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The quantum entanglement of many states of matter
can be represented by electric and magnetic fields,
much like those found in Maxwell’s theory. These
fields ‘emerge’ from the quantum structure of the
many-electron state, rather than being fundamental
degrees of freedom of the vacuum. I review basic
aspects of the theory of emergent gauge fields in
insulators in an intuitive manner. In metals, Fermi
liquid (FL) theory relies on adiabatic continuity from
the free electron state, and its central consequence
is the existence of long-lived electron-like quasi-
particles around a Fermi surface enclosing a volume
determined by the total density of electrons, via the
Luttinger theorem. However, long-range entangle-
ment and emergent gauge fields can also be present
in metals. I focus on the ‘fractionalized Fermi liquid’
(FL*) state, which also has long-lived electron-like
quasi-particles around a Fermi surface; however, the
Luttinger theorem on the Fermi volume is violated,
and this requires the presence of emergent gauge
fields, and the associated loss of adiabatic continuity
with the free electron state. Finally, I present a brief
survey of some recent experiments in the hole-doped
cuprate superconductors, and interpret the properties
of the pseudogap regime in the framework of the FL*
theory.
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1. Introduction
The copper-based high-temperature superconductors have provided a fascinating and fruitful
environment for the study of quantum correlations in many-electron systems for over two
decades. Significant experimental and theoretical advances have appeared at a steady pace over
the years. In this article, I will review some theoretical background, and use it to interpret some
remarkable recent experiments [1–8]. In particular, I argue that modern theoretical ideas on
long-range quantum entanglement and emergent gauge fields provide a valuable framework for
understanding the experimental results. I will discuss experimental signatures of quantum phases
with emergent gauge fields, and their connections to the recent observations.

The common feature of all the copper-based superconductors is the presence of a square
lattice of Cu and O atoms shown in figure 1a. For the purposes of this article, we can regard
the O p orbitals as filled with pairs of electrons and inert. Only one of the Cu orbitals is active,
and in a parent insulating compound, this orbital has a density of exactly one electron per
site. The rest of this article will consider the physical properties of this Cu orbital residing on
the vertices of a square lattice. It is customary to measure the density of electrons relative to
the parent insulator with one electron per site: we will use p to denote the hole density: i.e.
such a state has a density of 1 − p electrons per Cu site. A recent schematic phase diagram
of the hole-doped superconductor YBCO is shown in figure 1b as a function of p and the
temperature T. The initial interest in these compounds was sparked by the presence of high-
temperature superconductivity, indicated by the large values of Tc in figure 1b. However, I will
not discuss the origin of this superconductivity in this article. Rather, the focus will be on the
other phases, and in particular, the pseudogap metal (PG in figure 1b): the physical properties of
this metal differ qualitatively from those of conventional metals, and so are of significant intrinsic
theoretical interest. Furthermore, superconductivity appears as a low-temperature instability of
the pseudogap, so a theory of the high value of Tc can only appear after a theory of the PG metal.

We begin our discussion by describing the simpler phases at the extremes of p in figure 1b.
At (and near) p = 0, we have the antiferromagnet (AF) which is sketched in figure 2a. The

Coulomb repulsion between the electrons keeps their charges immobile on the Cu lattice sites, so
that each site has exactly one electron. The Coulomb interaction is insensitive to the spin of the
electron, and so it would appear that each electron spin is free to rotate independently on each
site. However, there are virtual ‘superexchange’ processes which induce terms in the effective
Hamiltonian which prefer opposite orientations of nearest-neighbour spins, and the optimal state
turns out to be the AF sketched in figure 2a. In this state, the spins are arranged in a chequerboard
pattern, so that all the spins in one sublattice are parallel to each other, and antiparallel to spins
on the other sublattice. Two key features of this AF state deserve attention here. (i) The state
breaks a global spin rotation symmetry, and essentially all of its low-energy properties can be
described by well-known quantum field theory methods associated with spontaneously broken
symmetries. (ii) The wavefunction does not have long-range entanglement, and the exact many-
electron wavefunction can be obtained by a series of local unitary transformations on the simple
product state sketched in figure 2a.

At the other end of larger values of p, we have the Fermi liquid (FL) phase. This is a metallic
state, in which the electronic properties are most similar to those of simple monoatomic metals
like sodium or gold. This is also a quantum state without long-range entanglement, and the many-
electron wavefunction can be well approximated by a product over single-electron momentum
eigenstates (Bloch waves); note the contrast from the AF state, where the relevant single-particle
states were localized on single sites in position space. We will discuss some further important
properties of the FL state in §3.

Section 2 will describe possible insulating states on the square lattice, other than the simple AF
state found in the cuprate compounds at p = 0. The objective here will be to introduce states with
long-range quantum entanglement in a simple setting, and highlight their connection to emergent
gauge fields. Then §4 will combine the descriptions of §§3 and 2 to propose a metallic state with
long-range quantum entanglement and emergent gauge fields: the fractionalized Fermi liquid
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Figure 1. (a) The square lattice of Cu and O atoms found in every copper-based high-temperature superconductor.
(b) A schematic phase diagram of the YBCO superconductors as a function of the hole density p and the temperature T ; adapted
from [6]. The phases are discussed in the text: AF, insulating antiferromagnet; PG, pseudogap; DW, density wave; dSC, d-wave
superconductor; SM, strangemetal; FL, Fermi liquid. The critical temperature for superconductivity is Tc, and T∗ is the boundary
of the pseudogap regime.
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Figure 2. (a) The insulating AF state at p= 0. (b) Component of a ‘resonating valence bond’ wavefunction for the AF which
preserves spin rotation symmetry; all the |Di⟩ in equation (2.1) have similar pairings of electrons on nearby sites (not necessarily
nearest neighbours). (Online version in colour.)

(FL*). Finally, in §5, we will review the evidence from recent experiments that the pseudogap
(PG) regime of figure 1b is described by an FL* phase.

I also note here another recent review article [9], which discusses similar issues at a more
specialized level aimed at condensed matter physicists. The gauge theories of the insulators
discussed in §2 were reviewed in earlier lectures [10,11].

2. Emergent gauge fields in insulators
The spontaneously broken spin rotation symmetry of the AF state at p = 0 is not observed at
higher p. This section will, therefore, describe quantum states which preserve spin rotation
symmetry. However, in the interests of theoretical simplicity, we will discuss such states in the
insulator at the density of p = 0, and assume that the AF state can be destabilized by suitable
further-neighbour superexchange interactions between the electron spins.
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We begin with the ‘resonating valence bond’ (RVB) state

|Ψ ⟩ =
∑

i

ci|Di⟩, (2.1)

where i extends over all possible pairings of electrons on nearby sites, and a state |Di⟩ associated
with one such pairing is shown in figure 2b; the ci are complex coefficients that we will leave
unspecified here. Note that the electrons in a valence bond need not be nearest neighbours. Each
|Di⟩ is a spin singlet, and so spin rotation invariance is preserved; the AF exchange interaction
is optimized between the electrons within a single valence bond, but not between electrons in
separate valence bonds. We also assume that the ci respect the translational and other symmetries
of the square lattice. Such a state was first proposed by Pauling [12] as a description of a simple
metal like lithium. We now know that Pauling’s proposal is incorrect for such metals. But we will
return to a variant of the RVB state in §4 which does indeed describe a metal, and this metal will be
connected to the phase diagram of the cuprates in §5. Anderson revived the RVB state many years
later [13] as a description of Mott insulators: these are materials with a density of one electron per
site, which are driven to be insulators by the Coulomb repulsion between the electrons (contrary
to the Bloch theorem for free electrons, which requires metallic behaviour at this density).

In a modern theoretical framework, we now realize that the true significance of the Pauling–
Anderson RVB proposal was that it was the first quantum state to realize long-range quantum
entanglement. Similar entanglement appeared subsequently in Laughlin’s wavefunction for
the fractional quantum Hall state [14], and for RVB states in the absence of time-reversal
symmetry [15]. The long-range nature of the entanglement can be made precise by computation
of the ‘topological entanglement entropy’ [16–18]. But here we will be satisfied by a qualitative
description of the sensitivity of the spectrum of states to the topology of the manifold on which the
square lattice resides. The sensitivity is present irrespective of the size of the manifold (provided
it is much larger than the lattice spacing), and so indicates that the information on the quantum
entanglement between the electrons is truly long-ranged. A wavefunction which is a product of
localized single-particle states would not care about the global topology of the manifold.

The basic argument on the long-range quantum information contained in the RVB state is
summarized in figure 3. Place the square lattice on a very large torus (i.e. impose periodic
boundary conditions in both directions), draw an arbitrary imaginary cut across the lattice,
indicated by the red line, and count the number of valence bonds crossing the cut. It is not
difficult to see that any local rearrangement of the valence bonds will preserve the number of
valence bonds crossing the cut modulo 2. Only very non-local processes can change the parity
of the valence bonds crossing the cut: one such process involves breaking a valence bond across
the cut into its constituent electrons, and moving the electrons separately around a cycle of the
torus crossing the cut, so that they meet on the other side and form a new valence bond which
no longer crosses the cut (figure 4). Ignoring this very non-local process, we see that the Hilbert
space splits into disjoint sectors, containing states with even or odd number of valence bonds
across the cut [19,20]. Locally, the two sectors are identical, and so we expect the two sectors to
have ground states (and also excited states) of nearly the same energy for a large enough torus.
The presence of these near-degenerate states is dependent on the global spatial topology, i.e. it
requires periodic boundary conditions around the cycles of the torus, and so can be viewed as a
signature of long-range quantum entanglement.

The above description of topological degeneracy and entanglement relies on a somewhat
arbitrary and imprecise trial wavefunction. A precise understanding is provided by a formulation
of the physics of RVB in terms of an emergent gauge theory. Such a formulation provides another
way to view the nearly degenerate states obtained above on a torus: they are linear combinations
of states obtained by inserting fluxes of the emergent gauge fields through the cycles of the torus.

The formulation as a gauge theory [21,22] becomes evident upon considering a simplified
model with valence bonds only between nearest-neighbour sites on the square lattice. We
introduce valence bond number operators n̂ on every nearest-neighbour link, and then there is
a crucial constraint that there is exactly one valence bond emerging from every site, as illustrated
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Figure 3. Sensitivity of the RVB state to the torus geometry: the number of valence bonds crossing the cut (red line) can only
differ by an even integer between any two configurations (like those shown) which differ by an arbitrary local arrangement of
valence bonds. (Online version in colour.)

(a) (b)

(c) (d)

Figure 4. (a–d) Non-local process which changes the parity of the number of valence bonds crossing the cut. A valence bond
splits into two spins, which pair up again after going around the torus. (Online version in colour.)

in figure 5a. After introducing oriented ‘electric field’ operators Êiα = (−1)ix+iy n̂iα (here i labels
sites of the square lattice and α = x, y labels the two directions), this local constraint can be written
in the very suggestive form

#αÊiα = ρi, (2.2)
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Figure 5. (a) Nearest-neighbour valence bond number operators, proportional to the electric field of a compact U(1) gauge
theory. (b) Model with valence bonds connecting the same sublattice: now the constraint on the number operators is modified,
and the spin liquid is described by aZ2 gauge theory. (Online version in colour.)

where #α is a discrete lattice derivative, and ρi ≡ (−1)ix+iy is a background ‘charge’ density.
Equation (2.2) is analogous to Gauss’s law in electrodynamics, and a key indication that the
physics of resonating valence bonds is described by an emergent gauge theory. An important
difference from Maxwell’s U(1) electrodynamics is that the eigenvalues of the electric field
operator Êiα must be integers. In terms of the canonically conjugate gauge field Âiα ,

[Âiα , Êjβ ] = ih̄δijδαβ , (2.3)

the integral constraint translates into the requirement that Âiα is a compact angular variable on
a unit circle and that Âiα and Âiα + 2π are equivalent. So there is an equivalence between the
quantum theory of nearest-neighbour resonating valence bonds on a square lattice, and compact
U(1) electrodynamics in the presence of fixed background charges ρi. A non-perturbative analysis
of such a theory shows [23,24] that ultimately there is no gapless ‘photon’ associated with the
emergent gauge field Â: compact U(1) electrodynamics is confining in two spatial dimensions,
and in the presence of the background charges the confinement leads to valence bond solid
(VBS) order illustrated in figure 6. The VBS state breaks square lattice rotation symmetry, and
all excitations of the AF, including the incipient photon, have an energy gap. In subsequent work,
it was realized that the gapless photon can re-emerge at special ‘deconfined’ critical points [25–27]
or phases [28], even in two spatial dimensions. In particular, in certain models with a quantum
phase transition between a VBS state and the ordered AF in figure 2a [23–25], the quantum critical
point supports a gapless photon (along with gapless matter fields). This is illustrated in figure 6b
by numerical results of Sandvik [29]: the circular distribution of valence bonds is evidence for an
emergent continuous lattice rotation symmetry, and the associated Goldstone mode is the dual of
the photon.

Although U(1) gauge theory does realize spin liquids with long-range entanglement and
emergent photons, the gaplessness and ‘criticality’ of the spin liquids indicates the presence of
long-range valence bonds, and the Pauling–Anderson trial wavefunctions are poor descriptions
of such states. However, it was argued [30–34] that a stable deconfined gauge theory with an
energy gap and short-range valence bonds can be obtained in models with valence bonds which
connect sites on the same sublattice, as shown in figure 5b, because the same-sublattice bonds act
like charge ±2 Higgs fields in the compact U(1) gauge theory. In such gauge theories [35,36], there
can be a ‘Higgs’ phase, which realizes a stable, gapped, RVB state preserving all symmetries of the
Hamiltonian, including time reversal, described by an emergent Z2 gauge theory [31,34]. The Z2
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Figure 6. (a) The four VBS states which break square lattice rotational symmetry. (b) Distribution of the complex VBS order
parameter Ψvbs in the quantum Monte Carlo study by Sandvik [29]; the real and imaginary parts of this order measure the
probability of the VBS states in the first and second columns. The near-circular distribution of Ψvbs reflects an emergent
symmetry which is a signature of the existence of a photon.

gauge theory can be viewed as a discrete analogue of the compact U(1) theory in which the gauge
field takes only two possible values Âiα = 0, π . The intimate connection between a spin liquid
with a deconfined Z2 gauge field, and a non-bipartite RVB trial wavefunction like equation (2.1),
was shown convincingly by Wildeboer et al. [18]. Upon varying parameters in the underlying
Hamiltonian, the Z2 spin liquid can undergo a confinement transition to a VBS phase which is
described by a dual frustrated Ising model [31,34].

3. The Fermi liquid
We now turn to the metallic state found at large p (above the superconducting Tc) in figure 1b.
This is the familiar FL, similar to that found in simple metals like sodium or gold.

The key properties of an FL, reviewed in many textbooks, are:

— The FL state of interacting electrons is adiabatically connected to the free electron state.
The ground state of free electrons has a Fermi surface in momentum space, which
separates the occupied and empty momentum eigenstates. This Fermi surface is also
present in the interacting electron state, and the low-energy excitations are long-lived,
electron-like quasi-particles near the Fermi surface.

— The Luttinger theorem states that the volume enclosed by the Fermi surface (i.e. the Fermi
volume) is equal (modulo phase space factors we ignore here) to the total density of
electrons. This equality is obviously true for free electrons, but is also proved to be true,
to all orders in the interactions, for any state adiabatically connected to the free electron
state.

— For simple convex Fermi surfaces, the Fermi volume can be measured by the Hall
coefficient, RH, measuring the transverse voltage across a current in the presence of an
applied magnetic field. We have 1/(eRH) = −(electron density) for electron-like Fermi
surfaces, and 1/(eRH) = (hole density) for hole-like Fermi surfaces.

For the cuprates, the FL is obtained by removing a density, p, of electrons from the insulating AF,
as shown in figure 7a. Relative to the fully filled state with two electrons on each site (figure 7b),
this state has a density of holes equal to 1 + p. Hence the FL state without AF order can have a
single hole-like Fermi surface with a Fermi volume of 1 + p (and not p). And indeed, just such a
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Figure 7. (a) State obtained after removing electrons with density p from the AF state in figure 2a. Relative to the fully filled
statewith two electrons per site in (b), this state has a density of holes equal to 1 + p. (c) Photoemission results fromPlaté et al.
[37] showing a Fermi surface of size 1 + p in the FL region of figure 1b. This is the expected Luttinger volume at this density, in a
state without any AF order.

Fermi surface is observed in photoemission experiments in the cuprates (figure 7c) in the region
marked FL in figure 1b.

4. Emergent gauge fields in a metal: the fractionalized Fermi liquid
Next, we turn our attention to the smaller p region marked PG (pseudogap) in figure 1b. We
will review the experimental observations in this region in §5, but for now we note that in many
respects this region behaves like an ordinary FL, but with the crucial difference that the density of
charge carriers is p and not the Luttinger density of 1 + p. So here we ask the theoretical question:
is it possible to obtain an FL which violates the Luttinger theorem and has a Fermi surface of size
p of electron-like quasi-particles? From the structure of the Luttinger theorem we know that any
such state cannot be adiabatically connected to the free electron state. A key result is that long-
range quantum entanglement and associated emergent gauge fields are necessary characteristics of
metallic states which violate the Luttinger theorem, and these also break the adiabatic connection
to the free electron state [38,39].

(There are claims [40] that zeros of electron Green’s functions can be used to modify the
Luttinger result. I believe such results are artefacts of simplified models. Such zeros do not
generically exist as lines in the Brillouin zone (in two dimensions) for gapless states because both
the real and imaginary parts of the Green’s functions have to vanish.)

One way to obtain a metal with carrier density p and without AF order is to imagine that
the electron spins in figure 7a pair up into resonating valence bonds, rather like the insulator in
figure 2b. This is illustrated in figure 8a; the resonance between the valence bonds can now allow
processes in which the vacant sites can move, as shown in figure 8b. As this process now
transfers physical charge, the resulting state can be expected to be an electrical conductor. A subtle
computation is required to determine the quantum statistics obeyed by the mobile vacancies, but,
depending upon the parameter regimes, it can be either bosonic or fermionic [41,42]. Assuming
fermionic statistics, we have the possibility that the vacancies will form a Fermi surface, realizing
a metallic state. Note that the vacancies do not transport spin, and such spinless charge carriers
are often referred to as ‘holons’; the metallic state we have postulated is a holon metal. The low-
energy quasi-particles near the Fermi surface of the holon metal will also be holons, carrying unit
electrical charge but no spin. Consequently, such quasi-particles are not directly observable in
photoemission experiments, which necessarily eject bare electrons with both charge and spin. As
low-energy electronic quasi-particles are observed in photoemission studies of the PG region in
the cuprates (see §5), the holon metal is not favoured as a candidate for the PG metal.

To obtain a spinful quasi-particle, we clearly have to attach an electronic spin to each holon.
And as shown in figure 9, it is not difficult to imagine conditions under which this might be
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(a) (b)

Figure 8. (a) State obtained by pairing the spins in figure 7a into valence bonds. (b) Resonance between the valence bonds
leads to the motion of the vacancy in the centre of the figure. The mobile vacancy is a ‘holon’, carrying unit charge but no spin.
If the holons have fermionic statistics, such amobile holon state can realize a holonmetal. Only nearest-neighbour pairs of spins
are shown for simplicity. (Online version in colour.)

= (Ô≠ØÒ –ÔØ≠Ò)  ÷–
2 = (Ô≠ ∞Ò + Ô∞ ≠Ò)  ÷–

2

(a) (b)

Figure 9. (a) State obtained by breaking density p/2 valence bonds in figure 8a into their constitutent spinons. (b) The spinons
move into the neighbourhood of the vacancies and form holon–spinon bound states represented by the green rectangular
dimers [43]. The state with resonating blue elliptical and green rectangular dimers realizes a metal with a Fermi volume of p
quasi-particles with charge+e and spin S= 1

2 : the fractionalized Fermi liquid (FL*). (Online version in colour.)

favourable: (i) We break density p/2 valence bonds into their constituent spins (figure 9a); this
costs some exchange energy for each valence bond broken. (ii) We move the constituent spins
(spinons) into the neighbourhood of the holons. (iii) The holons and spinons form a bound state
(figure 9b) which has both charge +e and spin S = 1

2 , the same quantum numbers as (the absence
of) an electron; this bound state formation gains energy which can offset the energy cost of (i).
We now have a modified resonating valence bond state [43], like that in equation (2.1), but with
|Di⟩ consisting of pairing of sites of the square lattice with two categories of ‘valence bonds’:
the blue and green dimers in figure 9b. The first class (blue) is the same as the electron singlet
pairs found in the Pauling–Anderson state. The second class (green) consists of a single electron
resonating between the two sites at the ends of the bond. From their constituents, it is clear that,
relative to the insulating RVB state, the blue dimers are spinless, charge-neutral bosons, while
the green dimers are spin S = 1

2 , charge +e fermions. Evidence that the states associated with
the blue and green dimers dominate the wavefunction of the lightly doped cuprates appears in
cluster dynamical mean-field studies [44,45]. Both classes of dimers are mobile, and the situation
is somewhat analogous to a 4He–3He mixture. Like the 3He atoms, the green fermions can form
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F

Figure 10. Sample configurations of the wavefunction of the FL* state. The two configurations differ by local rearrangements
which preserve the sum of the number of blue elliptical and green rectangular dimers crossing the cut modulo 2, just as in
figure 3 (only nearest-neighbour dimers are shown for simplicity). This conservation implies the presence of gauge excitations,
and additional states sensitive to the global topology, which cannot be decomposed into the quasi-particle excitations around
the Fermi surface. Arguments in [38,39,57], based upon the adiabatic insertion of a fluxoidΦ = h/e through a cycle of the
torus, show that the presence of these states allows the Fermi volume to take a non-Luttinger value. (Online version in colour.)

a Fermi surface, and extension of the Luttinger argument to the present situation shows that
the Fermi volume is exactly p [38,46,47]. However, unlike the 4He–3He mixture, superfluidity
is not immediate, because of the close-packing constraint on the blue + green dimers; onset of
superfluidity will require pairing of the green dimers and will not be explored here. So the state
obtained by resonating motion of the dimers in figure 9b is a metal, dubbed the FL* [46]. It has a
Fermi volume of p, with well-defined electron-like quasi-particles near the Fermi surface.

A metallic state with a Fermi volume of density p holes with charge +e and spin S = 1
2 was

initially described in [48,49] by considering a theory for the loss of AF order in a doped AF state
like that in figure 7a. Numerous later studies [43,47,50–56] described the resulting metallic state
more completely in terms of the binding of holons and spinons, similar to the discussion above.
These studies also showed the presence of the emergent gauge excitations in the metal.

We can also see the presence of emergent gauge fields, and associated low-energy states
sensitive to the topology of the manifold, in our simplified description here of the FL* metal.
Indeed, such low-energy states are required to evade the Luttinger theorem on the Fermi surface
volume [38,39]. The FL* metal shares its topological features with corresponding insulating spin
liquids, and we can transfer all of the arguments of §2 practically unchanged, merely by applying
them to wavefunctions like figure 9b in a ‘colour blind’ manner. So the arguments in figure 3 on
the conservation of the number of valence bonds across the cut modulo 2, and associated near-
degeneracies on the torus, apply equally to the FL* wavefunction after counting the numbers of
both blue and green dimers (figure 10). The presence of these near-degenerate topological states
is also crucial for the Luttinger-volume-violating Fermi surface. Oshikawa [57] presented a proof
of the Luttinger volume in an FL by considering the consequences of adiabatically inserting a
fluxoid Φ = h/e through a cycle of the torus, while assuming that the only low-energy excitations
on the torus are the quasi-particles around the Fermi surface. However, with the availability of
the low-energy topological states discussed in figure 10, which are not related to quasi-particle
excitations, it is possible to modify Oshikawa’s proof and obtain a Fermi volume different from
the Luttinger volume [38,39]; indeed, a Luttinger volume of p holes appears naturally in many
models, including the simple models discussed here.
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(a) (b)

Figure 11. (a) Photoemission spectrum in the PG regime [58]. Shown is the first Brillouin zone of the square lattice centred
at (π ,π ), as in figure 7c. However, unlike the FL result in figure 7c, there is no continuous Fermi surface, only ‘Fermi arcs’.
(b) Photoemission from an FL*model in [54]. The Fermi surface consists of hole pockets of total area p, with intensity enhanced
along the observed Fermi arcs, but suppressed on the ‘back’ sides of the pockets.

To summarize, this section has presented a simple description of a metallic state with the
following features:

— a Fermi surface of holes of charge e and spin S = 1
2 enclosing volume p, and not the

Luttinger volume of 1 + p;
— additional low-energy quantum states on a torus not associated with quasi-particle

excitations, i.e. emergent gauge fields.

The flux-piercing arguments in [38,39] show that it is not possible to have the first feature without
the second.

5. The pseudogap metal of the cuprates
An early indication of the mysterious nature of the PG regime in figure 1b was its remarkable
photoemission spectrum [58,59] (figure 11). There are low-energy electronic excitations along
the ‘nodal’ directions in the form of ‘Fermi arcs’, but none in the antinodal directions. In the
FL* proposal, these arcs are remnants of hole pockets centred on the Brillouin zone diagonals,
with intensity suppressed on the ‘back’ sides of the pockets [40,54], as shown in figure 11. The
complete hole pockets have not been observed in photoemission, but this is possibly accounted
for by thermal broadening and weak intensity on their ‘back’ sides.

More persuasive evidence for the FL* interpretation of the PG phase has come from a number
of other experiments:

— A T-independent positive Hall coefficient RH corresponding to carrier density p in the
higher-temperature pseudogap [60]. This is the expected Hall coefficient of the hole
pockets in the FL* phase.

— The frequency and temperature dependence of the optical conductivity has an FL form
∼1/(−iω + 1/τ ) with 1/τ ∼ ω2 + T2 [1]. This FL form is present although the overall
prefactor corresponds to a carrier density p.

— Magnetoresistance measurements obey Kohler’s rule [2] with ρxx ∼ τ−1(1 + aH2T2),
again as expected by the Fermi pocket of long-lived quasi-particles.

— Density wave (DW) modulations have long been observed in STM experiments [61] in
the region marked DW in figure 1b. Following theoretical proposals [62,63], a number
of experiments [3–7] have identified the pattern of modulations as a d-form factor DW.
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Computations of DW instabilities of the FL* metal lead naturally to a d-form factor DW,
with a wavevector similar to that observed in experiments [64].

— Finally, very interesting recent measurements by Badoux et al. [8] of the Hall coefficient
at high fields and low T for p ≈ 0.16 in YBCO clearly show the absence of DW order,
unlike those at lower p. Furthermore, unlike the DW region, the Hall coefficient remains
positive and corresponds to a density of p carriers. Only at higher p ≈ 0.19 does the FL
Hall coefficient of 1 + p appear. A possible explanation is that the FL* phase is present in
the doping regime 0.16 < p < 0.19 without the appearance of DW order. In figure 1b, this
corresponds to the T∗ boundary extending past the DW region at low T.

6. Conclusion
We have described here the striking difference between the metallic states at low and high hole
density, p, in the cuprate superconductors (figure 1b). A theory for these states, and for the
crossover between them, is clearly a needed precursor to any quantitative understanding of the
high value of Tc for the onset of superconductivity.

At high p, there is strong evidence for a conventional FL state. This is an ‘unentangled’ state,
and its wavefunction is adiabatically connected to the free electron state which is a product of
single-particle Bloch waves. The Fermi surface has long-lived fermionic excitations with charge
+e and spin S = 1

2 . The volume enclosed by the Fermi surface is 1 + p, and this obeys Luttinger’s
theorem. Such a Fermi surface is seen clearly in photoemission experiments [37], and also by the
value of the Hall coefficient [8].

At low p, in the PG regime, the experimental results pose many interesting puzzles. Numerous
transport measurements [1,2,60], and also the remarkable recent Hall coefficient measurements of
Badoux et al. [8] at low T and p ≈ 0.16, are consistent with the presence of an FL, but with a Fermi
volume of p, which is not the Luttinger value. We described basic aspects of the theory of the FL*
which realizes just such a Fermi surface. Long-range quantum entanglement and emergent gauge
fields are necessary ingredients which allow the FL* metal to have a Fermi surface enclosing a
non-Luttinger volume. The FL* metal also leads to a possible understanding [64] of the DW order
found at low temperatures in the pseudogap regime [3–7].

Assuming the presence of distinct FL and FL* metals at high and low p, we are faced with
the central open problem of connecting them at intermediate p. Although neither metal has a
broken symmetry, the presence of emergent gauge fields in the FL* implies that there cannot be
an adiabatic connection between the FL* and FL phases at zero temperature. So a quantum phase
transition must be present, but it is not in the Landau–Ginzburg–Wilson symmetry-breaking class.
We need a quantum critical theory with emergent gauge fields for the FL–FL* transition, and this
can possibly provide an explanation for the intermediate strange metal (SM) noted in figure 1b.
Examples of FL–FL* critical theories have been proposed [38,65], but a deeper understanding of
such theories and their connections to experimental observations in the SM remain important
challenges for future research.

Competing interests. The author declares that he has no competing interests.
Funding. This research was supported by the NSF under grant DMR-1360789. Research at Perimeter Institute is
supported by the Government of Canada through Industry Canada and by the Province of Ontario through
the Ministry of Research and Innovation.
Acknowledgements. I thank Andrea Allais, Debanjan Chowdhury, Séamus Davis, Kazu Fujita, Antoine Georges,
Mohammad Hamidian, Cyril Proust, Matthias Punk and Louis Taillefer for numerous fruitful discussions on
theories, experiments and their connections.

References
1. Mirzaei SI et al. 2013 Spectroscopic evidence for Fermi liquid-like energy and temperature

dependence of the relaxation rate in the pseudogap phase of the cuprates. Proc. Natl Acad.
Sci. USA 110, 5774–5778. (doi:10.1073/pnas.1218846110)

 on July 25, 2016http://rsta.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/doi:10.1073/pnas.1218846110
http://rsta.royalsocietypublishing.org/


13

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A374:20150248

.........................................................

2. Chan MK et al. 2014 In-plane magnetoresistance obeys Kohler’s rule in the pseudogap
phase of cuprate superconductors. Phys. Rev. Lett. 113, 177005. (doi:10.1103/PhysRevLett.
113.177005)

3. Fujita K et al. 2014 Direct phase-sensitive identification of a d-form factor density wave
in underdoped cuprates. Proc. Natl Acad. Sci. USA 111, 3026–3031. (doi:10.1073/pnas.
1406297111)

4. Comin R et al. 2015 Symmetry of charge order in cuprates. Nat. Mater. 14, 796–800.
(doi:10.1038/nmat4295)

5. Forgan EM et al. 2015 The microscopic structure of charge density waves in underdoped
YBa2Cu3O6.54 revealed by X-ray diffraction. Nat. Commun. 6, 10064. (doi:10.1038/ncomms
10064)

6. Hamidian MH et al. 2015 Atomic-scale electronic structure of the cuprate d-symmetry form
factor density wave state. Nat. Phys. 12, 150156. (doi:10.1038/nphys3519)

7. Hamidian MH et al. 2015 Magnetic-field induced interconversion of Cooper pairs and
density wave states within cuprate composite order. (http://arxiv.org/abs/1508. 00620
[cond-mat.supr-con])

8. Badoux S et al. 2016 Change of carrier density at the pseudogap critical point of a cuprate
superconductor. Nature 531, 210–214. (doi:10.1038/nature16983)

9. Chowdhury D, Sachdev S. 2015 The enigma of the pseudogap phase of the cuprate
superconductors. In Quantum criticality in condensed matter: Phenomena, materials and ideas
in theory and experiment. 50th Karpacz Winter School of Theoretical Physics, Karpacz,
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