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Abstract
The theory for the onset of spin density wave order in a metal in two dimensions flows to strong

coupling, with strong interactions not only at the ‘hot spots’, but on the entire Fermi surface.

We advocate the computation of DC transport in a regime where there is rapid relaxation to

local equilibrium around the Fermi surface by processes which conserve total momentum. The

DC resistivity is then controlled by weaker perturbations which do not conserve momentum. We

consider variations in the local position of the quantum critical point, induced by long-wavelength

disorder, and find a contribution to the resistivity which is linear in temperature (up to logarithmic

corrections) at low temperature. Scattering of fermions between hot spots, by short-wavelength

disorder, leads to a residual resistivity and a correction which is linear in temperature.
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I. INTRODUCTION

A wide variety of experiments on correlated electron compounds call for an understanding

of the transport properties of quasi-two-dimensional metals near the onset of spin density

wave (SDW) order1–4. Nevertheless, despite several decades of intense theoretical study5–19,

the basic experimental phenomenology is not understood. A common feature of numerous

experimental studies2,20 is a non-Fermi liquid behavior of the resistivity, which varies roughly

linearly with temperature at low T , and more rapidly at higher T .

The conventional theoretical picture of transport8,9 is that the non-Fermi liquid behavior

of the electronic excitations is limited to the vicinity of a finite number of “hot spots” on

the Fermi surface: these are special pairs of points on the Fermi surface which are separated

from each other by K, the ordering wavevector of the SDW. The remaining Fermi surface is

expected to be ‘cold’, with sharp electron-like quasiparticles, and these cold quasiparticles

short-circuit the electrical transport, leading to Fermi liquid behavior in the DC resistivity.

Recent theoretical works16,18,21 have called aspects of this picture into question, and ar-

gued that the cold portions of the Fermi surface are at least ‘lukewarm’. Composite operators

in the quantum-critical theory can lead to strong scattering of fermionic quasiparticles at

all points on the Fermi surface. Perturbatively, the deviation from Fermi liquid behavior is

strongest at the hot spots, but the quantum critical theory flows to strong coupling14, and so

we can expect significant deviation from Fermi liquid physics all around the Fermi surface.

In the context of the DC resistivity, an important observation is that all of these deviations

from Fermi liquid behavior arise from long-wavelength processes in an effective field theory

for the quantum critical point. Consequently, they are associated with the conservation of an

appropriate momentum-like variable, and one may wonder how effective they are in relaxing

the total electrical current of the non-Fermi liquid state. For commensurate SDW with

2K equal to a reciprocal lattice vector, it may appear that, because the interactions allow

for umklapp, conservation of total momentum is not an important constraint. However, as

we will argue in more detail below, once we have re-expressed the theory in terms of the

collective modes of the effective field theory, a suitably defined momentum is conserved and

its consequences have to be carefully tracked. It is worthwhile to note here that a similar

phenomenon also appeared in the theory of transport in the Luttinger liquid in one spatial

dimension by Rosch and Andrei,22 where a single umklapp term was not sufficient to obtain

a non-zero resistivity.

The present paper will address the question of the T dependence of the DC resistivity

at the SDW quantum critical point using methods which represent a significant departure

from the perspective of previous studies8,9,11. We shall employ methods similar to those

used recently23 for the Ising-nematic quantum critical point, which was inspired by analy-

ses of transport in holographic models of metallic states24–36, and by Boltzmann equation

studies37,38. Related methods have also been used for transport in non-Fermi liquids in one

spatial dimension.22,39–41
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The central assumption underlying these approaches is that the momentum-conserving

interactions responsible for the non-Fermi liquid physics are also the fastest processes leading

to local thermal equilibration. We will assume here that excitations near both the hot and

lukewarm portions of the Fermi surface are susceptible to these fast processes, and are able

to exchange momentum rapidly with each other. Then we have to look towards extraneous

perturbations to relax the total momentum, and allow for a non-zero DC resistivity. These

perturbations can arise from impurities, from additional umklapp processes beyond those

implicitly contained in the field theory, or from coupling to a phonon bath. Here we will

focus on the impurity case exclusively, and leave the phonon contribution for future study.

The umklapp contribution can also be treated by the present methods,26,33 and, in the

approximation where cold fermions are present, yield a conventional T 2 resistivity.

FIG. 1: (a) The two pockets of fermions separated by the SDW ordering wavevector K = (π,π).
(b) The resulting pair of Fermi surfaces after shifting the pocket centered at (π,π) to (0, 0) intersect
at 4 hot spots as shown.

For our subsequent discussion, it is useful to introduce a specific model for the SDW

quantum critical point. We find it convenient to work with a two-band model, similar to

that used recently for a sign-problem-free quantum Monte Carlo study17. Closely related

models have been used for a microscopic description of the pnictide superconductors42–45.
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As was argued in Ref. 17, we expect our conclusions to also apply to SDW transitions in

single band models because the single and two band models have essentially the same Fermi

surface structure in the vicinities of all hot spots. Our model begins with two species of

fermions, ψ̃a, ψ̃b which reside in pockets centered at (0, 0) and (π, π) in the square lattice

Brillouin zone, as shown in Fig. 1(a). We take the SDW ordering wavevector K = (π, π).

Then, we move the pocket centered at (π, π) and move it to (0, 0) by introducing fermions

ψa(r) = ψ̃a(r) and ψb(r) = ψ̃b(r)eiK·r: the Fermi surfaces for the ψa, ψb fermions are shown

in Fig. 1(b). The advantage of the latter representation is that the coupling of the fermions

to the SDW order parameter φ⃗ is now local and r independent. So we can now write down

a continuum Lagrangian for the SDW quantum critical point in imaginary-time (t → −iτ)

L = ψ†

(

∂τ − µ0 +

(
ξa 0

0 ξb

))

ψ+
1

2
∇φµ·∇φµ+

ϵ

2
(∂τφµ)(∂τφµ)+

u

6

(
φµφµ −

3

g

)2

+λψ†φµΓµψ.

(1.1)

We have two species of spin 1/2 fermions (a, b) with chemical potential µ0 in two spatial

dimensions coupled to a SO(3) vector boson order parameter φµ. We have ψ =
(
ψa

ψb

)
where

ψa,b are two-component spinors. The matrices Γµ =
(

0 σµ
σµ 0

)
with σµ as the Pauli matrices

acting on the spin indices only. The dispersions of the fermions are

ξa = −
∂2x
2m1

−
∂2y
2m2

+ . . . , ξb = −
∂2x
2m2

−
∂2y
2m1

+ . . . (1.2)

This produces two Fermi surfaces intersecting at four hot-spots (Fig. 1(b)). Higher-order

derivatives in Eq. (1.2) are allowed provided additional Fermi surfaces do not appear at

larger momenta. At the critical point, we choose the value of g so that the coefficient of

φµφµ vanishes. We can now take the lower energy theory in the vicinities of the 4 hot spots in

Fig. 1(b), and obtain a model identical to that studied in numerous earlier works10–12,14,16,19.

In particular, all of the computations on the optical conductivity in Ref. 16 apply essentially

unchanged to the present continuum model L.
Now a key observation is that the resistivity of the model L is identically zero, ρ(T ) = 0,

at all T . This follows immediately from the translational invariance of L and the existence

of an exactly conserved momentum which we will specify explicitly in Section II. So we must

include additional perturbations to L will break the continuous translational symmetry to

obtain a non-zero resistivity. One such perturbation is a random potential, which can scatter

fermions at all momenta (including a → b processes that actually change momenta by K).

It is given by

LV = V1(r⃗)ψ
†(r⃗)ψ(r⃗) + V2(r⃗)ψ

†(r⃗)Γ0ψ(r⃗), (1.3)

where Γ0 = ( 0 1
1 0 ). The other is a random-mass term for the bosonic field:

Lm = m(r⃗)φµ(r⃗)φµ(r⃗), (1.4)
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which corresponds to a local random shift in the position of the SDW quantum critical point.

The random terms are chosen to satisfy the following upon averaging over all realizations:

⟨⟨V1,2(r⃗)⟩⟩ = 0 ; ⟨⟨V1,2(r⃗)V1,2(r⃗
′)⟩⟩ = V 2

0 δ
2(r⃗ − r⃗′),

⟨⟨m(r⃗)⟩⟩ = 0 ; ⟨⟨m(r⃗)m(r⃗′)⟩⟩ = m2
0δ

2(r⃗ − r⃗′). (1.5)

The random-mass is expected to be a relevant perturbation to the SDW quantum critical

point of L, and we will see that it also has a strong influence on the DC transport.

One of our main results is the following low T contribution of the random-mass pertur-

bation to the resistivity, in general accord with the scaling arguments in Refs. 23 and 36:

ρm(T ) ∼ m2
0 T

2(1+∆−z)/z , (1.6)

where z is the dynamic scaling exponent, and ∆ is identified here with the dimension of the

φ⃗2 operator. In general, the latter is related to the correlation length exponent, ν, via

∆ = d+ z −
1

ν
. (1.7)

Note that this contribution arises from the disorder coupling to the bosonic critical modes

of the quantum critical theory, and so is driven primarily by long-wavelength disorder. In

the conventional Hertz-like limit of the SDW critical point5,7 we have d = 2, z = 2, and

ν = 1/2, in which case Eqs. (1.6,1.7) yield ρm(T ) ∼ T , one of our main results. Our explicit

computation also finds logarithmic corrections. At higher temperature, we can envisage a

crossover from the z = 2 Hertz regime, to a z = 1 Wilson-Fisher regime23,46–50: here for

d = 2, z = 1, and51 ν ≈ 0.70, Eqs. (1.6,1.7) yield ρ(T ) ∼ T 3.14. We note that a different

discussion of the influence of disorder on the bosonic modes appeared recently.52

We also compute the contribution of the random potential terms in LV to the resistivity.

Here the dominant contribution is from the scattering of fermions between hot spots, and

so this requires disorder at the short-wavelengths corresponding to the separation between

the hot spots. These lead, as expected, to a leading term which is a constant as T → 0.

However, we find that the leading vertex correction has an additional contribution from

scattering of fermions between hot spots which varies linearly with T (up to logarithmic

corrections) at low T . So we have

ρV (T ) ∼ V 2
0 (1 + c T ), (1.8)

for some constant c. Interestingly, we find that the vertex correction contribution is linear

in T even in the z = 1 regime.

A notable point above is that the residual resistivity arises solely from the fermionic

contribution associated with LV , and requires short-wavelength disorder. In contrast, the
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linear resistivity of ρm(T ) arises from the bosonic order parameter fluctuations coupling to

long-wavelength disorder. Thus there is no direct correlation between the magnitudes of the

residual resistivity and the co-efficient of the linear resistivity.

All of the considerations of this paper also apply to other density wave transitions in two-

dimensional metals, including the onset of charge density wave order. We only require that

the order parameter have a non-zero wavevector which connects two generic points on the

Fermi surface, and assume that the quantum critical theory is strongly coupled. No other

feature of the spin density wave order is used in our analysis, and we focus on it mainly due

to its experimental importance.

The body of this paper describes our computation of the DC resistivity of L+LV +Lm.

The outline is as follows: In Section II we discuss the continuous symmetries and derive the

conserved currents of our model. In Section III we discuss the application of the memory

matrix formalism to the calculation of the DC resistivity. In Section IV we obtain the

contributions of the random mass term and random potential terms to the DC resistivity

using the memory matrix formalism. We present details of the computations of all required

quantities in the appendices.

II. SYMMETRIES AND NOETHER CURRENTS

The Lagrangian L is invariant under the following symmetries (translation, global U(1)

symmetry and global SU(2) spin rotation symmetry):

x⃗ → x⃗+ a⃗, τ → τ + a0,

ψ → eiαψ,

ψ → e
i
2
θjσjψ,φµ →

(
eiθjsj

)
ν
φν . (2.1)

where sj are the generators of SO(3).

The above mentioned symmetries produce various conserved currents which may be de-

rived using the standard Noether procedure; Translational symmetry produces

Tab =
∑

n

(
∂L

∂(∂aζn)
∂bζn − ∂a

∂L
∂(∂2c ζn)

∂bζn

)
− δabL, (2.2)

where a, b are spatial indices and ζn are all the fields involved (in this case ψ and φµ). Time

translational invariance giving the Hamiltonian density H (T00) and momentum density P⃗
(T0i) (with πµ = −i∂L/(∂(∂τφµ)) = −iϵ∂τφµ, and the equal time commutation relation
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[φµ(x⃗), πν(y⃗)] = δ2(x⃗− y⃗)δµν):

H(ψ,φµ, πµ) = −ψ†∂τψ − ϵ(∂τφµ)(∂τφµ) + L(ψ, ∂τψ,φµ, ∂τφµ),

P⃗ = −
i

2
(ψ†∇ψ −∇ψ†ψ) + πµ∇φµ. (2.3)

Since ∂µTµν = 0, ∂τ
∫
d2x(H,P) = boundary terms = 0.

The U(1) symmetry produces

jµ =
∑

n

(
∂L

∂(∂µζn)
− ∂µ

∂L
∂(∂2µζn)

)
δζn
δα

, (2.4)

which gives the current density J⃗ :

Jx =
i

4

(
1

m1
(∂xψ

†
aψa − ψ†

a∂xψa) +
1

m2
(∂xψ

†
bψb − ψ†

b∂xψb)

)
,

Jy =
i

4

(
1

m2
(∂xψ

†
aψa − ψ†

a∂xψa) +
1

m1
(∂xψ

†
bψb − ψ†

b∂xψb)

)
. (2.5)

The SU(2) symmetry produces spin currents but they cannot be used with the memory

matrix approach, as explained below.

III. MEMORY MATRIX APPROACH

The above theory does not possess well defined quasiparticles in two dimensions near the

quantum critical point due to the strong (non-irrelevant) coupling λ, and hence it is not

possible to correctly calculate transport properties like resistivity using traditional methods,

as these involve doing perturbation theory in the coupling. However, the presence of a

conserved total momentum P⃗ =
∫
d2xP⃗ , which will slowly relax if perturbations such as a

weak disordered potential are applied, allows certain transport properties such as the DC

resistivity to be correctly calculated using the memory matrix formalism23,26,53.

In this formalism, the conductivity tensor σij may be expressed as26,53

σij(ω) =

(
Ji

∣∣∣∣
i

ω − L

∣∣∣∣Jj

)
, (3.1)

with J⃗ =
∫
d2xJ⃗ , the Liouville super operator L acting as A(t) = eiHtAe−iHt = eiLtA(0), and

the inner product of operators (A|B) =
∫ β
0 dτ⟨A†(τ)B(0)⟩, with ⟨. , .⟩ denoting the connected

correlation function. If the operators A and B have the same signature under time reversal,

and the Hamiltonian is invariant under time reversal, it is easy to see that (Ȧ|B) = 0. Hence

(Ṗi|Pj) = 0, which simplifies the memory matrix. The dominant contributions to σ(ω) come
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from the slowly relaxing modes, which are Px,y. Using the invariance of the Hamiltonian

under (x, y) → (−x, y), the expression for the DC diagonal conductivity reduces to, to

leading order in the perturbing Hamlitonian26,53:

σxx = lim
ω→0

|(Jx|Px)|2
(
Ṗx

∣∣∣∣
i

ω − L0

∣∣∣∣ Ṗx

)−1

0

, (3.2)

where the subscript 0 denotes evaluation with respect to the unperturbed Hamiltonian. We

then have

χJP = (Jx|Px) =

∫ β

0

dτ⟨Jx(τ)Px(0)⟩,

σxx = lim
ω→0

|χJP |2
1
ω

∫∞
0 dteiωt[Ṗx(t), Ṗx(0)]

,

ρxx = Re

[
1

σ

]
= lim

ω→0

Im[GR
ṖxṖx

(ω)]

ω|χJP |2
. (3.3)

We compute the χJP susceptibility for L in Appendix A. There we find that although

the continuum limit hot-spot theory with linearized fermion dispersion has χJP = 0, upon

including Fermi surface curvature we have χJP ̸= 0, even at T = 0. We will henceforth

assume that χJP is a T -independent non-zero constant. However, if χJP is small, then the

DC resistivity ρ(T ) ∼ χ−2
JP will be large, and there will be a crossover to a higher T regime

where we have to consider the physics of a system with χJP = 0: note that it is possible for

such a system to have a non-zero resistivity even in the absence perturbations which relax

momentum. Important, previously studied examples of theories with χJP = 0 are conformal

field theories54–57 and it would be interesting to extend such studies to the quantum-critical

spin density wave theory14,19.

We also see that χSP = 0 for the spin current due to the spin rotation symmetry of the

model.

IV. CONTRIBUTIONS TO THE DC RESISTIVITY

In this section, we compute the contributions to the DC resistivity ρxx(T ) coming from

the random-mass term and from the scattering of hot spot fermions by the random potential.

To apply the memory matrix formalism, we compute the time dependence of the conserved

momentum arising from the perturbations in LV + Lm. Using Ṗx = i[H,Px], we obtain

Ṗx = −i

∫
d2q d2k

(2π)4
kx
[
V1(k⃗)ψ

†(q⃗ + k⃗)ψ(q) + V2(k⃗)ψ
†(q⃗ + k⃗)Γ0ψ(q) +m(k⃗)φµ(q⃗)φµ(−q⃗ − k⃗)

]
,

(4.1)
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giving

Im[GR
Ṗx,Ṗx

(ω)] = Im

[∫
d2k

(2π)2
k2
x

(
V 2
0 (Ξ

R
1 (k⃗,ω) + ΞR

2 (k⃗,ω)) +m2
0Π

R(k⃗,ω)
)]

, (4.2)

where ΞR
1,2 are the retarded Green’s functions for ψ†ψ and ψ†Γ0ψ respectively and ΠR is the

retarded Green’s function for φµφµ.

A. Random-Mass Term

We use the following form for the vector boson propagator, which is derived in Ap-

pendix B:

Dµν(q⃗, iωq) =
δµν

q2 + ϵω2
q + γ|ωq|+R(T )

, (4.3)

where R(T ) is a positive-definite mass term at finite temperature which is computed in

Appendix B. The Green’s function for φµφµ may be obtained by resumming the graphs

shown in Fig. 2; these are precisely the graphs that have to be summed at leading order in

a large N expansion in which φµ has N components. We obtain

Π(k⃗, iΩ) =
2Π̃(k⃗, iΩ)

1− (20/3)uΠ̃(k⃗, iΩ)
, (4.4)

where

Π̃(k⃗, iΩ) = T
∑

ωq

∫
d2q

(2π)2
Dµν(q⃗, iωq)Dνµ(q⃗ + k⃗, iωq + iΩ). (4.5)

FIG. 2: Resummation of graphs to obtain the Green’s function for φµφµ. The diamonds denote
φµφµ operators and the circles denote the quartic interaction. The wavy lines represent the vector
boson propagators.

Then we have, for large u,

lim
ω→0

1

ω
Im[ΠR(k⃗,ω)] = lim

ω→0

9

200u2ω

Im[Π̃R(k⃗,ω)]

Re[Π̃R(k⃗,ω)]2
, (4.6)

The z = 2 regime may be accessed by sending ϵ → 0 with γ ̸= 0. Then we have (See
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Appendix C for computations)

ρxx(T ) = lim
ω→0

m2
0

ω|χJP |2

∫ Λ d2k

(2π)2
k2
xIm[ΠR(k⃗,ω)] ≈

m2
0γ

3T

u2|χJP |2

[
c1 + c2 ln

(
Λ2

γT

)]
, (4.7)

where Λ is a momentum cutoff that is much larger than any other scale in the problem, and

c1, c2 have only very slow log-log dependences on T .

In the γ → 0 limit with ϵ ̸= 0, z = 1. In this regime, all the momentum integrals involved

converge (See Appendix C). We get

lim
ω→0

Im[Π̃R(k⃗,ω)]

ω
=

1

ϵT 2
F

(
k2

ϵT 2

)
,

lim
ω→0

Re[Π̃R(k⃗,ω)] =
1

ϵT
G

(
k2

ϵT 2

)
. (4.8)

Thus we can cast the integral for ρxx(T ) in terms of a dimensionless momentum k⃗′ and

obtain

ρxx(T ) =
9m2

0ϵ
3T 4

200u2|χJP |2

∫
d2k′

(2π)2
k′2
x

F (k′2)

G(k′2)2
= 2.42

m2
0ϵ

3T 4

u2|χJP |2
. (4.9)

We also obtain a temperature driven crossover in the scaling of ρxx(T ) when both ϵ ̸= 0

and γ ̸= 0. We have ρ(T ) ∼ T in the z = 2 regime at low T and ρ(T ) ∼ T 4 in the z = 1

regime at high T , as shown in Fig. 3. The T 4 behavior agrees with Eqs. (1.6,1.7) with the

large N value of the exponent ν = 1.

FIG. 3: Temperature driven crossover in the scaling of the random-mass contribution to ρxx(T )

from T to T 4 as T is increased. Here, γ = 1, ϵ = 1 and the momentum cutoff Λ = 100.
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B. Fermionic Contributions

Since the boson couples most strongly to the fermions near the hot spots, we expect

the most significant non Fermi liquid contributions to the resistivity to come from the

scattering of these hot spot fermions by the random potential and not involve the cold

fermions elsewhere on the Fermi surfaces. The random potential can scatter these fermions

between hot spots, which results in a large momentum transfer, or within the same hot spot,

with a much smaller momentum transfer. Since the expression for the resistivity contribution

contains a factor of k2, we expect the contributions due to inter hot spot scattering to be

much larger than those due to intra hot spot scattering.

Considering pairs of hot spots (i, j), i ̸= j separated by vectors Q⃗ij in momentum space,

we expand the momentum k⃗ transferred by the random potential about Q⃗ij in Eq. 4.2 to

obtain, to leading order, the contribution to GṖx,Ṗx
from inter hot spot scattering

GṖx,Ṗx
(iΩ) = V 2

0

∑

i,j,i̸=j

Qij2
x

∫ 1/T

0

dτ

[〈
ψ†
j(r⃗ = 0, τ)ψi(r⃗ = 0, τ)ψ†

i (r⃗ = 0, 0)ψj(r⃗ = 0, 0)
〉
+

〈
ψ†
j (r⃗ = 0, τ)Γ0ψi(r⃗ = 0, τ)ψ†

i (r⃗ = 0, 0)Γ0ψj(r⃗ = 0, 0)
〉]

eiΩτ , (4.10)

where the subscripts now denote that the fermions belong to a particular hot spot, i.e.

ψi =
(
ψia

ψib

)
and ψia,ib are two-component spinors. This leads to the graphs shown in Fig. 4.

The fermion dispersions are now linearized about the hot spots:

ξiα(k⃗) = v⃗iα · k⃗. (4.11)

The first (free fermion) graph in Fig. 4(a) gives

ρxx(T ) = −2π
V 2
0 Λ

2

|χJP |2
∑

i,j,i̸=j

Qij2
x

∑

α,β

∫
dξiα

(2π)4viαviβ
n′
F (ξiα) =

V 2
0 Λ

2
∥

(2π)3|χJP |2
∑

i,j,i ̸=j

∑

α,β

Qij2
x

viαviβ
,

(4.12)

which is simply a temperature-independent constant. Here the indices α, β run over the two

fermion types a, b, and Λ∥ ≪ Qij is a cutoff for the momentum components parallel to the

Fermi surfaces at the hot spots. The subsequent graphs in Fig. 4(a) all contain factors of

the form
∫
dξ/(iω − ξ)m, where m is an integer ≥ 2, coming from the fermion propagators

separated by self energy rainbows, and hence evaluate to zero. The leading vertex correction

is given by the graph in Fig. 4(b). Again, for the same reason, we can get away with using

the bare fermion propagators instead of the one loop renormalized ones. We compute this
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FIG. 4: Graphs for the contribution to GṖx,Ṗx
(iΩ) due to inter hot spot scattering. The vertices

provide factors of QijV0 + QijV0Γ0. The solid lines are fermion propagators and the wavy lines
are vector boson propagators. The dotted lines carry internal momentum and the external bosonic

Matsubara frequency iΩ, and have propagators equal to 1. The first graph in the series of graphs
in (a) is the free fermion contribution. The subsequent graphs represent the corrections due

to renormalization of the fermion propagators at one loop, but evaluate to 0 due to factors of∫
dξ/(iω − ξ)m = 0, m ∈ Z and m ≥ 2. The graph in (b) is the simplest vertex correction. Here

too, for the same reason, further graphs of the same type but with self-energy rainbows on the

fermion propagators also evaluate to 0.

correction in Appendix D. In the z = 2 limit, we obtain

ρxx(T ) ∼ const. + bT + c
T

ln(Λ2/(γT ))
, (4.13)

which also contains terms that scale linearly in T . In the z = 1 limit, we have

ρxx(T ) ∼ const. + b′T, (4.14)

which is still linear in T . Other corrections whose graphs contain fermion loops connected

by boson propagators are less significant: due to momentum conservation at each vertex,

some of these boson propagators must carry a large momentum of the order of Q⃗ij , hence

suppressing their contribution. Also, graphs having a single fermion loop that runs through

both the external vertices, but containing multiple boson propagators which could be at-

tached in any way, will always have the aforementioned factors that evaluate to zero once

all the boson momenta and frequencies are set to zero, thus suppressing their most singular

contributions.
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V. CONCLUSIONS

This paper has proposed a perspective on DC transport in the vicinity of a spin-density

wave quantum critical point in two dimensional metals; the results can also apply to

other density wave transitions of metals in two dimensions. Whereas previous perturba-

tive approaches8,9 started from a quasiparticle picture which eventually breaks down at hot

spots on the Fermi surface, we have argued for a strong-coupling perspective in which no

direct reference is made to quasiparticles. Instead, we assume that strong interactions cause

rapid relaxation to local thermal equilibrium, and the flow of electrical current is determined

mainly by the relaxation rate of a momentum which is conserved by the strong interactions.

We used weak disorder as the primary perturbation responsible for momentum relaxation,

and then obtained a formally exact expression for the resistivity in terms of two-point cor-

relators of the strongly-interacting and momentum-conserving theory.

Our final results were obtained by an evaluation of such two-point correlators. Here, we

used a simple large N expansion, and found a resistivity that varied linearly with T . Clearly,

an important subject for future research is to evaluate these correlators by other methods

which are possibly more reliable in the strong-coupling limit.

Our computations also found distinct sources for the residual resistivity and the co-

efficient of the linear T term in the resistivity. The residual resistivity is entirely fermionic,

and arises from scattering between well-separated points on the Fermi surface, induced by

short-wavelength disorder. In contrast, the linear resistivity has a bosonic contribution from

long-wavelength disorder. Moreover, the latter can be strongly enhanced in systems with

small χJP , the cross-correlator between the total momentum and the total current.

For experimental applications, BaFe2(As1−xPx)2 offers probably the best testing ground

so far for our theory: this material has a spin density wave quantum critical point near

x = 0.3, and a clear regime of linear-in-T resistivity above it58,59. It would be interesting to

carry out these experiments while carefully reducing the degree of long-wavelength disorder,

including grain boundaries and dislocations. Our theory implies that the co-efficient of the

linear-in-T resistivity should decrease in such sample. Note also our argument above that

the residual resistivity cannot be used as a measure for the degree of disorder (as is often

done); the residual resistivity is mainly sensitive to short-wavelength disorder.
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Appendix A: Susceptibilities

The susceptibility χJP is taken to be the free fermion susceptibility at leading order and

is thus given by

χJP = −2

∫
d2q

(2π)2
q2x

(
1

2m1

∂nF (ξa(q⃗))

∂ξa(q⃗)
+

1

2m2

∂nF (ξb(q⃗))

∂ξb(q⃗)

)
. (A1)

defining coordinates qx = (2m1,2)1/2q1,2 cos θ, qy = (2m2,1)1/2q1,2 sin θ, θ ∈ [0, 2π), q1,2 ∈
[0,∞), so that ξa = q21 and ξb = q22 the integral can be evaluated exactly to give

χJP =

√
m1m2

π
T ln(1 + e

µ0
T ) ≈

√
m1m2

π
µ0 +O(T 3) + ... , (A2)

where µ0 ≫ T is the chemical potential for the fermions, and hence χJP is treated as a

temperature-independent constant.

Both the Hamiltonian and P⃗ are invariant under SU(2) spin rotation, but the spin current

transforms as a vector. Hence it may be easily seen that χSP = 0 since the contributions

from states with opposite spins will cancel.

The linearized hot spot model has an emergent SU(2) particle-hole symmetry14,16, and

one obtains (with the hot spots indexed by l and the fermion types indexed by a)

J⃗ =
1

2

∑

l,a

v⃗ l
a Ψ

l†
a σzΨ

l
a,

P⃗ =
i

4

∑

l,a

(∇Ψl†
aΨ

l
a −Ψl†

a∇Ψl
a), (A3)

where Ψl
a =

(
ψl
a

iτyψ
l†
a

)
, ψl

a are two-component spinors, the τ matrices act only on the spin

indices and the σ matrices act only on the particle hole indices. The Lagrangian is invariant

under the SU(2) transformations Ψl
a → U lΨl

a = eiθ⃗
l.σ⃗/2Ψl

a that rotate particles into holes.

One can always choose U l (for example U l = iσx) such that J⃗ → −J⃗ and P⃗ → P⃗ , which

implies that χJP = 0 in this case. If a curvature of the Fermi surface is introduced (the

dispersion modified to ξla(q⃗) = v⃗la · q⃗ + q2x/(2m
l
ax) + q2y/(2m

l
ay)), this particle-hole symmetry

is broken. We then have

χJP = −2
∑

l,a

[∫ Λ

−Λ

∫ Λ

−Λ

dqxdqy
(2π)2

qx

(
vlax +

qx
2ml

ax

)
n′(ξla(q⃗))

]
. (A4)

The particle-hole symmetric regularization is chosen to make the integral vanish when the

quadratic terms from the dispersion are removed, as is required by the particle-hole symme-
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try in that case. The integral can now be expanded in 1/ml
ax,y to give

χJP =
∑

l,a

[
C1(v⃗la,Λ, T )

ml
ax

+
C2(v⃗la,Λ, T )

ml
ay

+ ...

]
, (A5)

and hence the non-zero contributions are linear in the curvature to leading order. We

emphasize here that this addition of a small curvature to the linear hot spot model is

very different from the case of the two band model used throughout the paper, which has

curvature built in from the beginning, and hence does not have a small value of χJP that is

perturbative in the curvature.

Appendix B: Computation of R(T )

Starting with our continuum model described by Eq. (1.1), we follow the Hertz strategy

and integrate out the fermions to one loop order: As usual, only the coupling to the fermions

near the hot spots modifies the boson propagator. We then consider the vector boson to

have N components instead of 3 for the purpose of this computation, and subsequently take

a large N limit. The effective Hertz action for the boson field then is

SB =

∫
d2q

(2π)2

∑

ωq

1

2

[
φµ(q⃗,ωq)(q

2 + γ|ωq|+ ϵω2
q )φµ(−q⃗,−ωq)

]
+

∫
d2x dτ

u

2N

(
φµφµ −

N

g

)2

.

(B1)

Decoupling the quartic interaction using an auxiliary field η gives

SB =

∫
d2q

(2π)2

∑

ωq

1

2

[
φµ(q⃗,ωq)(q

2 + γ|ωq|+ ϵω2
q)φµ(−q⃗,−ωq)

]
+

∫
d2x dτ

1

2

[
iη√
N

(
φµφµ −

N

g

)
+
η2

4u

]
.

(B2)

We now take u → ∞, making the above action equivalent to that for an O(N) non-linear

sigma model with a fixed length constraint. Considering η to be constant, we integrate out

φµ to obtain the one loop (equivalently N = ∞) effective potential density for η:

Veff =
iη
√
N

2g
−

N

2

∫
d2q

(2π)2
T
∑

ωq

ln

(
q2 + γ|ωq|+ ϵω2

q +
iη√
N

)
, (B3)

using iη/
√
N = R(T ) and R(0) = 0 at the critical point g = gc and minimizing this yields

(while approaching the critical point from the g > gc side)

∫
d2q

(2π)2
T
∑

ωq

1

q2 + γ|ωq|+ ϵω2
q +R(T )

=
1

gc + 0+
,

∫
d2q

(2π)2
T
∑

ωq

1

q2 + γ|ωq|+ ϵω2
q +R(T )

−
∫

d2q

(2π)2

∫
dωq

2π

1

q2 + γ|ωq|+ ϵω2
q + δ+

= 0. (B4)
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Where δ+ is a small positive regulator. We subtract the following from the first term in the

last line of the above (and add it to the second term):

∫
d2q

(2π)2

∫
dωq

2π

1

q2 + γ|ωq|+ ϵω2
q +R(T )

; (B5)

The frequency summation in the first term is carried out by analytically continuing |ω| using
the following identities

|ω| = −
iω

π

∫ ∞

−∞

dx

x− iω
; sgn(ω) = −

i

π

∫ ∞

−∞

dx

x− iω
, (B6)

which gives

1

q2 + γ|ωq|+ ϵω2
q +R(T )

→
1

q2 − ϵz2 − iγzsgn(Im[z]) +R(T )
, (B7)

and avoiding the discontinuity along the real axis in the contour integration over z (The

function has no poles as R(T ), γ, ϵ > 0). We obtain

T
∑

ωq

1

q2 + γ|ωq|+ ϵω2
q +R(T )

= 2

∫ ∞

0

dω

π

γω

(q2 − ϵω2 +R(T ))2 + γ2ω2
nB(ω) +

∫ ∞

0

dω

π

γω

(q2 − ϵω2 +R(T ))2 + γ2ω2
. (B8)

The limit δ+ → 0 can be taken at the end without any disastrous consequences. Finally, we

obtain:

4ϵ

∫ ∞

0

dω

[
π

2
− tan−1

(
R(T )− ϵω2

γω

)]
nB(ω) + γ ln

(
R(T )ϵ

γ2

)

+
√

4R(T )ϵ− γ2

(

2 tan−1

(
γ

√
4R(T )ϵ− γ2

)

− πsgn
(
4R(T )ϵ− γ2

)
)

= 0. (B9)

This may be solved numerically for R(T ), however one finds that (See Fig. 5), to a good

approximation, R(T ) is described by the simple form γT + ϵT 2 at intermediate values of T .

In the z = 2 limit (ϵ→ 0), we have (Λ is a UV momentum cutoff required as a regulator in

this limit)

R(T ) ln

(
Λ2

R(T )

)
= 2γ

∫ ∞

0

dω tan−1

(
γω

R(T )

)
nB(ω), (B10)

which gives

R(T ) = γTf

(
γT

Λ2

)
, (B11)
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where f is a very slowly varying function with the property f(0) = 0. We find

f(x) ≈
πW0

(
1
π ln

(
eγE−1

2πx

))

ln
(

eγE−1

2πx

) , (B12)

where W0 is the principal branch of the Lambert W function, and γE is the Euler-Mascheroni

constant. In the opposite limit of z = 1 (γ → 0), we get the exact result60

R(T ) = ϵT 2

[

2 ln

(√
5 + 1

2

)]2
. (B13)

FIG. 5: Numerical solution (solid) of Eq. B9, and γT + ϵT 2 (dashed), for ϵ = 1 and γ = 1.

Appendix C: Random Mass Computations

We construct expressions for Π̃(k⃗, iΩ) in terms of the spectral function for the vector

boson Green’s function:

Aµν(q⃗, E) =
−2γEδµν

(q2 − ϵE2 +R(T ))2 + γ2E2
. (C1)
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We have

Π̃(k⃗, iΩ) = T
∑

ωq

∫
d2q dE1 dE2

(2π)4
Aµν(q⃗, E1)

iωq − E1

Aνµ(q⃗ − k⃗, E2)

iωq − iΩ− E2

,

lim
ω→0

Im[Π̃R(k⃗,ω)]

ω
= 6

∫
d2q dE1

(2π)3
−γ2E2

1

[(q2 +R(T )− ϵE2
1)

2 + γ2E2
1 ][((q⃗ − k⃗)2 +R(T )− ϵE2

1)
2 + γ2E2

1 ]
n′
B(E1),

lim
ω→0

Re[Π̃R(k⃗,ω)] = 12

∫
d2q dE1 dE2

(2π)4
γ2E1E2

[(q2 +R(T )− ϵE2
1)

2 + γ2E2
1 ][((q⃗ − k⃗)2 +R(T )− ϵE2

2)
2 + γ2E2

2 ]
×

nB(E2)− nB(E1)

E1 − E2

. (C2)

In the z = 2 limit, performing the frequency integrals gives

lim
ω→0

Im[Π̃R(k⃗,ω)]

ω
=

3

2πγT

∫
d2q

(2π)2
1

((q⃗ − k⃗)2 +R(T ))2 − (q2 +R(T ))2

[
q2 +R(T )

2π
ψ′

(
q2 +R(T )

2πγT

)
−

(q⃗ − k⃗)2 +R(T )

2π
ψ′

(
(q⃗ − k⃗)2 +R(T )

2πγT

)

+ πγ2T 2

(
1

(q⃗ − k⃗)2 +R(T )
−

1

q2 +R(T )

)]

,

lim
ω→0

Re[Π̃R(k⃗,ω)] =
6

2πγ

∫ Λ d2q

(2π)2
1

q2 − (q⃗ − k⃗)2

[

ψ

(
q2 +R(T )

2πγT

)
− ψ

(
(q⃗ − k⃗)2 +R(T )

2πγT

)

+

πγT

(
1

q2 +R(T )
−

1

(q⃗ − k⃗)2 +R(T )

)]

, (C3)

where ψ here is the digamma function, and Λ is a momentum cutoff. We obtain the following

asymptotic forms in k (only the dependence on k, T,Λ and γ is shown)

lim
ω→0

Im[Π̃R(k⃗,ω)]

ω
∼
γT

k4
ln f

(
γT

Λ2

)
, k2 ≫ γT,

lim
ω→0

Im[Π̃R(k⃗,ω)]

ω
∼

1

γT

[
f

(
γT

Λ2

)]−2

, k2 ≪ γT,

lim
ω→0

Re[Π̃R(k⃗,ω)] ∼
1

γ
, k2 → Λ2 ≫ γT,

lim
ω→0

Re[Π̃R(k⃗,ω)] ∼
1

γ

(

b1

[
f

(
γT

Λ2

)]−1

+ b2 ln

(
Λ2

γT

))

, k2 ≪ γT, (C4)

where f is the function correcting the linear dependence of R(T ) on T defined in Eq. (B12).

We then have

ρxx(T ) ∝
m2

0

u2|χJP |2
lim
ω→0

1

ω

∫ √
γT

0

+

∫ Λ

√
γT

k3dk
Im[Π̃R(k,ω)]

Re[Π̃R(k,ω)]2
. (C5)

Substituting the small k asymptotic forms in the first integral and the large k ones in the

second, and noting that f(x) ∼ ln ln(1/x)/ ln(1/x), we obtain the scaling form given in the

main text to leading-log order, which agrees well with numerical evaluation of the integrals.
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For the z = 1 limit, we have,

lim
ω→0

Im[Π̃R(k⃗,ω)]

ω
=

3

16π
√
ϵ

∫ π/2

−π/2

dθ

cos2 θ

⎡

⎣
−n′

B

(√
k2/(4 cos2 θ) +R(T )/

√
ϵ
)

√
k2/(4 cos2 θ) +R(T )

⎤

⎦ ,

lim
ω→0

Re[Π̃R(k⃗,ω)] =
3

2
√
ϵ

∫
d2q

(2π)2
1

q2 − (q⃗ − k⃗)2

[2nB

(√
(q⃗ − k⃗)2 +R(T )

/√
ϵ

)
+ 1

√
(q⃗ − k⃗)2 +R(T )

−

2nB

(√
q2 +R(T )/

√
ϵ
)
+ 1

√
q2 +R(T )

]

. (C6)

These integrals are convergent, and we can thus scale out ϵT 2 after plugging in R(T ) to get

the result in the main text.

In the crossover region between the z = 2 to z = 1 regime, we evaluate all integrals

numerically and plug in the numerical solution for R(T ) at arbitrary T to obtain Fig. 3.

Appendix D: Vertex Correction for Inter Hot-Spot Scattering

We now compute the graph in Fig. 4(b), which is the leading vertex correction to the

resistivity for inter hot-spot scattering. In the approximation of Eq. 4.10, the momenta

flowing through the upper and lower fermion lines in the graph are independent of each

other. Since the bare fermion propagator depends only on the component of its momentum

transverse to the fermi surface, and because the interaction with the boson switches the

fermion type, we have (using the spectral representation for the boson Green’s function):

ρxx(T ) = − lim
ω→0

6V 2
0 λ

2

ω|χJP |2
∑

i,j,i̸=j

∑

α,β

Qij2
x

|v⃗iα × v⃗iᾱ||v⃗jβ × v⃗jβ̄ |
Im

[∫
dξiαdξiᾱdξjβdξjβ̄dEd2q

(2π)7
T 2
∑

ωq,η

1

iωq − ξiα
×

1

iωq + iη − ξiᾱ − v⃗iᾱ · q⃗
1

iωq + iη − iΩ− ξjβ − v⃗jβ · q⃗
1

iωq − iΩ− ξjβ̄

1

iη − E

−2γE

(q2 +R(T ))2 + γ2E2

]

iΩ→ω+i0+

= − lim
ω→0

6V 2
0 λ

2

ω|χJP |2
∑

i,j,i̸=j

∑

α,β

Qij2
x

|v⃗iα × v⃗iᾱ||v⃗jβ × v⃗jβ̄ |
Im

[∫
dξiαdξiᾱdξjβdξjβ̄dE

(2π)6
T 2
∑

ωq,η

1

iωq − ξiα
×

1

iωq + iη − ξiᾱ

1

iωq + iη − iΩ− ξjβ

1

iωq − iΩ− ξjβ̄

1

iη − E

(
tan−1

(
R(T )

γE

)
−
π

2

)]

iΩ→ω+i0+

, (D1)

where the indices α, β run over the fermion types a, b, ā = b, b̄ = a, ωq is a fermionic

Matsubara frequency, and η,Ω are bosonic Matsubara frequencies. In the second step in the

above, we have used the independence of the ξiα’s to shift out the boson momenta entering

the fermion propagators. One should note that here since all the fermion propagators have

independent ξiα’s, factors of
∫
dξ/(iω − ξ)m≥2 = 0 do not appear even when the boson
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momentum and frequency go to zero, and the most singular contribution of the graph thus

survives. This will not be the case for the higher order corrections mentioned at the end of

this appendix. After carrying out the frequency summations, We have to evaluate

Im

∫ dξiαdξiᾱdξjβdξjβ̄dE

(2π)6

(

−
nB (E)nF (ξiα)

(ξiα − ξiᾱ + E) (−iΩ+ ξiα − ξiᾱ)
(

−iΩ+ ξiα − ξjβ + E
) −

nB (E)nF

(

ξjβ −E
)

(

ξjβ − ξjβ̄ − E
)

(

iΩ− ξiᾱ + ξjβ
) (

iΩ− ξiα + ξjβ − E
)

−
nB (E)nF

(

ξjβ̄

)

(

−ξjβ + ξjβ̄ + E
)(

iΩ− ξiα + ξjβ̄

)(

iΩ− ξiᾱ + ξjβ̄ +E
) −

nB (E)nF (ξiᾱ − E)

(−ξiα + ξiᾱ − E)
(

−iΩ+ ξiᾱ − ξjβ
)

(

−iΩ+ ξiᾱ − ξjβ̄ − E
) +

nF (ξiᾱ)nF (ξiα)

(−ξiα + ξiᾱ −E)
(

−iΩ+ ξiα − ξjβ̄

)

(

−iΩ+ ξiᾱ − ξjβ
)

−

nF (ξiᾱ)nF (ξiᾱ − E)

(−ξiα + ξiᾱ − E)
(

−iΩ+ ξiᾱ − ξjβ
)

(

−iΩ+ ξiᾱ − ξjβ̄ − E
) −

nF

(

ξjβ
)

nF

(

ξjβ −E
)

(

ξjβ − ξjβ̄ − E
)

(

iΩ− ξiα + ξjβ − E
) (

iΩ− ξiᾱ + ξjβ
)

+

nF

(

ξjβ
)

nF

(

ξjβ̄

)

(

ξjβ − ξjβ̄ − E
)(

iΩ− ξiα + ξjβ̄

)

(

iΩ− ξiᾱ + ξjβ
)

+
nF (ξiᾱ)nF

(

ξjβ̄

)

(

iΩ− ξiα + ξjβ̄

)(

−iΩ+ ξiᾱ − ξjβ̄ −E
)

(

−iΩ+ ξiᾱ − ξjβ
)

+
nF

(

ξjβ
)

nF (ξiα)
(

iΩ− ξiᾱ + ξjβ
) (

iΩ− ξiα + ξjβ − E
)

(

−iΩ+ ξiα − ξjβ̄

)

)

×
(

tan−1

(

R(T )

γE

)

−
π

2

)

∣

∣

∣

∣

∣

iΩ→ω+i0+

, (D2)

Using 1/(x + i0±) = ∓iπδ(x) + P/x, the imaginary parts of the first eight terms inside

the brackets in the above vanish. For the last term, relabeling dummy variables ξiα ↔ ξiᾱ,

ξjβ ↔ ξjβ̄ and E → −E simplifies the above expression to

Im

∫ dξiαdξiᾱdξjβdξjβ̄dE

(2π)6

2nF (ξiᾱ)nF

(

ξjβ̄

)

(

iΩ− ξiα + ξjβ̄

)(

−iΩ+ ξiᾱ − ξjβ̄ − E
)

(

−iΩ+ ξiᾱ − ξjβ
)

tan−1

(

R(T )

γE

)

∣

∣

∣

∣

∣

iΩ→Ω+i0+

= π2

∫ dξiαdξiᾱdξjβdξjβ̄dE

(2π)5
nF (ξiᾱ)nF

(

ξjβ̄

)

δ(ω − ξiα + ξjβ̄)δ(−ω + ξiᾱ − ξjβ̄ − E)δ(−ω + ξiᾱ − ξjβ) tan
−1

(

R(T )

γE

)

=
1

32π3

∫

dξiᾱdξjβ̄nF (ξiᾱ)nF

(

ξjβ̄

)

tan−1

(

R(T )

γ(ξiᾱ − ξjβ̄ − ω)

)

. (D3)

If ω = 0 this evaluates to 0 as the integrand is odd under ξiᾱ ↔ ξjβ̄. Hence we have

ρxx(T ) = −
3V 2

0 λ
2

16π3|χJP |2
∑

i,j,i̸=j

Qij2
x

∑

α,β

∫ Λ̃

−Λ̃

dξiᾱdξjᾱ
|v⃗iα × v⃗iᾱ||v⃗jβ × v⃗jβ̄ |

nF (ξiᾱ)nF (ξjᾱ)
γR(T )

γ2(ξiᾱ − ξjᾱ)2 +R(T )2
,

(D4)
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Where the cutoff Λ̃ ≫ T is used to regulate the divergence of the integral as ξiα, ξiᾱ → −∞.

We decompose the integration into four quadrants and obtain to leading-log order in T :

I++ =

∫ Λ̃

0

∫ Λ̃

0
dξiᾱdξjᾱnF (ξiᾱ)nF (ξjᾱ)

γR(T )

γ2(ξiᾱ − ξjᾱ)2 +R(T )2
≈ T

[
a1 + a2f

(
γT

Λ2

)]
,

I+− = I−+ =

∫ Λ̃

0

∫ 0

−Λ̃
dξiᾱdξjᾱnF (ξiᾱ)nF (ξjᾱ)

γR(T )

γ2(ξiᾱ − ξjᾱ)2 +R(T )2
≈ a3Tf

(
γT

Λ2

)
,

Ireg−− =

∫ 0

−Λ̃

∫ 0

−Λ̃
dξiᾱdξjᾱ(nF (ξiᾱ)nF (ξjᾱ)− 1)

γR(T )

γ2(ξiᾱ − ξjᾱ)2 +R(T )2
≈ T

[
a4 + a5f

(
γT

Λ2

)]
,

Idiv−− =

∫ 0

−Λ̃

∫ 0

−Λ̃
dξiᾱdξjᾱ

γR(T )

γ2(ξiᾱ − ξjᾱ)2 +R(T )2
≈ πΛ̃+ 2

R(T )

γ
ln

(
R(T )

γ̃Λ

)
, (D5)

where a1 = π ln(2/
√
e), a4 = −π ln(2

√
e), and a2,3,5 have very slow log-log dependences on

T . Here f is the function correcting the linear dependence of R(T ) on T and is defined in

Eq. B12, and Λ is the cutoff used in Eq. B10. We thus obtain

ρxx(T ) ≈
V 2
0 λ

2

|χJP |2
∑

i,j,i̸=j

Qij2
x

∑

α,β

1

|v⃗iα × v⃗iᾱ||v⃗jβ × v⃗jβ̄|

[
−aΛ̃ + bT + c

T

ln(Λ2/(γT ))

]
, (D6)

at low T where a, b > 0 and b, c have very slow log-log dependences on T .

In the z = 1 limit, the factor of tan−1(R(T )/(γE)) − π/2 in Eq. D1 is replaced with

−πΘ(ϵ(E2 − cT 2)). Then, performing the same computation yields ρxx(T ) ∼ −a′Λ̃ + b′T ,

a′, b′ > 0.

We can also consider other graphs which have a fermion loop that runs through both

the external vertices, and multiple internal boson propagators that intersect this loop at

various points (For example, one such family of graphs would be the higher order graphs

in the “ladder series” of graphs, which contain multiple boson propagators connecting the

upper and lower fermion lines instead of just one in the above vertex correction). The most

singular contribution from these graphs would arise when the momenta and frequencies of

all these internal boson propagators go to zero simultaneously: When this happens, such

graphs will be given by expressions of the form

∑

i,j,i̸=j

∑

α,β

Qij2
x

|v⃗iα × v⃗iᾱ||v⃗jβ × v⃗jβ̄ |
T
∑

ωq

∫
dξiαdξiᾱdξjβdξjβ̄

1

(iωq − ξiα)t1
1

(iωq − ξiᾱ)t2
1

(iωq − iΩ− ξjβ)t3
×

1

(iωq − iΩ− ξjβ̄)t4

(
T

R(T )

)n

, (D7)

where n is the number of internal boson propagators. It is guaranteed that at least one of the

t’s is ≥ 2, because at least one of the fermion lines will have more than one intersection with

an internal boson propagator if there is more than one internal boson propagator. Hence
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this expression to evaluates to zero, and the most singular contribution vanishes.
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