exhibits

deconfined criticality. The critical theory is described by a U(1) gauge theory

with an emergent critical photon. In a dual representation, the critical theory is

the XY∗ Wilson-Fisher CFT, to be contrasted from the Ising∗ Wilson-Fisher CFT

criticality for the even gauge theory.

First, let us return to the Z2 gauge theory Hamiltonian in Eq. (2), and deduce some

exact consequences of the odd constraint in Eq. (42):

(i) Let Tx (Ty) be the operator which translates the system by one lattice spacing along
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the x (y) direction. Clearly, the operators Tx,y commute with the Hamiltonian. Now

consider the operators Vx and Vy defined as in Fig. 6, on a Lx×Ly torus, for convenience

on contours Cx and Cy which are straight i.e. of lengths Lx and Ly respectively. These

operators Vx and Vy also commute with the Hamiltonian. But, as illustrated in Fig. 16,

Vx,y and Tx,y don’t always commute with each other:

Cx

Cx

Figure 16. The operator Vx on the contour Cx is translated by Ty upon the action of

Gi on the encircled sites. Then using Eq. (42), we obtain Eq. (43).

TxVy = (−1)LyVyTx , TyVx = (−1)LxVxTy (43)

The relations in Eq. (43) are valid on any state obeying Eq. (42), and they imply that

there is no trivial non-degenerate ground state of HZ2 .

(ii) In the small g limit, the topological state is modified from Eq. (6) to

|0〉 =
∏

i

(1−Gi) |⇑〉 (44)

(iii) Tx and Ty do not commute when acting on a vison state |v〉:
TxTy|v〉 = −TyTx|v〉 . (45)

The proof of this relation is presented in Fig. 17. This implies that the vison accumulates

a Berry phase of π when transported around a single square lattice site.

Next, we will deduce the consequences of these properties of the Z2 gauge theory

by proceeding to the embedding in a U(1) gauge theory. The lattice gauge theory

Hamiltonian, HU(1) remains the same as in Eq. (28). But now the constraint in Eq. (42)

changes the local constraint in Eq. (32) to

∆αEiα − 2N̂i = ηi , (46)

where ηi was defined in Eq. (24). So there is a background unit U(1) electric charge

on each lattice site, but its sign is staggered. The staggering is a consequence of that

in Eq. (23), where it was required to enable the flux term to have the form of a lattice

curl. We proceed as in Section 5.1 to the continuum limit of the U(1) gauge theory: the

form in Eq. (33) is changed to the action [24, 25]

So,U(1) =

∫
d3xLH + SB + Smonopole

LH = |(∂µ − 2iAµ)H|2 + g|H|2 + u|H|4 +K(εµνλ∂νAλ)
2
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-1 -1

-1-1

Gi

Figure 17. Starting from the lower-left, we illustrate a vison undergoing the

operations Tx, Ty, T−1
x , T−1

y . The final state differs from the initial state by the

action of Gi on the single encircled site. Using Eq. (42), we then obtain Eq. (45), the

π Berry phase of a vison moving on the path shown.

SB = i
∑

i

ηi

∫
dτAiτ

Smonopole =
∑

i

∫
dτ Lmonopole . (47)

The terms in the SB +Smonopole are required to be evaluated on the lattice, so they have

not been absorbed into the continuum theory. The Berry phase term, SB, descends from

the right-hand-side of Eq. (46), after Aiτ is used as a Lagrange multiplier to impose

Eq. (46).

Finally, following Section 5.1, we apply particle-vortex duality to Eq. (47) to obtain

an effective theory for the vison excitations. The explicit computation is presented in

Ref. [25]. Here we will obtain the result by a general argument. As indicated in Fig. 17,

each vison moves in a background π flux per plaquette of the dual lattice due to the

presence of the electric charges on the sites of the direct lattice. It is a simple matter to

diagonalize the dispersion of a particle moving in π flux on the square lattice, and we

obtain a doubly-degenerate spectrum: specifically the lowest energy states are doubly

degenerate, and we denote the real vison particles at these energy minima by ϕ1,2. For

a suitable choice of gauge, the transformation of these real particles under square lattice

symmetries is specified by [76, 33, 77]

Tx : ϕ1 → ϕ2 ; ϕ2 → ϕ1

Ty : ϕ1 → ϕ1 ; ϕ2 → −ϕ2

Rπ/2 : ϕ1 →
1√
2

(ϕ1 + ϕ2) ; ϕ2 →
1√
2

(ϕ1 − ϕ2), (48)

where Rπ/2 is the symmetry of rotations about a dual lattice point. The transformations
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in Eq. (48), and their compositions, form the projective symmetry group which

constrains the theory of the topological phase and of its phase transitions. Direct

computation shows that the group generated by Eq. (48) is the 16 element non-abelian

dihedral group D8 [33]. This D8 symmetry plays a central role in the phenomena

described in Sections 6.1 and 6.2. Now we combine these real particles into a single

complex field

Φ = e−iπ/8 (ϕ1 + iϕ2) (49)

With these phase factors, Φ transforms under D8 as

Tx : Φ→ eiπ/4Φ∗ ; Ty : Φ→ e−iπ/4Φ∗ ; Rπ/2 : Φ→ Φ∗ . (50)

These transformations are chosen so that the monopole operator m = Φ2 transforms as

Tx : m→ im∗ ; Ty : m→ −im∗ ; Rπ/2 : m→ m∗ , (51)

which are also the transformations implied by the monopole Berry phases in Refs. [78, 30,

35, 36]. Note that under the vison D8 operations in Eq. (50), Tx and Ty anticommute (as

required by Eq. (45)), while they commute under the monopole operations in Eq. (51).

Then the effective theory for Φ, which is the new form of Ld,U(1) in Eq. (35), is the

simplest Lagrangian invariant under the D8 symmetry

Lod,U(1) = LΦ + Lmonopole

LH = |∂µΦ|2 + g̃|Φ|2 + ũ|Φ|4

Lmonopole = − λ
(
Φ8 + Φ∗8

)
. (52)

The important new feature of Eq. (52) is that Lmonopole now involves 8 powers of the

vison field operator! This implies that only quadrupled monopoles are permitted in the

action, in contrast to single monopoles in Eq. (35). All smaller monopoles cancel out of

the action due to quantum interference arising from Berry phases from SB in Eq. (47).

The phase diagram of Lod,U(1) is modified from Fig. 13 to Fig. 18. The topological

phase has a gapped Φ excitation. A crucial difference from the even Z2 gauge theory

is that this excitation is doubly degenerate: Lmonopole is sufficiently high order that the

degeneracy between the real and imaginary parts of Φ is no longer broken (unlike in

Eq. (35)). So the vison is a complex relativistic particle, unlike the real particle in

Section 5.1. This double degeneracy in the vison states is a feature of the symmetry-

enriched topological order [31, 32], and is intimately linked to the D8 symmetry and

to the anti-commutation relation [76] in Eq. (45): it is not possible obtain vison states

which form a representation of the algebra of Tx and Ty without this degeneracy.

Turning to the confined phase where Φ is condensed, the non-trivial transformations

in Eq. (50) imply that lattice symmetries must be broken. The precise pattern of the

broken symmetry depends upon the sign of λ, and the two possibilities are shown in

Fig. 18.

Finally, we address the confinement-deconfinement transition in Fig. 18. In

Eq. (52), Lmonopole is an irrelevant perturbation to LΦ, and the critical point of LΦ
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Figure 18. Phase diagram of the U(1) gauge theory in Eq. (47) which describes

the physics of the odd Z2 gauge theory defined by Eqs. (2) and (42). Compare to

Fig. 13 for the even Z2 gauge theory. The vison field Φ represents a 2π vortex in H.

The theory for the visons is Eq. (52), with the tuning parameter g̃. Monopoles are

suppressed at the deconfined critical point at g = gc above, and consequently there

is an emergent critical U(1) photon described by the deconfined critical theory LH in

Eq. (47); in the dual representation of the doubly-degenerate visons, the critical theory

is the XY∗ Wilson-Fisher CFT, described by LΦ in Eq. (52). In contrast, monopoles

are not suppressed at g = gc in the even Z2 gauge theory phase diagram of Fig. 13.

This phase diagram is the earliest example of deconfined criticality, and a numerical

study appeared in Ref. [24].

is the XY∗ Wilson-Fisher CFT [24, 25, 35, 36] (contrast this with the Ising∗ Wilson-

Fisher CFT in Fig. 13). Undoing the duality mapping back to Eq. (47), we note that

the XY∗ Wilson-Fisher CFT undualizes precisely to LH . So SB and Smonopole in Eq. (47)

combine to render to each other irrelevant in the critical theory: the Berry phases in

SB suppress the monopole tunneling events. Consequently, the resulting U(1) gauge

theory, LH , retains a critical photon: this is the phenomenon of deconfined criticality

[24, 25, 35, 36]. The embedding of the Z2 gauge theory into the U(1) gauge theory is now

not optional: it is necessary to obtain a complete description of the critical theory of the

phase transition in Fig. 18. And the critical theory is LH in Eq. (47), the abelian Higgs

model in 2+1 dimensions, which describes a critical scalar coupled to a U(1) gauge field

i.e. the naive continuum limit of the lattice U(1) gauge theory yields the correct answer

for the critical theory, and monopoles and Berry phases can be ignored. This should

be contrasted with the even Z2 gauge theory case in Section 5.1, where monopoles were

relevant.

In closing, we note that the above phase diagram also applies to quantum dimer
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models on the square lattice [24, 25]. The extension to quantum dimer models on other

lattices have also been considered [79, 80, 81, 82, 83, 33].

6.2. Quantum XY model at half-integer filling

In this final subsection, we briefly address the case of bosons with short-range

interactions on the square lattice at half-integer filling. The results apply also to easy-

plane S = 1/2 antiferromagnets on the square lattice, which were the focus of attention

in the studies of Refs. [34, 30, 35, 36]. The analysis involves some rather subtle interplay

between Berry phases and particle-vortex duality, and readers may skip this section

without loss of continuity.

We describe here the properties of the Hamiltonian in Eq. (18), but the constraint

in Eq. (20) is now modified to ‘odd’ constraint appropriate to half-integer filling.

GXY
i = −1 . (53)

Our results will be obtained by combining the U(1) gauge theories of Sections. 5.2

and 6.1. We begin with the integer-filling XY model theory of Eq. (36), and add to it

the odd Z2 gauge theory Berry phases in Eq. (47) to obtain the action

So,XY =

∫
d3x
[
LH + Lψ] + SB + Smonopole

LH = |(∂µ − 2iAµ)H|2 + g|H|2 + u|H|4 +K(εµνλ∂νAλ)
2

Lψ = |(∂µ + iAµ)ψ|2 + s|ψ|2 + u′|ψ|4

SB = i
∑

i

ηi

∫
dτAiτ

Smonopole =
∑

i

∫
dτ Lmonopole . (54)

The ground states of Eq. (54) are similar to those of Eq. (36) in Fig. 15, and are

now shown in Fig. 19. The main change from Fig. 15 is that we no longer expect a

trivial confining phase: instead, the Berry phases are expected to introduce VBS order.

This phase diagram is supported by a quantum Monte Carlo study of a suitable sign-

problem-free lattice realization which was presented in Ref. [67].

As in Section 5.2, evaluating the consequences of SB + Smonopole requires a duality

transform. This was carried out in Refs. [73, 65, 74]. We will not present the general

derivation, but present a simple argument which is similar to that in Section 6.1 for

the odd Z2 gauge theory. As in Section 6.1, the main consequence of the background

electric charges is that the vison move in a background π flux. However, as illustrated

in Fig. 12, in the presence of XY degrees of freedom, each vison is attached to a vortex,

or anti-vortex, in the XY order. So each vison is microscopically a complex particle.

We then account for the π flux just as in Section 6.1, with the result that we obtain

two complex visons, ϕ1,2, which transform just as in Eq. (48). But now we can combine

these vison fields into not one complex field Φ (as in Eq. (49)), but two complex fields
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ggc

or Figure 1: Schematic picture of ferro- and antiferromagnets. The chequerboard pat-
tern in the antiferromagnet is called a Néel state.

the role of symmetry in physics. Using new experimental techniques, hidden
patterns of symmetry were discovered. For example, there are magnetic mate-
rials where the moments form a chequerboard pattern where the neighbouring
moments are anti-parallel, see Fig. 1. In spite of not having any net magneti-
zation, such antiferromagnets are nevertheless ordered states, and the pattern
of microscopic spins can be revealed by neutron scattering. The antiferro-
magnetic order can again be understood in terms of the associated symmetry
breaking.

In a mathematical description of ferromagnetism, the important variable is
the magnetization, ~mi = µ ~Si, where µ is the magnetic moment and ~Si the spin
on site i. In an ordered phase, the average value of all the spins is different from
zero, h~mii 6= 0. The magnetization is an example of an order parameter, which
is a quantity that has a non-zero average in the ordered phase. In a crystal it
is natural to think of the sites as just the atomic positions, but more generally
one can define “block spins” which are averages of spins on many neighbouring
atoms. The “renormalization group” techniques used to understand the theory
of such aggregate spins are crucial for understanding phase transitions, and
resulted in a Nobel Prize for Ken Wilson in 1982.

It is instructive to consider a simple model, introduced by Heisenberg, that
describes both ferro- and antiferromagnets. The Hamiltonian is

HF = �J
X

hiji

~Si · ~Sj � µ
X

i

~B · ~Si (1)

2

XY LRO

Figure 19. Schematic phase diagram of the square lattice quantum XY model at

half-integer filling, defined by Eqs. (18) and (53). Compare to the phase diagrams at

integer filling in Fig. 1 and Fig. 15. Now there is VBS order in the confining phase,

and the Z2 topological order is symmetry enriched. The phase transition between VBS

and Z2 topological order (which is the same as that in Fig. 18), and that between XY

LRO and VBS, are both examples of deconfined criticality. Numerical results on such

a phase diagram appear in Ref. [67], and a mean-field phase diagram was computed

from Eq. (57) in Ref. [65].

Φ1,2 which we choose as (compare to Eq. (49))

Φ1 = e−iπ/8 (ϕ1 + iϕ2) , Φ2 = eiπ/8 (ϕ1 − iϕ2) . (55)

From Eqs. (48) and (55) we then obtain a representation of the D8 symmetry

transformations (compare to Eq. (50))

Tx : Φ1 → eiπ/4Φ2 ; Φ2 → e−iπ/4Φ1

Ty : Φ1 → e−iπ/4Φ2 ; Φ2 → eiπ/4Φ1

Rπ/2 : Φ1 → Φ2 ; Φ2 → Φ1 . (56)

The field definitions in Eq. (55) were chosen so that (i) the product Φ1Φ2 is invariant

under all D8 symmetries, and (ii) the product m = Φ1Φ∗2 transforms as the monopole

operator in Eq. (51).
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We now proceed with the same arguments as those leading to Eq. (40). The main

change is that the field Φ has been replaced by a two fields Φ1,2, and we have to choose a

Lagrangian that is invariant under Eq. (56). As in Ld,XY , we also introduce a 4π vortex

field φ; this is assumed here to transform trivially under all the space group operations

because the φ field does not observe any background flux. This leads to the half-integer

boson density version of Ld,XY [73, 65], now invariant under the D8 projective symmetry

group:

Lod,XY = LΦ + Lφ + Lmonopole

LΦ = |(∂µ − ibµ)Φ1|2 + |(∂µ − ibµ)Φ2|2 + g̃
(
|Φ1|2 + |Φ2|2

)

+ ũ
(
|Φ1|4 + |Φ2|4

)
+ ṽ|Φ1|2|Φ2|2

Lφ = |(∂µ − 2ibµ)φ|2 + s̃|φ|2 + ũ′|φ|4

Lmonopole = − λ
(
(Φ∗1Φ2)4 + (Φ∗2Φ1)4

)
− λ (φ∗Φ1Φ2 + φΦ∗1Φ∗2) . (57)

Now simple considerations of condensates of Φ1,2 and φ lead to the phase diagram in

Fig. 19—a mean-field phase diagram was computed in Ref. [65]. The main change from

Fig. 15 is that the non-trivial symmetry transformations in Eq. (56) imply that the

presence of Φ1,2 condensates leads to VBS order in the confining phase.

As in Section 5.2, we close this subsection by noting the universality classeses of

the three phase transitions in Fig. 19:

• The transition between the two XY SRO phases: φ is condensed on both sides,

and this gaps out the gauge field bµ. From the λ term in Eq. (57), we may set

Φ2 ∼ Φ∗1. Then the theory in Eq. (57) reduces to a theory for Φ1 alone with the same

Lagrangian as that for Φ in Eq. (52). This implies that this confinement transition

is just as in the odd Z2 gauge theory in Section 6.1, in the XY∗ universality class. In

the undualized variables, this transition is described by the U(1) gauge theory LH in

Eq. (54), which makes it the earliest example of deconfined criticality [24, 25, 35, 36].

• The transition between the XY LRO and VBS states is a prominent example of

deconfined criticality [35, 36]. For this transition, we can assume that the φ field is

gapped, and then the Lagrangian reduces to LΦ and the λ term in Eq. (57). The

Lagrangian LΦ in Eq. (57) describes the easy-plane CP1 model in the complex fields

Φ1,2. It is assumed that the λ monopoles are irrelevant at the XY-VBS transition,

and then the critical theory is the critical easy-plane CP1 theory. This theory is

self-dual [84], and it undualizes to another CP1 theory of a pair of relativistic bosons

(‘spinons’) carrying XY boson number N̂b = 1/2.

• The transition between XY LRO and the Z2 topological order: this the same as

that in the XY model at integer filling in Section 5.2. We have a theory for ψ alone,

in the XY∗ universality class [62].
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7. Electron Hubbard model on the square lattice

We are now ready to describe possible states with topological order in Hubbard-

like models, relevant for the cuprate superconductors. Unlike previous sections, the

topological states described below can be gapless: they can contain Fermi surfaces of

gapless fermions and exhibit metallic conduction. Nevertheless, the Higgs field approach

developed in Section 5 can be deployed on the Hubbard model largely unchanged.

We consider fermions (electrons), ciα, on the sites, i, of the square lattice, with spin

index s =↑, ↓. They are described by the Hubbard Hamiltonian

HU = −
∑

i<j

tijc
†
iscjs + U

∑

i

(
ni↑ −

1

2

)(
ni↓ −

1

2

)
− µ

∑

i

c†iscis (58)

where the number operator nis ≡ c†iscis, tij is the ‘hopping’ matrix element between

near-neighbors, U is the on-site repulsion, and µ is the chemical potential.

First, in Section 7.1, we will review the mean-field theory of spin density wave order

in the Hubbard model. This will be the analog of the discussion of Section 3.1 of LRO

in the D = 3 XY model. Then, in Sections 7.2 and 7.3, we will add a topological phase,

as in Section 4 for the XY model. Section 7.2 will introduce the argument based upon

transformation to a rotating reference frame, showing that topological order is required

(in the absence of translational symmetry breaking) for Fermi surface reconstruction.

A more formal argument, based upon Higgs phases of a SUs(2) gauge theory, appears

in Section 7.3.

7.1. Spin density wave mean-field theory and Fermi surface reconstruction

The traditional mean-field treatment of the Hubbard model proceeds by decoupling the

on-site interaction term, U , into fermion bilinears, and optimizing the spin and space

dependence of the bilinear condensate. For simplicity, we work here with a spin density

wave (SDW) order parameter; then the effective Hamiltonian for the electrons in the

phase with SDW order has the form

Hsdw = −
∑

i<j

tijc
†
iscjs −

∑

i

Sia c
†
isσ

a
ss′cis′ − µ

∑

i

c†iscis , (59)

where Sia is the effective field conjugate to the SDW order on site i. One important

case is antiferromagnetic SDW order at wavevector K = (π, π), in which case we write

Sia = ηiNa (60)

where Na is the Néel order, and ηi was defined in Eq. (24). Several other spatial

configurations of Sia are possible, and have been discussed elsewhere [41, 44]. Here, we

will also consider the case of canted antiferromagnetism, with

Sia = ηiNa +Ma , NaMa = 0 , (61)

whereMa is a ferromagnetic moment orthogonal to the antiferromagnetic moment. For

our purposes, the key point to note is that the ηi breaks translational symmetry and
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doubles the unit cell. Consequently Na mixes electron states between momenta k and

k+K. Diagonalizing the 2×2 Hamiltonian atMa = 0, we obtain the energy eigenvalues

for the antiferromagnetic case

Ek =
εk + εk+K

2
±
[(

εk − εk+K

2

)2

+ |Na|2
]1/2

, (62)

where εk is the bare electronic dispersion due to the tij. Filling the lowest energy states

with such a dispersion, we obtain the pocket Fermi surfaces shown in Fig. 20. The

U/t

AF Metal with “small” Fermi surface

Increasing SDW order

Metal with “large” 
Fermi surface

Mean-field theory with a spin density wave
order parameter Na ⇠ (�1)ix+iycis�

a
ss0cis0

hNai 6= 0 hNai = 0
SDW LRO

SDW SRO

Figure 20. Mean field phase diagram of HU . This is the analog Fig. 9, with the

XY order parameter, Ψ, replaced by the spin density wave order parameter Sa. The

new feature is the reconstruction of the large Fermi surface to small pockets: this

reconstruction coincides with the onset of a non-zero 〈Sa〉, and the associated breaking

of translational symmetry.

phase transition in Fig. 20 involves the breaking of symmetry, described the by the

SDW order parameter Sa, and in this respect it is similar XY model transition in D = 3

shown in Fig. 9. However, here the reconstruction of the Fermi surface also accompanies

the onset of SDW order. Luttinger’s theorem guarantees that the small Fermi surfaces

cannot appear without the breaking of translational symmetry, and the latter is linked

to a non-zero 〈Sa〉.

7.2. Transforming to a rotating reference frame

In this section, we wish to move beyond the conventional phases of the Hubbard model

in Fig. 20, and describe also phases with topological order, as was shown already in

Fig. 2. This will be analogous to extending the phase diagram of the D = 3 XY model

from Fig. 9 to Fig. 1.

A diverse set of methods have been employed to describe conducting states on the

square lattice with topological order. Here we shall follow a strategy similar to that
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employed in Section 4: we will describe a state with fluctuating SDW order, i.e. a state

with SDW SRO, in which certain defects have been suppressed. We will show that the

defect suppression leads to topological order with emergent gauge fields (as was the case

with the XY model), and also to Fermi surface reconstruction, as is indicated in Fig. 2.

The approach presented here was proposed in Ref. [37], and some of the discussion

below is adapted from the review in Ref. [39]. The key idea is to transform the electron

spin state to a rotating reference frame. We now show that this leads to a SUs(2) gauge

theory, along with a Higgs field, with a structure very similar to that of the U(1) gauge

theory for the XY model in Section 5.2. The transformation to a rotating reference

frame is defined by a SU(2) rotation Ri and rotated fermions fi,p (p = ±):(
ci↑
ci↓

)
= Ri

(
fi,+
fi,−

)
, (63)

where R†iRi = RiR
†
i = 1. Note that this representation immediately introduces a SUs(2)

gauge invariance (distinct from the global SU(2) spin rotation)(
fi,+
fi,−

)
→ Ui(τ)

(
fi,+
fi,−

)
, Ri → RiU

†
i (τ), (64)

under which the original electronic operators remain invariant, cis → cis; here Ui(τ) is

a SUs(2) gauge-transformation acting on the p = ± index. As noted earlier, we use

the subscript s in the gauge theory to distinguish from the global SU(2) spin rotation

symmetry (which has no subscript). So the fp fermions are SUs(2) gauge fundamentals,

carrying the physical electromagnetic global U(1) charge, but not the SU(2) spin of

the electron: they are the fermionic ‘chargons’ of this theory, and the density of the

fp is the same as that of the electrons. The bosonic R fields transform as SUs(2)

fundamentals under right multiplication, but they also carry the global SU(2) spin

under left multiplication, and are electrically neutral: they are bosonic ‘spinons’, and are

related, but not identical, to Schwinger bosons [34, 60, 37, 41, 43, 44]. (The Schwinger

bosons are canonical bosons, whereas R is initially defined as a SU(2) matrix with

no independent dynamics. The Schwinger bosons, and the ‘rotating reference frame’

method used here, ultimately lead to the same results in the undoped antiferromagnet,

but the latter is far more convenient in the doped antiferromagnet. Also, the latter

approach is essential for reaching the large Fermi surface Fermi liquid.)

Similarly, we can now transform the SDW order parameter Sa to the rotating

reference frame. For reasons which will become evident, we will call the rotated order

parameter a Higgs field, Hb. Lifting the spinor rotation, R, in Eq. (63) to the adjoint

representation of SUs(2) we obtain the defining relation for Hb

σaSa = RσbR†Hb , (65)

where σa are the Pauli matrices. From this definition and Eq. (64), we find that the

Higgs field does not carry the global SU(2) spin, but it does transform as an adjoint of

the SUs(2) gauge transformations

σbHb → U σbHb U
† . (66)
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We now pause to note that the definition in Eq. (65) is the precise analog of the relation

Ψ = Hψ2 in Eq. (38) for the quantum XY model. Indeed Eq. (65) reduces to Eq. (38)

when we limit the SU(2) gauge transformations to a single U(1) rotation in a plane. The

gauge-invariant SDW order parameter Sa is the analog of the gauge invariant XY order

parameter Ψ, the Higgs fields Hb and H evidently map to each other, and the spinor R

maps to the field ψ (both of which carry both gauge and global charges). Specifically,

if we choose

Sa =
1

2
(Ψ + Ψ∗,−i(Ψ−Ψ∗), 0)

Ha =
1

2
(H +H∗,−i(H −H∗), 0)

R =

(
ψ∗ 0

0 ψ

)
, (67)

then Eq. (65) reduces to the relation Ψ = Hψ2 in Eq. (38). Finally, we note that the

gauge transformations in Eqs. (64) and (66) map to those in Eqs. (34) and (37). These

mappings are also clear from the correspondences between the condensates in Fig. 15

and Fig. 2.

A summary of the fields we have introduced so far, and their transformations under

the various global symmetries and gauge invariances are shown in Fig. 21. These

Field Symbol Statistics SUs(2) SU(2) U(1)

Electron cs fermion 1 2 -1
SDW order Sa boson 1 3 0

Chargon fp fermion 2 1 -1
Spinon R boson 2̄ 2 0
Higgs Hb boson 3 1 0
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Figure 21. Fields and quantum numbers employed in the description of the Hubbard

model. The transformations under the SU(2)’s are labelled by the dimension of the

SU(2) representation, while those under the electromagnetic U(1) are labeled by the

U(1) charge. The SDW theory can describe only the two conventional phases in Fig. 2,

while the SUs(2) gauge theory can also describe the third phase with topological order

and emergent gauge fields. The two sets of fields are connected via Eqs. (63) and (65).

transformations constrain structure of the SUs(2) gauge theory for the R, f , and H

fields, and this theory will be described in Section 7.3.

But for now, we can already present a simple picture of the structure of a possible

state with topological order, and how it allows for small reconstructed Fermi surfaces [5].

Imagine we are in a state with fluctuating antiferromagnetic SDW order, where the field

Nia is fluctuating in spacetime (and Ma = 0). We want to perform a transformation

to a rotating reference frame in which the corresponding Higgs field has a uniformly

staggered spatial arrangement, and is independent of time:

Hib = ηiH0eb (68)
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where eb is a fixed 3-component unit vector. The idea is that the rotated fermions, f ,

will then see a uniform background antiferromagnetic SDW order. More completely,

we can postulate an effective Hamiltonian for the f fermions, which is just the rotated

version of Hsdw in Eq. (59):

Hf,sdw = −
∑

i<j

tijf
†
ipfjp −

∑

i

Hib f
†
ipσ

b
pp′fip′ − µ

∑

i

f †ipfip . (69)

From the Eqs. (68) and (69) we find that the dispersion of the f fermions is given by

Eq. (62) with |Na| → H0. Consequently, it appears that the f Fermi surfaces have been

reconstructed to small Fermi surfaces.

The argument just presented is clearly too facile: if correct, it would imply that

we can always transform to a rotating reference frame in a state with fluctuating SDW

order, and find rotated fermions with reconstructed Fermi surfaces. There must be

an additional obstacle to be overcome before a consistent transformation to a rotating

reference frame is possible. Indeed there is such an obstacle, and it is illustrated in

Fig. 22. For simplicity, consider the case where the antiferromagnetic SDW order is

R

�R

Figure 22. A vortex defect in the antiferromagnetic SDW order, Na. The staggering

of the underlying spins, associated with the ηi, is not shown. Upon parallel transport

around such a vortex, the frame of reference is rotated by 2π, and correspondingly the

spinor field R changes sign. Thus it is not possible to consistently define the fermion,

fp, in the rotated reference frame around such a vortex via Eq. (63).

restricted to lie in a single plane (we will consider the general cases in Section 7.3).

The obstacle arises when we consider a vortex defect in the fluctuating SDW order, and

attempt to find a space-dependent rotation R which maps it into a uniformly staggered

Higgs field, as in Eq. (68). As is well-known, a 2π rotation in the adjoint representation

of SU(2), maps to a double-valued spinor representation: the rotation R does not remain

single-valued as we transport it around the vortex, as shown in Fig. 22. Consequently,

if there are any vortices in the SDW order present, we cannot find a single-valued

transformation R to consistently define the fp fermions via Eq. (63), and an effective

Hamiltonian of the form in Eq. (69) is not meaningful.
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So we reach some of the key conclusions of this review. In a state with fluctuating

SDW order, we can consistently transform the fermions into a rotating reference frame

with uniform SDW order only if ±2π vortices in the SDW order are expelled (for the

easy-plane SDW case) [5]. In other words, using our extensive discussion of defect

suppression so far, we conclude that the fluctuating SDW state needs to have topological

order with an emergent Z2 gauge field in this case. And in such a fluctuating SDW state

with topological order, the Fermi surface can consistently reconstruct to small pocket

Fermi surfaces, as indicated in Fig. 2. The ±2π vortices in the SDW order become

stable, gapped, vison excitations in such a phase.

It is useful to mention here the analogy to the Glashow-Weinberg-Salam

SU(2)×U(1) gauge theory of nuclear weak interactions. In that theory, the Higgs field is

the origin of the masses of the fermions. In our case, the Higgs field renders the fermions

at the ‘hot spots’ gapful via Eqs. (68) and (69), and this leads to the reconstruction of

the Fermi surface. The weak interaction Higgs field transforms as a SU(2) fundamental,

and hence the SU(2) gauge group is fully Higgsed; in our case, the Higgs field transforms

as a SUs(2) adjoint, and so there is at least an unbroken Z2 gauge group.

7.3. SUs(2) gauge theory

We now specify the complete SUs(2) gauge theory which describes all the phases in

Fig. 2.

The structure of the theory of the chargons f , the Higgs field Hb, and the spinons

R, follows from the gauge transformations in Eqs. (64) and (66), and the imposition of

square lattice and spin rotation symmetries. We write the Lagrangian as

LSUs(2) = Lf + LY + LR + LH . (70)

The first term for the f fermions descends the fermion hopping terms in Hf,sdw in

Eq. (69)

Lf =
∑

i

f †i,p

[(
∂

∂τ
− µ

)
δpp′ + iAbτσ

b
pp′

]
fi,p′

+
∑

i,j

t̃ijf
†
i,p

[
eiσ

bAb·(ri−rj)
]
pp′
fj,p′ . (71)

We have renormalized the hopping term to t̃ij to account for corrections from the

transformation to the rotating reference frame [43]. But more importantly, we have

introduced a SUs(2) gauge field Abµ ≡ (Abτ ,A
b) to allow for properly gauge-invariant

hopping between sites. The Yukawa coupling between the fermions and the Higgs field

LY = −
∑

i

Hib f
†
ipσ

b
pp′fip′ (72)

was also contained in Eq. (69), and is already gauge invariant.

We will not spell out the full explicit form of the Lagrangian for R, LR. We note

that it descends mainly from the tij hopping in HU , after transforming to the rotating

reference frame, and performing a mean field factorization on the resulting terms; see
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Refs. [41, 43, 44] for details. All the resulting terms have to be invariant under gauge

transformations (by Eq. (64), these act by right multiplication of a spacetime-dependent

SUs(2) matrix on R) and global spin rotations (which act by left multiplication of a

spacetime-independent SU(2) matrix). We can write the SU(2) matrix R in the form

R =

(
z↑ −z∗↓
z↓ z∗↑

)
, |z↑|2 + |z↓|2 = 1 , (73)

and then the effective action for R takes a form closely related to that of the CP1 model

obtained in the Schwinger boson approach [34, 60, 37, 43, 44].

Finally, the Lagrangian for the Higgs field, LH , has a similar structure to those in

Eqs. (33), (36), (47), and (54), after generalizing for a SUs(2) gauge invariance: the field

Hb transforms as an adjoint under spacetime-dependent SUs(2) gauge transformations.

We have to allow the Higgs condensate to have an arbtirary spatial dependence [41, 44],

and so cannot yet take the continuum limit here. We spell out a few terms in LH on

the lattice:

LH = g
∑

i

H2
ib +

∑

i<j

JijHiaDij,abHjb + . . . (74)

where Dij,ab is the Wigner D-matrix of the SO(3) rotation associated with the SUs(2)

rotation generated by the gauge field Ab ·(ri−rj). For our purposes here, the important

information we need from Eq. (74) is the spatial structure of the Higgs condensate, as

this controls the nature of the topological order in Fig. 2: this spatial structure is

controlled by the couplings Jij (and higher order terms) which are ultimately connected

to the exchange interactions between the underlying electrons.

The remaining discussion here will be limited to the possible Higgs phases with

topological order, realizing the state at the top of Fig. 2. With a Higgs condensate

in LY , we compute the fermion dispersion from Lf + LY , and find (as in Section 7.1)

that the Fermi surface has been reconstructed, but now has chargon quasiparticles

fp. Refs. [40, 41, 44] explored the distinct physical properties of a variety of Higgs

condensates; some of the Higgs condensates also break square lattice and/or time-

reversal symmetries. Here we will restrict ourselves to two of the simplest condensates

which do not break any global symmetries: they break the gauge invariance down to

U(1) and Z2, and are described in the following subsections. The topological order

in these states is associated with the expulsion of distinct defects in the SDW order,

and the consequent appearance of emergent deconfined U(1) and Z2 gauge fields. Both

states have fractionalized gapped bosonic spinon excitations, R, and gapless fermionic

chargon excitations, fp, around reconstructed Fermi surfaces, so are ‘algebraic charge

liquids’ (ACL) in the notation of Refs. [85, 86]. It is very likely, given the attraction

induced by the hopping term in the Hubbard model [5], that the bosonic spinons and

fermionic chargons form a fermionic bound state [87]—such a bound state has the same

quantum numbers as an electron. If the binding is strong enough, then the quasiparticles

on the reconstructed Fermi surfaces have electron-like quasiparticles: such a state is a

fractionalized Fermi liquid or FL* [88, 3, 89, 90, 91, 92, 5, 93, 94]. Intermediate states
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Figure 23. (a) A component of a resonating bond wavefunction for FL* in a single-

band model on the square lattice [92]. The density of the green bonds is p, and these

are fermions which form ‘reconstructed’ Fermi surface of volume p with electron-like

quasiparticles. (b) A component of a wavefunction for an ACL. The vacancies are the

‘holons’, or more generally, the ‘chargons’; they are assumed to be fermions which form

a Fermi surface of spinless quasiparticles of charge e.

with both chargon and electron Fermi surfaces are also possible [86], and there is a

Luttinger-like sum rule only on the combined Fermi surfaces [95, 96, 97]. In the FL*

state, the chargon excitations are gapped, and so there is no chargon Fermi surface. A

schematic picture (adapted from Ref. [39]) of the differences between the ACL and FL*

states is shown in Fig. 23.

7.3.1. U(1) topological order: This is a state with fluctuating antiferromagnetic SDW

SRO and reconstructed Fermi surfaces, and is obtained with a Higgs condensate which

is similar to the order parameter in Eqs. (60) and (68)

〈Hib〉 = ηiH0eb , (75)

with eb a unit vector, and the strength of the condensate measured by H0. Such

a Higgs condensate leaves a U(1) subgroup of SUs(2) unbroken, corresponding to

rotations in SUs(2) about the eb axis. Correspondingly, a perturbative treatment of

gauge fluctuations will yield an emergent gapless U(1) photon excitation. However,

non-perturbative topological effects can disrupt these gapless photon excitations. In

the SUs(2) gauge theory, the stable defects are ‘instantons’ (corresponding to tunneling

events in the quantum system) which are ’tHooft-Polyakov monopoles [98, 99]. Indeed,

the present Higgs field and the SUs(2) gauge field have the same structure as the Georgi-

Glashow model [100, 101] used in these monopole computations. Equivalently, we can

work in the reduced U(1) gauge theory, and then the monopoles are Dirac monopoles in

the compact U(1) gauge theory. And in terms of the original SDW order, the monopoles

are ‘hedgehogs’ in the 3-component vector order parameter [30].

In the half-filled Hubbard model, the present state can be an insulator in which
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all f excitations are gapped: in this case the monopole instantons are relevant, and so

we expect to obtain a confining state without topological order. It was argued that

the monopole instantons acquire Berry phases, and these Berry phases lead to VBS

order in the confining phase [34, 30]. In the original computation, these Berry phase

were obtained from the time evolution of canonical Schwinger boson wavefunction. In

the present SUs(2) gauge theory, the R bosons are not canonical, but the same Berry

phases are obtained from the filled band of gapped f chargons reacting to the monopole-

induced time evolution [37, 101]. The mechanism of the Berry phase-induced VBS order

is similar to that discussed in Sections 6.1 and 6.2.

However, U(1) topological order, and the gapless emergent photon, can survive if

the monopoles are expelled [84]: metallic states with fp Fermi surfaces have been shown

to suppress monopoles [102]. In general, monopole defects are suppressed, and U(1)

topological order is stable, as long as there are Fermi surfaces of quasiparticles carrying

U(1) electric charges.

The above discussion ignores the possibility of a pairing instability to

superconductivity, which is invariably present at low temperatures. In the present case,

the attractive force can be provided by the U(1) gauge field coupling to fp with opposite

gauge charges [103].

7.3.2. Z2 topological order: This is a state with fluctuating canted-antiferromagnetic

SDW SRO and reconstructed Fermi surfaces, and is obtained with a Higgs condensate

which corresponds to the canted-antiferromagnet order parameter [41, 104] in Eq. (61):

〈Hib〉 = ηiH0e1b +H1e2b , e1be2b = 0 , (76)

with e1b and e2b two orthonormal vectors, and the strength of the Higgs condensate

measured by H0 and H1. With two orthonormal vectors (e1b and e2b) determining the

spatial dependence of the Higgs condensate, there is no rotation axis about which the

Higgs condensate is invariant. Indeed, only a Z2 gauge invariance remains, because

Hb transforms under the adjoint representation of SUs(2), and only the ±(unit matrix)

gauge transformations leave it invariant. So all gauge excitations are gapped, and there

is stable Z2 topological order. Indeed this topological order is stable in both insulators

[49, 50] and metals. The unbroken gauge group implies the presence of a deconfined,

but gapped, emergent Z2 gauge field.

Emergent Z2 gauge fields also appear for more complex Higgs field condensates

than that in Eq. (76). These can break time-reversal, mirror plane, or other point-

group symmetries of the Hamiltonian, and are discussed elsewhere [40, 41, 44].

As in previous cases, the topological order of the condensate in Eq. (76) is

characterized by expulsion of the Z2 vortex defects from the ground state, and these

defects become gapped ‘vison’ excitations. The visons carry flux of the Z2 gauge field,

and they have a statistical interactions with the fermionic chargons fp and bosonic

spinons R, both of which carry unit Z2 electric charges. In the context of the SUs(2)

gauge theory, the vison is a finite energy vortex solution of the SUs(2) gauge theory which
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is analogous to the Abrikosov vortex solutions discussed in Section 5.1; this is shown in

Fig. 24. To obtain a simple description of the vison vortex solution [105, 62, 106], let

(A)

(B)

(B)
(A)

S3

X

R

�R

Figure 24. A vison defect with a Higgs field in S3/Z2. The full line shows the

trajectory of wα (defined in Eq. (77)) on S3 around a vison defect centered at X. All

such anti-podal configurations of wα are averaged over. The dashed line shows parallel

transport of a spinon, R, around the vison. Compare to Fig 14 and Fig. 22.

us write e1b and e2b in terms of the pair of complex numbers w1,2 via

e1b + ie2b = εαγwγσ
b
αβwβ . (77)

Then with |w1|2 + |w2|2 = 1, it can be verified that the orthonormality constraints e1b

and e2b are are automatically satisfied. Note that wα and −wα both map to the same

values of e1a and e2b. So the mapping in Eq. (77) is 2-to-1: the complex number wα
defines the surface of a unit sphere in 4 dimensions, S3, and Eq. (77) establishes that the

Higgs condensate in Eq. (76) is an element of S3/Z2. The vison defect is associated with

the homotopy group π1(S3/Z2) = Z2, and is easy to identify in the wα parameterization:

as one encircles the defect, wα moves to its anti-podal point; see Fig. 24. The core of

the vison will have SUs(2) gauge flux (as in the Abrikosov vortex in Fig. 14), and this

has two important consequences: (i) the SUs(2) gauge field screens the precession of

the Higgs field far from the core of the vison, leading to a finite energy vison solution;

(ii) the chargon and spinon pick up a Berry phase of π around the vison, and so become

mutual semions with the vison.

7.4. Quantum criticality without symmetry breaking

The most interesting phase transition in Fig. 2 is the topological transition between

the two SDW SRO phases of the Hubbard model. This transition does not involve any

symmetry breaking order parameter, and is associated with the onset of topological

order and Fermi surface reconstruction; so it is possibly linked to the observations in

Ref. [7]. It is useful to reason by analogy to the phenomena in Sections 6.1 and 6.2,

where static background matter induced deconfined criticality with a U(1) gauge field
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at the corresponding transitions in Fig. 18 and Fig. 19. In the Hubbard model, we have

dynamical fermionic matter described by fp, and at half-filling in a large gap insulator,

this matter contributes the same background Berry phase as that by SB in Eq. (54). So

it is a reasonable conjecture that deconfined criticality also applies in the metallic case

with dynamic, gapless, fermionic matter. The needed theory descends directly from

Eq. (70): it has deconfined SUs(2) gauge fields, a Fermi surface of fp chargons, and

the coupling g in Eq. (74) is tuned to make the Higgs field Hb critical. The physical

properties of such a theory were examined in Refs. [37, 107, 39]. In general, we need

a large enough gauge group in the deconfined critical theory to accomodate both the

adjacent topological order(s) and pattern(s) of confinement. Obtaining a large Fermi

surface Fermi liquid as the confining state on one side of the transition appears to require

a gauge group at least as large as SUs(2) [37].

Evidence for a deconfined SUs(2) gauge field at the onset of confinement has

emerged in recent quantum Monte Carlo simulations [108]. This study examined a

pseudogap phase at half-filling with fractionalized Dirac fermion excitations, and will

be discussed further in Section 8.2.

An alternate view of the transition between the two SDW SRO phases arises from

the approach in Ref. [5]. In this approach, we view the transition from the perspective

of the conventional Fermi liquid state, and only include gauge-neutral fermions, cα, in

the low energy critical theory. We couple the the physical electrons cα to the SDW

order parameter, then write the theory of the SDW order parameter fluctuations as a

SUs(2) gauge theory via the decomposition in Eq. (65). On its own, such a SUs(2)

gauge theory, with a Higgs field as in Eq. (76), is similar to the Georgi-Glashow model

of particle physics [109], and it has a transition from a confined phase to a deconfined

phase with Z2 topological order. This transition can be in the same universality class as

the even Z2 gauge theory of Section 2, but more subtle deconfined critical points are also

possible. The coupling to the large Fermi surface of electrons cα leads to marginally

relevant corrections which were studied in Ref. [110, 111], but they don’t alter the

basic picture of a transition driven by an even Z2 gauge theory with no gauge-charged

matter. Once we are in the deconfined (i.e. Higgs) phase, the fermionic excitations

can fractionalize via the converse of Eq. (63): the electrons cα bind with the deconfined

spinons to yield reconstructed Fermi surfaces of fermionic chargons fp, as was described

in some detail in Ref. [5]. We can also envisage a situation in which the fractionalization

of the low energy excitations in the deconfined phase occurs only in the bosonic sector

i.e. Sa fractionalizes into R and Hb as in Eq. (65), while the low energy excitations near

the reconstructed Fermi surfaces remain charge e, spin-1/2 cα electrons, as in a FL*

state. As noted above, the quantum criticality is described by the original electronic

theory in Eq. (59) after substituting in R and H via Eq. (65), along with LR + LH .

Reconstructed Fermi surfaces of the cα can arise in the Higgs phase of such a theory

along the lines of the computation in Ref. [91], and this is an interesting avenue for

further research.

We close this subsection by also mentioning the universality classes of the other
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two phase transitions in Fig. 2. The symmetry breaking transition between SDW LRO

and the large Fermi surface metal is just that described in Section 7.1: this is described

by an order parameter theory of SDW fluctuations, which are damped by the Fermi

surface [112]. The symmetry breaking and topological transition between SDW LRO

and the metal with topological order reduces to a theory of the R spinons alone in the

O(4)∗ universality class [62, 113, 114].

8. Conclusions and extensions

This review began, in Section 2, with a detailed discussion of the topological order

in Wegner’s quantum Z2 gauge theory on a square lattice. Section 5.1 showed that

the topological order of this theory, and the phase transition to the ‘trivial’ confining

state are conveniently described by a U(1) gauge theory with charge 2 Higgs field; the

topological phase acquired a deconfined Z2 gauge field. The same topological phase

with an emergent Z2 gauge field, along with the confinement transition, also appears in

a classical XY model in D = 3 at non-zero temperature, or in quantum models of bosons

with short-range interactions on the square lattice at integer filling at zero temperature:

this is summarized in Fig. 1, and was described in Sections 4 and 5.2. Finally, we showed

that a phase diagram very similar to Fig. 1, appearing in Fig. 2, applied to the electron

Hubbard model on the square lattice.

The most interesting feature of Fig. 2 is the presence of a metallic state with the

topological order of emergent gauge fields, reconstructed Fermi surfaces (with chargon

(fp) or electron-like quasiparticles), and no broken symmetry. We presented a simple

physical argument in Section 7.2 showing how such topological order can reconstruct the

Fermi surface even in the absence of translational symmetry breaking. Such a metallic

state, with fluctuating SDW order leading to emergent gauge fields, is an attractive

candidate for a theory of the pseudogap state of the cuprate superconductors [37], and

we noted its connection to a variety of experiments [6, 7, 10, 11, 12] in Section 1. Recent

theoretical work [42, 43] has compared the metallic state with an emergent gapless U(1)

photon, described in Section 7.3.1, to cluster dynamical mean field theory (DMFT) and

quantum Monte Carlo studies of the lightly hole-doped Hubbard model appropriate for

the cuprates. Good agreement was found in both the real and imaginary parts of the

electron Green’s function computed from the theory in Section 7.3.1. In particular, the

Higgs condensate in Eq. (75) was responsible for inducing a gap in the anti-nodal region

of the Brillouin zone, and led to lines of approximate zeros of the electron Green’s

function. The electron spectral function of this metallic state with emergent gauge

fields can also help understand recent photoemission observations [6] in the electron-

doped cuprate Nd2−xCexCuO4, which detected a reconstruction gap in the electronic

dispersion at a doping x where there is no antiferromagnetic order.
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8.1. Pairing fluctuations in the pseudogap

An important question for further studies of the cuprate pseudogap phase is the role of

electron pairing fluctuations. These have been addressed by a formally distinct SU(2)

gauge theory of the pseudogap described by Lee et al. in Ref. [115]: here we will refer

to this as the SUc(2) gauge theory. However, there is a close relationship between

their SUc(2) gauge theory and our SUs(2) gauge theory of SDW fluctuations. This

relationship can be described in a unified formalism that includes both SDW and pairing

fluctuations [45].

To see the connection between the two approaches, it is useful to introduce a 2× 2

matrix electron operator

Ci =

(
ci↑ −c†i↓
ci↓ c†i↑

)
. (78)

This matrix obeys the relation

C†i = σyCT
i σ

y . (79)

Global SU(2) spin rotations act on C by left multiplication, while right multiplication

corresponds to global SU(2) Nambu pseudospin rotations. We also introduce the

corresponding matrix form of the fermionic chargons

Fi =

(
fi+ −f †i−
fi− f †i+

)
. (80)

Then it is easy to check that the transformation to a rotating reference frame in spin

space in Eq. (63) can be written simply as

Ci = Ri Fi . (81)

The SUc(2) gauge theory of Lee et al [115, 101] corresponds to a transformation

to a rotating reference frame in pseudospin space, and is obtained instead by the

decomposition

Ci = Fi R̃i ; (82)

now the Fi are interpreted as fermionic spinons, while R̃i is a SU(2) matrix representing

the bosonic chargons. Because the electromagnetic charge is now carried by the

bosons, the approach in Eq. (82) does not yield a zero temperature metallic state with

topological order at non-zero doping, because their non-zero density causes the R̃ bosons

to condense. Metallic states with topological order were obtained from the SUs(2) gauge

theory associated with Eqs. (81) and (63). However, it remains possible that Eq. (82)

could be relevant for non-zero temperature where the R̃ bosons are thermally fluctuating.

It can be verified that the operations in Eqs. (81) and (82) commute with each other, and

the most general approach combines them in a SO(4) ∼ SUc(2)×SUs(2) gauge theory

of fluctuating SDW and pairing orders with [45]

Ci = Ri Fi R̃i . (83)
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A wide variety of Higgs fields appear possible in such a SO(4) gauge theory, yielding

interesting refinements of the fluctuating SDW theory of the pseudogap state e.g. a

spatially varying Higgs field in the SUc(2) sector can account for pair density wave

fluctuations [116].

SUs(2) gauge theory
with a rotating

reference frame in
spin space
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with a rotating
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Obtain confining phases with
low energy pseudospin

(i.e. charge) excitations:
superconductor,

charge density wave
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Figure 25. Adapted from Ref. [44]. Schematic representation of routes to confinement

out of the pseudogap phase. Specific realizations of quantum critical points described

by SUs(2) and SUc(2) gauge theories appear in the model of Gazit et al. [117, 108], and

was studied by sign-problem-free quantum Monte Carlo simulations. The horizontal

axis of the figure is proposed to be similar to increasing doping in the high temperature

superconductors.

Fig. 25 (adapted from Ref. [44]) presents a perspective on the roles of the SUs(2)

and SUc(2) gauge theories, in which we treat the pseudogap phase as the parent of

other phases in the cuprate phase diagram. This perspective emerged from studies of

metallic states with topological order amenable to sign-problem-free Monte Carlo across

confinement transitions [117, 108], as described below in Section 8.2.

8.2. Matrix Higgs fields and the orthogonal metal

The SUs(2) gauge theory outlined in Section 7, obtained by transforming to a rotating

reference frame in spin space and then Higgsing the SUs(2) down to smaller groups, led

to states with topological order often referred to as ‘algebraic charge liquids’ (ACLs).

The ACLs have fermionic excitations which carry charge but not spin. Similarly,

the transformations in Section 8.1, which involve transforming to a rotating reference

frame in pseudospin space, followed by Higgsing the pseudospin SUs(2), lead to states

with topological order called ‘algebraic spin liquids’ (ASLs). The ASLs have fermionic

excitations which carry spin but not charge. However, there is a third possibility: the

‘orthogonal metal’ (OM) [118], in which the fermions carry both spin and charge, along
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with a Z2 gauge charge which makes them distinct from electrons. The OM can also

be obtained by Higgsing either the gauged spin SUs(2) or pseudospin SUc(2) by a novel

matrix Higgs field, as was pointed out recently in Ref. [108].

We can view the Higgs field, Hb, of the ACL as a composite of the fermionic chargons

fp; the Yukawa coupling in Eq. (72) implies that Hb ∼ f †pσ
b
pp′fp. To obtain an OM, we

have to consider a Higgs field which is a composite of the bosonic spinons, R. From the

definition in Eq. (63), we know that the SU(2) matrix field R transforms as a spinor

under global spin SU(2) upon left multiplication, and as a spinor under gauge SUs(2)

upon right multiplication. Upon considering pairs of R, we therefore expect fields which

are singlets or triplets under spin and gauge SU(2). All 4 possibilities are potentially

realized by the fields Tr
(
RR†

)
, Tr

(
σaRR†

)
, Tr

(
RσbR†

)
, and Tr

(
σaRσbR†

)
. The first

is a constant, the next two vanish, leaving only the matrix Higgs field

Hab ∼ Tr
(
σaRσbR†

)
. (84)

Note that the index a is a triplet under the spin SU(2), while the index b is a triplet under

the gauge SUs(2). For the SUs(2) gauge theory of the Hubbard model in Sections 7.2

and 7.3, we now consider new phases where Hab condenses. The phase where the only

condensate is 〈Hab〉 = H0δab turns out to be an OM. Because the index b is a SUs(2)

triplet, the condensate is invariant under the Z2 center of SUs(2): so the phase has Z2

topological order. The diagonal δab structure in the matrix space ties the gauge and

spin indices, and consequently [108] the fermionic fields fp effectively acquire a global

SU(2) spin: the fp are then the fermionic excitations of the OM carrying both spin and

charge, along with a Z2 gauge charge.

Refs. [117, 108] also the addressed the nature of the confining transition out of the

OM where the Higgs condensate 〈Hab〉 vanishes. The case with the SUs(2) gauge theory

corresponding to a rotating reference frame in spin space leads to confining phases with

superconducting and/or charge density wave order; see Fig. 25. They also considered

an alternative model in which the OM is defined by transforming to a rotating reference

frame in pseudospin space, using the R̃ matrix in Eq. (82), and a corresponding Higgs

field (replacing Eq. (84))

H̃ab ∼ Tr
(
σaR̃σbR̃†

)
. (85)

The H̃ab condensate leads to the same OM state as the Hab condensate, but the confining

state beyond the Higgs critical point is different: it has antiferromagnetic order, as shown

in Fig. 25. So if we view the pseudogap phase as an OM, then two distinct theories

are needed to reach the antiferromagnet or the superconductor/charge density wave,

both illustrated in Fig. 25. For the antiferromagnetic state with spin order, we should

gauge the pseudospin using the R̃ matrix. Conversely, for the superconducting/charge

density wave (or pair density wave) states with pseudospin order, we should gauge the

spin using the R matrix. We have followed the latter R approach in the present paper,

because we are interested in the evolution from the pseudogap to the larger doping

superconducting, charge/pair density wave [119], and Fermi liquid states.
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(U. Schollwöck, J. Richter, D. J. J. Farnell and R. F. Bishop, eds.), vol. 645 of Lecture Notes

in Physics, Berlin Springer Verlag, p. 381, 2004, cond-mat/0401041, DOI.

[75] A. D. King, J. Carrasquilla, J. Raymond, I. Ozfidan, E. Andriyash, A. Berkley et al.,

Observation of topological phenomena in a programmable lattice of 1,800 qubits, Nature 560

(Aug., 2018) 456–460, [1803.02047].

[76] L. Balents, L. Bartosch, A. Burkov, S. Sachdev and K. Sengupta, Putting competing orders in

their place near the Mott transition, Phys. Rev. B 71 (Apr., 2005) 144508,

[cond-mat/0408329].

[77] A. A. Patel, D. Chowdhury, A. Allais and S. Sachdev, Confinement transition to density wave

order in metallic doped spin liquids, Phys. Rev. B 93 (2016) 165139, [1602.05954].

[78] F. D. M. Haldane, O(3) Nonlinear σ Model and the Topological Distinction between Integer- and

Half-Integer-Spin Antiferromagnets in Two Dimensions, Phys. Rev. Lett. 61 (Aug, 1988)

1029–1032.

[79] R. Moessner, S. L. Sondhi and P. Chandra, Two-Dimensional Periodic Frustrated Ising Models

in a Transverse Field, Phys. Rev. Lett. 84 (May, 2000) 4457–4460, [cond-mat/9910499].

[80] R. Moessner and S. L. Sondhi, Resonating Valence Bond Phase in the Triangular Lattice

Quantum Dimer Model, Phys. Rev. Lett. 86 (Feb., 2001) 1881, [cond-mat/0007378].

https://doi.org/10.1103/PhysRev.156.583
https://doi.org/10.1142/S0217979291000158
https://arxiv.org/abs/cond-mat/0402109
https://doi.org/10.1103/PhysRevLett.70.1650
https://doi.org/10.1103/PhysRevLett.70.1650
https://doi.org/10.1103/PhysRevLett.72.2089
https://arxiv.org/abs/cond-mat/9311045
https://doi.org/10.1103/PhysRevE.52.1778
https://arxiv.org/abs/cond-mat/9501101
https://doi.org/10.1103/PhysRevE.52.1801
https://arxiv.org/abs/cond-mat/9501100
https://doi.org/10.1006/aphy.2002.6232
https://arxiv.org/abs/cond-mat/0108214
https://doi.org/10.1103/PhysRevB.65.054508
https://arxiv.org/abs/cond-mat/0012028
https://doi.org/10.1103/PhysRevB.65.220405
https://arxiv.org/abs/cond-mat/0112003
https://doi.org/10.1103/PhysRevB.65.024504
https://arxiv.org/abs/cond-mat/0103396
https://doi.org/https://doi.org/10.1016/0550-3213(77)90086-4
https://doi.org/https://doi.org/10.1016/0550-3213(77)90086-4
https://doi.org/https://doi.org/10.1016/0003-4916(78)90252-X
https://doi.org/https://doi.org/10.1016/0003-4916(78)90252-X
https://doi.org/10.1103/PhysRevLett.47.1556
https://doi.org/10.1103/PhysRevB.82.085114
https://arxiv.org/abs/0804.3175
https://doi.org/10.1103/PhysRevB.63.134510
https://arxiv.org/abs/cond-mat/0007002
https://arxiv.org/abs/cond-mat/0401041
https://doi.org/10.1007/BFb0119599
https://doi.org/10.1038/s41586-018-0410-x
https://doi.org/10.1038/s41586-018-0410-x
https://arxiv.org/abs/1803.02047
https://doi.org/10.1103/PhysRevB.71.144508
https://arxiv.org/abs/cond-mat/0408329
https://doi.org/10.1103/PhysRevB.93.165139
https://arxiv.org/abs/1602.05954
https://doi.org/10.1103/PhysRevLett.61.1029
https://doi.org/10.1103/PhysRevLett.61.1029
https://doi.org/10.1103/PhysRevLett.84.4457
https://arxiv.org/abs/cond-mat/9910499
https://doi.org/10.1103/PhysRevLett.86.1881
https://arxiv.org/abs/cond-mat/0007378


Topological order, emergent gauge fields, and Fermi surface reconstruction 55

[81] R. Moessner, S. L. Sondhi and P. Chandra, Phase diagram of the hexagonal lattice quantum

dimer model, Phys. Rev. B 64 (Oct., 2001) 144416, [cond-mat/0106288].

[82] A. Vishwanath, L. Balents and T. Senthil, Quantum criticality and deconfinement in phase

transitions between valence bond solids, Phys. Rev. B 69 (June, 2004) 224416,

[cond-mat/0311085].

[83] E. Fradkin, D. A. Huse, R. Moessner, V. Oganesyan and S. L. Sondhi, Bipartite Rokhsar

Kivelson points and Cantor deconfinement, Phys. Rev. B 69 (June, 2004) 224415,

[cond-mat/0311353].

[84] O. I. Motrunich and A. Vishwanath, Emergent photons and transitions in the O(3) sigma model

with hedgehog suppression, Phys. Rev. B 70 (Aug., 2004) 075104, [cond-mat/0311222].

[85] R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev and T. Senthil, Hole dynamics in an

antiferromagnet across a deconfined quantum critical point, Phys. Rev. B 75 (June, 2007)

235122, [cond-mat/0702119].

[86] R. K. Kaul, Y. B. Kim, S. Sachdev and T. Senthil, Algebraic charge liquids, Nature Physics 4

(Jan., 2008) 28–31, [0706.2187].

[87] X.-G. Wen and P. A. Lee, Theory of Underdoped Cuprates, Phys. Rev. Lett. 76 (Jan., 1996)

503–506, [cond-mat/9506065].

[88] T. Senthil, S. Sachdev and M. Vojta, Fractionalized Fermi Liquids, Phys. Rev. Lett. 90 (May,

2003) 216403, [cond-mat/0209144].

[89] Y. Qi and S. Sachdev, Effective theory of Fermi pockets in fluctuating antiferromagnets, Phys.

Rev. B 81 (Mar., 2010) 115129, [0912.0943].

[90] J.-W. Mei, S. Kawasaki, G.-Q. Zheng, Z.-Y. Weng and X.-G. Wen, Luttinger-volume violating

Fermi liquid in the pseudogap phase of the cuprate superconductors, Phys. Rev. B 85 (Apr.,

2012) 134519, [1109.0406].

[91] M. Punk and S. Sachdev, Fermi surface reconstruction in hole-doped t-J models without

long-range antiferromagnetic order, Phys. Rev. B 85 (May, 2012) 195123, [1202.4023].

[92] M. Punk, A. Allais and S. Sachdev, A quantum dimer model for the pseudogap metal, Proc. Nat.

Acad. Sci. 112 (2015) 9552, [1501.00978].

[93] S. Huber, J. Feldmeier and M. Punk, Electron spectral functions in a quantum dimer model for

topological metals, Phys. Rev. B 97 (Feb., 2018) 075144, [1710.00012].

[94] J. Feldmeier, S. Huber and M. Punk, Exact solution of a two-species quantum dimer model for

pseudogap metals, Phys. Rev. Lett. 120 (May, 2018) 187001, [1712.01854].
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