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ABSTRACT

We study the properties of the nearest neighbor SU(N) antiferromagnet on a square

lattice as a function of N and the number of rows (m) and columns (nc) in the Young

tableau of the SU(N) representation on the A sublattice; the sites of the B sublattice have

the conjugate representation (the familiar Heisenberg antiferromagnet has N = 2, m = 1 and

nc = 2S). We study the global phase diagram in the (N, m, nc) space using 1/N expansions;

in particular: (i) for N large with m proportional to N and nc arbitrary, we find spin-Peierls

(dimerized) ground states with short-range spin correlations;(ii) with m = 1, the model is

shown to be equivalent, at order 1/N , to a generalized quantum dimer model. We discuss

the relationship of these results to the SU(N) generalization of recent arguments by Haldane

on the effect of ‘hedgehog’ point singularities in the space-time spin configuration. As an

intermediate step in our calculation, we present a simple new derivation of the coherent state

path integral representation of SU(N) spin models.
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1. Introduction

The recent discovery of high temperature superconductivity in a class of cuprates com-

pounds [1] has led to resurgence of interest in the properties of the SU(2) Heisenberg anti-

ferromagnet on a square lattice [2]. By a judicious choice of exchange constants, it may be

possible for this model to have a ground state without long range Neel order. A complete

understanding of the nature of these possible spin-disordered states is lacking, and reliable

results on closely related, but tractable models will be useful. In this paper we discuss the

nature of the global phase diagram of the SU(N) generalization of the Heisenberg antiferro-

magnet. We will support our arguments by exact calculations in the N →∞ limit. We will

also draw a connection between our results and a recent topological analysis of a semiclassical

Heisenberg model by Haldane [3].

We will consider models obtained by generalizing the SU(2) symmetry group of the

Heisenberg antiferromagnet to SU(N). This generalization can be viewed as an alternative

to using, for example, non-nearest-neighbor interactions to move away from the Neel phase.

This procedure yields a small number of well defined parameters which control the phases

of the antiferromagnet. We shall study the Hamiltonian

H =
J

N

∑
(i,j)

∑
αβ

Ŝβ
α(i)Ŝα

β (j) (1.1)

where the Ŝβ
α are the generators of SU(N), the Greek letters α, β = 1, . . . , N are the SU(N)

indices and sum over (i, j) extends over all near-neighbour pairs (referred to as ‘links’ in

this paper). Closely related Hamiltonians have been examined earlier by Affleck [4], Affleck

and Marston [5] and Arovas and Auerbach [6]. Our model is based upon the bipartite

nature of the square lattice; at sites on sublattice A, say, we place a ‘spin’ transforming as a

representation of SU(N) represented by the Young tableau in Fig 1, which has 0 < m < N
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rows and nc columns. On sites on sublattice B we place the conjugate representation which

has N − m rows. For m = N/2, the representations are self-conjugate and the model has

greater translational symmetry. The choice of a rectangular Young tableau is for convenience;

the choice of alternating conjugate representations is motivated by the fact that, among other

things, the semiclassical limit is describable by a non-linear sigma (NLσ) model (Ref [7, 8]

and Section 2). We emphasize that the properties of H are completely determined once the

representations of SU(N) have been specified. In particular the physics will be independent

of whether we represent the generators by fermionic or bosonic operators. For the familiar

Heisenberg antiferromagnet, N = 2, m = 1 and nc = 2S where S is the spin. For general N

we find that nc continues to play the role of twice the spin; the value of nc will play a central

role in determining the properties of the non-Neel ordered states that we find.

The phase diagram determined in this paper is shown in Fig 2 as a function of N and

nc; the properties of the system are relatively insensitive to the value of m. There is a finite

region in this plane where the Neel ground state is stable and the quantum fluctuations

can be described semiclassically. A line of second order transitions separates the Neel phase

from spin disordered states; for sufficiently large nc or N , this line is shown in Section 2.2 to

obey the equation nc = κN where κ is a constant of order unity (this last result can also be

obtained from the results of Ref [6] after proper identification of the SU(N) representation).

The disordering effects of quantum fluctuations of the Neel order parameter were first

given a field theoretic description by Haldane [7] for the case N = 2. The low energy, long

wavelength dynamics of the system in or near a Neel phase on a d-dimensional (hyper-)cubic

lattice can be described in the SU(2) case by a (d+1) dimensional U(2)/(U(1) × U(1))

(or O(3)) NLσ model [7, 8]. This model is known to possess a critical coupling constant

g = gc (g depends upon S and the ratios of the various exchange constants [9]) above which
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spin correlations decay exponentially; gc > 0 for spatial dimension d > 1 while gc = 0 in

d = 1. The action for the spin system contains a Berry phase term which is responsible

for the quantum nature of the spins; it gives rise in (1+1) dimensions to a topological term

in the sigma model action which changes completely the low energy behavior of the system

when the underlying spin at a site is half an odd integer [7, 8]. In (2+1) dimensions, on

the other hand, the effect of the Berry phase term appears to be much more innocuous.

Several investigators [3, 10] have noted that in this case the Berry phase term vanishes

for any spin configuration in space and time in which the Neel order parameter is smooth

on the scale of the lattice spacing. However, the recent work of Haldane [3], goes beyond

this limitation by examining the effect of the Berry phase term evaluated on ‘hedgehog’

point singularities in the 2+1 dimensional spin configuration. While the Neel phase was

unaffected, the quantum interference between various hedgehog configurations led Haldane

to predict that the properties of the disordered phase of the NLσ model depended crucially

upon the value of 2S(mod 4). His results can be used to argue that all low-lying states in the

disordered phase have a degeneracy of at least 1,4,2, and 4 for values of 2S(mod 4) of 0,1,2,

and 3 respectively. This is reminiscent of the result of Lieb-Schultz-Mattis [11] theorem for

the d = 1 models which states that a degeneracy of at least 1,2 exists for 2S(mod 2) = 0, 1

respectively.

In this paper we shall examine in (2+1) dimensions for general N , nc and m (i) the

nature of the transition from the Neel phase to the disordered phase and (ii) the structure

of the disordered phase. The main results we shall establish are

1. For large nc (nc →∞ with N, m fixed) the SU(N) antiferromagnets behave semiclas-

sically and are described by a U(N)/(U(m) × U(N − m) NLσ model [8]. Below a

critical value of nc ∼ κN , the NLσ model is in a disordered phase. The arguments
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of Haldane [3] on ‘hedgehog’ singularities have a simple generalization to these mod-

els and lead to the conjecture that the all low lying states in the disordered phase of

the SU(N) antiferromagnets have a degeneracy of at least 1,4,2, and 4 for values of

nc(mod 4) of 0,1,2, and 3 respectively.

2. We determine the nature of the disordered phase in two different large N limits. The

first type of 1/N expansion is defined by taking N →∞ with m of order N and nc fixed.

We find various ‘ground’ states, which are either stable, global minima or metastable

minima; all the states have short-range spin correlations, and broken translational

symmetry (with the exception of a metastable state for nc(mod 4) = 0.) All of the

states have a degeneracy which is consistent with the lower limit determined in the

semiclassical NLσ model: i.e. all states have a degeneracy greater than 1,4,2, and 4

for nc(mod 4) = 0,1,2, and 3 respectively. The global ground states have a degeneracy

of 4 for all values of nc. Among the metastable states is a sequence which saturates

the lower bound on the degeneracy:i.e. these states have a degeneracy of exactly 1,4,2,

and 4 for nc(mod 4) = 0,1,2, and 3 respectively.

3. The second 1/N expansion takes N → ∞ with m = 1 and nc fixed. The model is

shown at order 1/N to be exactly equivalent to a generalized quantum dimer model.

Preliminary numerical results indicate that this particular dimer model possesses crys-

talline ground states which do not violate the degeneracy bound suggested by the NLσ

model. On the other hand, Rokhsar and Kivelson [12] have conjectured for the case

nc = 1, that the dimer model has a resonating valence bond liquid phase. Such a phase

may still have a degeneracy consistent with the bound [13] even though the ground

state is translationally invariant.
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4. As an intermediate step towards establishing (1), we will present a simple new deriva-

tion of the coherent state path integral for SU(N) spin models.

In the remainder of this section we establish the formalism which will be used throughout

and outline the techniques by which the various results are obtained. The 1/N expansions we

shall consider are most conveniently generated by using the following fermionic representation

of the generators of SU(N):

Ŝβ
α(i) =

∑
a

c†αa(i)c
βa(i)− δβ

α

nc

2
(1.2)

in terms of the ‘electron’ destruction operators cαa. In addition to the SU(N) index, the

electrons also carry an additional color index represented by the the Latin letters a, b =

1, . . . , nc where nc is the number of colors. The Ŝ operators are not traceless; the reason for

the particular trace chosen will become clear in Section 2. The electron states are restricted

to be color singlets upon each site by the constraint

∑
α

c†αac
αb =

{
δb
am on sublattice A

δb
a(N −m) on sublattice B

(1.3)

There are thus a total of mnc ((N −m)nc) electrons on sublattice A (B). It is easy to show

that the representation (1.2) and the constraint (1.3) restricts the Hilbert space on each site

to the representations of SU(N) represented by the Young tableau of Fig 1, i.e. m rows and

nc columns on sublattice A and N −m rows and nc columns on sublattice B. For the special

case of SU(2) these representations are both equivalent to spin S = nc/2.

We emphasize that we could equally well have represented the generators of SU(N)

in terms of boson creation and destruction operators for all values of m, N and nc. In

this case the representation for the A sublattice is Ŝβ
α = b†αpb

βp where the b†αp operators

are boson creation operators carrying the SU(N) index α and the “color” index p which

extends over the range 1, . . . ,m. When combined with the constraint
∑

α b†αpb
αq = δq

pnc
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we obtain the SU(N) representation with nc columns and m rows. On the B sublattice the

bosons transform as the conjugate representation of SU(N), but the constrants are otherwise

unaltered. These representations are useful in taking the alternative large N limit, N →∞

with nc ∝ N and m fixed as in Ref [6]; this is denoted by the arrow labelled AA in Fig 2.

Two different methods are used to generate a 1/N expansion of the disordered phase

of the SU(N) antiferromagnet. These methods will be illustrated by examining the values

(a) m = N/2 and (b) m = 1. For case (a) a functional integral decoupling method is

most convenient while for case (b) each successive order of ordinary Rayleigh-Schrödinger

perturbation theory generates a higher power of 1/N . We now briefly describe our results

for these models.

(a) m = N/2

We use the functional integral decoupling method used by a number of investigators for

the Kondo problem [14] and antiferromagnets [5]. At leading order (N = ∞), a very large

set of degenerate ground states was found for nc = 1 [5] and we find a similar situation for

all nc. These states are ‘dimerized’, i.e. they consist of a covering of the lattice with SU(N)

singlet bonds, nc bonds ending at each lattice site. To split the degeneracy, we calculate

1/N correction; these generate bond-configuration-dependent terms in the energy of these

states, which pick out a definite arrangement of bonds in each case. We find that the lowest

energy for all nc occurs when the nc bonds ending at a site coincide, and these sets of nc

bonds are arranged in columns (Fig 3a). Thus these states are four-fold degenerate for all

nc. However, there are other metastable states (Fig 3b-d) which exist for particular values

of nc(mod 4) and which give lower degeneracy. In particular, we may spread the bonds as

uniformly as possible, by placing p bonds on every link, and arranging the remaining k bonds

(for nc = 4p+k, 0 ≤ k < 4) as in Figs 3a-d. These metastable states saturate the conjectured
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lower bound on the degeneracy of 1,4,2,4 for nc(mod 4) = 0,1,2,3 respectively. No low-lying

states which violate this lower bound are found.

(b) m = 1

The case m = 1 for one-dimensional chains has been considered previously by Affleck [4].

The Rayleigh-Schrödinger perturbation expansion used there can be easily applied to the

square lattice in the limit m � N . There are however some minor errors in the structure

of the perturbation expansion presented by Affleck (the correction of these errors leaves the

physics of the model considered by Affleck unchanged). It will be important to correct these

errors for the case of the square lattice. We show that at order 1/N the system can be

described by an effective generalized dimer model. For nc = 1 this dimer model is a special

case of the quantum dimer model considered by Rokhsar and Kivelson [12]; however unlike

Ref [12] our class of models are applicable to all nc and we are able to determine exactly the

values of the parameters in the effective Hamiltonian in terms of J . We have determined the

ground state of our dimer Hamiltonian (see Eqn 4.10) for nc = 1 upon a 6 × 6 lattice with

periodic boundary conditions by the Lanczos method; these finite size calculations show a

clear indication of a crystalline ground state with the symmetry of Fig 3a.

The outline of the remainder of the paper is as follows. In Section 2 we will present a

simple new derivation of a coherent state path integral representation of SU(N) spin models.

This representation is used in the large nc limit to derive a NLσ model representation of

SU(N) antiferromagnets. The coherent state representation also yields a Berry phase term

in the action; we then generalize Haldane’s [3] arguments for SU(2) to show that this Berry

phase term is non-zero only for the SU(N) generalization of ‘hedgehog’ point singularities;

the phases associated with the hedgehogs suggest a degeneracy of all low-lying states of

at least 1,4,2, or 4 depending upon whether nc(mod 4) = 0,1,2, or 3. Some details of this
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argument are relegated to the appendix. Sections 3 and 4 move away from the semiclassical

limit (nc � 1) to the extreme quantum limit (N � nc). Section 3 discusses the case

m = N/2, while Section 4 discusses m = 1. We conclude in Section 5 with a discussion of

the implication of our results for the SU(2) Heisenberg antiferromagnet.

2. Semiclassical Theory

In this section we shall extend the results obtained by Haldane [3] in the large spin limit

of SU(2) antiferromagnets to SU(N). The antiferromagnets behave semiclassically when

nc is large, and the quantum fluctuations are described by a U(N)/(U(m) × U(N − m))

NLσ model. We shall begin, in Section 2.1, with an exact path-integral representation of

the partition function of SU(N) quantum spins. The semiclassical limit of this path integral

will be used to derive the NLσ model and associated Berry phase terms in Section 2.2.

2.1 Path Integral Representation of SU(N) Spins

The standard method for deriving the path integral representation of a quantum problem

proceeds by deriving the coherent state representation of the Hilbert space [15]; we will follow

this method here. We first define the Cartan subalgebra {Hα} of SU(N) by choosing the

operators

Hα = Ŝα
α =

∑
a

c†αac
αa − nc

2
(2.1)

Notice that we have dropped the site index i. For the time being we consider sites on

sublattice A only; the modification for sublattice B will be given at the end of the subsection.

The remaining Ŝβ
α operators with α 6= β are the ‘raising’ and ‘lowering’ operators which

complete the canonical Cartan basis for the Lie algebra. The coherent state basis is obtained
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by unitary transformations upon the heighest weight state |Ψ0〉 defined as follows

|Ψ0〉 = C
[
εab···c†λac

†
λb · · ·

] [
εcd···c†ρcc

†
ρd · · ·

]
· · · |0〉 (2.2)

where there are nc electron creation opertors within each square bracket, and the square

bracketed terms appear m times; C is a normalization constant. The indices λ, ρ, . . . run

through all the indices between 1 and m. The weight of this state is given by

Hα|Ψ0〉 =

{
(nc/2)|Ψ0〉 if α ∈ [1, m]
−(nc/2)|Ψ0〉 if α ∈ [m + 1, N ]

(2.3)

The coherent states for the rectangular m× nc Young tableau are defined as follows [16]

|q〉 = exp
(
qλ
µŜµ

λ − qλ∗
µ Ŝλ

µ

)
|Ψ0〉 (2.4)

where as above, the index λ runs through the values [1, m], and µ runs through [m + 1, N ];

these limits on λ and µ will be implicitly assumed in the rest of this section. The qλ
µ are

m(N −m) independent complex numbers. The states |q〉 are normalized to unity and obey

the following important identity

〈q|Ŝβ
α|q〉 =

nc

2
Qβ

α (2.5)

where the matrix Q is defined by the relationship

Q = UΛU † (2.6)

The unitary matrix U represents the action of the unitary transformation in equation (2.4)

upon the fundamental representation and is given by

U = exp

[(
0 q
−q† 0

)]
(2.7)

where q is a m× (N −m) matrix with elements qλ
µ. The constant matrix Λ is given by

Λ =

(
1m 0
0 −1N−m

)
(2.8)
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where 1r is a r × r unit matrix. The matrix Q therefore satisfies Q2 = 1 and extends over

the manifold U(N)/(U(m)× U(N −m)).

The standard method of coherent state quantization [15] may now be used to obtain the

following representation for the partition function

Z =
∫
DQ(τ) exp

{∫ β

0
dτ

[
〈q(τ)|q(τ + δτ)〉 − 1

δτ
−H(Q(τ))

]}
(2.9)

where H(Q) is obtained by replacing every occurence of Ŝβ
α in the Hamiltonian by (nc/2)Qβ

α,

Q(0) = Q(τ), and DQ(τ) is the invariant measure over the U(N)/(U(m) × U(N − m))

manifold. It now remains to evaluate the first term in the action, SB, the Berry phase

term. Using Eqn (2.4) and the following identity for the derivative of the exponential of any

operator M [17]

d

dx
eM =

∫ 1

0
dueM(1−u)dM

dx
eMu (2.10)

we may easily show that

SB =
∫ β

0
dτ
∫ 1

0
du〈Ψ0| exp

(
−u(qλ

µŜµ
λ − qλ∗

µ Ŝλ
µ)
)(∂qλ

µ

∂τ
Ŝµ

λ −
∂qλ∗

µ

∂τ
Ŝλ

µ

)

exp
(
u(qλ

µŜµ
λ − qλ∗

µ Ŝλ
µ)
)
|Ψ0〉 (2.11)

Using the fundamental property of the coherent states in Eqn. (2.5) the above expression

reduces immediately to

SB =
nc

2

∫ β

0
dτ
∫ 1

0
du

[
∂qλ

µ

∂τ
Qµ

λ(τ, u)−
∂qλ∗

µ

∂τ
Qλ

µ(τ, u)

]
(2.12)

where we have now introduced a u and τ dependent matrix Q which is defined as in Eqn

(2.6) in terms of the unitary matrix U(τ, u)

U = exp

[
u

(
0 q(τ)

−q†(τ) 0

)]
(2.13)
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As a function of u , Q therefore satisfies Q(τ, 0) = Λ and Q(τ, 1) ≡ Q(τ). We may now

integrate Eqn (2.12) by parts and obtain the simple expression

SB = −nc

2

∫ β

0
dτ
∫ 1

0
duTr

[(
0 q(τ)

−q†(τ) 0

)
∂τQ(τ, u)

]
(2.14)

Using the easily established identity

(
0 q(τ)

−q†(τ) 0

)
= −1

2
Q(τ, u)

∂Q(τ, u)

∂u
(2.15)

we obtain our final result for the action of the path integral

S =
∫ β

0
dτ
∫ 1

0
du

[
nc

4
Tr

(
Q(τ, u)

∂Q(τ, u)

∂u

∂Q(τ, u)

∂τ

)]
−
∫ β

0
dτH(Q(τ)) (2.16)

A similar result has been quoted recently by Wiegmann [18].

The derivation above uses a very specific dependence of Q upon u in Eqn (2.13). This

form satisfies the boundary conditions

Q(τ, 0) = Q(τ ′, 0) for all τ , τ ′ (2.17)

Q(τ, 1) = Q(τ) (2.18)

Q(0, u) = Q(β, u) (2.19)

which means that the rectangle 0 ≤ τ ≤ β, 0 ≤ u ≤ 1 over which Q varies can be regarded

as a disc with u = 1 as the boundary, on which Q = Q(τ). Thus the parametrization in

(2.13) is just a specific way of filling in the closed curve {Q(τ) : 0 ≤ τ ≤ β} to form a disc

in G(m,N) = U(N)/(U(m) × U(N −m)). We now show that any other surface with this

boundary gives the same value of SB up to addition of a term 2πncki for some integer k. This

result uses crucially the fact that π2(G(m,N)) = Z, the group of integers, and that this is

also equal to the second cohomology group H2 = Z (by the Hurewicz isomorphism theorem);

the integrand of SB when integrated over a sphere is the integral invariant associated with
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both of these groups. We use the representation

SB =
nc

8

∫
d2ζεpqTr(Q∂pQ∂qQ) (2.20)

where p, q take the values 1, 2, ζ1 = τ and ζ2 = u, and the integral is over a rectangular in

(τ, u) space. We parametrize

Q(τ, u) = U(τ, u)ΛU †(τu) (2.21)

where U is a smooth function on the rectangle and can be taken to obey the boundary

conditions (2.19). Using Stokes theorem, we obtain

SB =
nc

2

∮
dζpTr(ΛU †∂pU) =

nc

2

∫ β

0
dτTr(ΛU †(τ)∂τU(τ)) (2.22)

where U(τ) = U(τ, 1) Now we may leave Q(τ) unchanged by right multiplying U by a unitary

matrix U0 also satisfying the conditions (2.19) and for u = 1 satisfying U0ΛU †
0 = Λ. The

change in the Berry phase due to U0 is seen to be

∆SB = nc

∫ β

0
dτAτ (2.23)

where we have introduced the abelian gauge field Aτ = (1/2)Tr(ΛU †
0∂τU0) which is a pure

gauge when u = 1. The constraint on U0 for u = 1 restricts U0 to U(m) × U(N −m) and

implies

U0 =

(
U0a 0
0 U0b

)
for u = 1 (2.24)

where U0a ( U0b ) is a m×m ( (N −m)× (N −m) ) unitary matrix. We now find

∆SB = nc

∫ β

0
dτ

1

2

∂

∂τ
[ln det U0a − ln det U0b] (2.25)

With the periodic boundary condition U0(0) = U0(β) this integral is easily seen to be an

integer multiple of πnci. However since U and hence U0 is supposed to be defined over the
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disc (rectangle) 0 ≤ τ ≤ β, 0 ≤ u ≤ 1, det U is smooth and vanishes nowhere. Then on the

boundary u = 1, the phase of det U cannot wind by 2π since this would force det U to vanish

somewhere in the interior by continuity. Then det U0 cannot wind either, which implies that

∫ β

0
dτ

∂

∂τ
[ln det U0a + ln det U0b] = 0 (2.26)

Using this constraint, ∆SB is now seen to be an integer multiple of 2πnci. Thus the expo-

nential of SB is unaffected by the change in parametrization of U . Incidentally this shows

that the parameter nc must be integer valued; this is in direct analogy to the quantization

of flux for a monopole, which implies the quantization 2S = integer in the SU(2) case [19].

Indeed , the form (2.22) has precisely the form of a line integral of a vector potential, so

that the Berry phase is the integral of a ‘flux’ over a surface spanned by the curve Q(τ);

in earlier derivations [7, 10] for SU(2) this vector potential was introduced explicitly. This

makes clear the connection with H2 also, since the ‘magnetic field’ is a rank 2 antisymmetric

tensor on G(m,N) of non-zero cohomology class.

On sublattice B, we have the conjugate representation, so in Eqn (2.2) we have instead

(N −m) square brackets. It is convenient for describing the classical Neel state to take the

highest weight state to have the indices λ, ρ, . . . running between m + 1 and N in this case,

so that

Hα|Ψ0〉 =

{
−(nc/2)|Ψ0〉 if α ∈ [1, m]
(nc/2)|Ψ0〉 if α ∈ [m + 1, N ]

(2.27)

Then use of the same matrix qλ
µ as before gives

〈q|Ŝβ
α|q〉 = −nc

2
Qβ

α (2.28)

and SB has the opposite sign as before. Thus in a classical Neel state, Q is the Neel order

parameter which is uniform in space. In the next subsection, we derive the NLσ model

describing long-wavelength excitations in this representation, together with ‘hedgehogs’.
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2.2 Non-linear Sigma Model Representation

In the large nc limit, the antiferromagnet behaves semiclassically, and we may decompose

the Q field fluctuations into staggered and uniform components

Q(i) ≈ Ωi

√
1− a2L2

i + ηiaLi (2.29)

where ηi equals +1 on sublattice A and −1 on sublattice B, a is the lattice spacing, Ω2
i = 1,

and Li is small and satisfies LiΩi + ΩiLi = 0. Substituting this into Eqn (2.16), dropping

total time derivatives and taking the continuum limit following Refs [3] and [8] we obtain

S = S ′
B +

1

2

∫ β

0
dτ
∫

d2x Tr

[
Jn2

c

4N
(∇xΩ)2 +

2Jn2
c

N
L2 − nc

2a
LΩ∂τΩ

]
(2.30)

where

S ′
B = inc

∑
j

ηjωj (2.31)

is defined in terms of the spatial field ωj

ωj =
1

4i

∫ β

0
dτ
∫ 1

0
duTr[Ωj∂uΩj∂τΩj] (2.32)

We may now integrate out the L fluctuations and obtain the action of a (2+1) NLσ model

with a residual Berry phase term

S = S ′
B +

1

2

∫ β

0
dτ
∫

d2x
ρs

2
Tr
[
(∇xΩ)2 +

1

c2
(∂τΩ)2

]
(2.33)

where we have introduced the spin-wave stiffness ρs = Jn2
c/2N and the spin-wave velocity

c =
√

8Jnca/N . (For the case of SU(2) we may make substitutions Ω = nασα, N = 2 and

nc = 2S where nα is a unit 3-vector and σα are the Pauli matrices; the action then reduces to

the 0(3) NLσ model with the spin-wave stiffness and velocity having their standard values.)

Before discussing topological effects of the residual Berry phase we present results on

the stability of the Neel phase. Following the analysis of Ref [9] and [20] we introduce the
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coupling constant g = (c/ρs)kM = 4
√

2kMa/nc, where kM is an upper cutoff in momentum

space, and derive the following one-loop renormalization group equation in a (d−1) expansion

dg

dl
= −(d− 1)g +

N

4
Kdg

2 (2.34)

where d = 2 is the spatial dimensionality, el is the length rescaling factor, and Kd =

1/(2d−1πd/2Γ(d/2)) is a numerical constant. This equation predicts that the Neel phase

will be stable provided g < 4/(NKd) or

nc > (Kd

√
2πkMa)N (2.35)

This determines a line of second-order transitions in the (N, nc) plane across which the Neel

phases transforms into a phase with exponentially decaying spin correlations. This transition

is represented by the dashed line in Fig 2. Note that, at one-loop order, the position of the

line is independent of m.

As an alternative to the (d−1) expansion we may examine the NLσ model field theory in

the large N limit. Taking the limit with m and Ng fixed (implying nc ∼ N) the renormaliza-

tion group equation (2.34) is in fact exact. For sufficiently large N therefore the statements

of the previous paragraph have a validity beyond a (d − 1) expansion. Alternatively, as

explained in Section 1, one can use the bosonic representation of the generators Ŝβ
α in the

Hamiltonian (1.1) and perform a 1/N expansion directly on the quantum spin system. This

was done in Ref [6] for the case m = 1 where, indeed, a transition to a disordered state at

T = 0 was found at a critical value of nc/N ' 0.2. Thus there is a close connection between

the results of Refs [9] and [6].

We now turn to a discussion of the effects of the Berry phase term S ′
B on this transition.

The residual Berry phase has been shown to vanish [10] for any order parameter configuration

which is smooth on the scale of the lattice spacing. Following Ref [3], it is therefore
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necessary to consider space-time singularities in the order parameter. The order-parameter

configuration for each constant time slice can be characterized by a ‘skyrmion’ number

associated with π2(U(N)/(U(m) × U(N −m))) [21]. Non-trivial contributions to S ′
B arise

only from tunneling events which change the number of skyrmions; these tunneling events

must necessarily be associated with space-time point singularities in the order parameter

field Ω(x, τ). We show in the appendix that the singularity, associated with a tunneling

event which changes the skyrmion number by ∆ns, is a vortex of magnitude 2π∆n in the

spatial field ωj. The remaining arguments are unchanged from the SU(2) case [3]. The cuts

accompanying the vortex in the field ωj yield the phase factor

(ξj)
nc∆n (2.36)

in the action for the tunneling event which changes the skyrmion number by ∆n; here ξj

is +1, −1, +i, or −i depending upon whether the vortex is centered on a plaquette with

(even,even), (odd,odd), (even,odd) or (odd,even) co-ordinates. For nc(mod 4) = 1 or 3, the

phase factor ξj will lead to destructive interference between tunneling events except those

involving a change in the skyrmion number ∆n which is a multiple of 4. This suggests that

the Hilbert space of the system splits up into 4 separate sectors characterized by the number

of skyrmions modulo 4, with vanishing tunneling matrix elements between the sectors. In the

Neel phase there is a finite energy gap towards the creation of skyrmions, and therefore this

argument only affects some high lying states. In the massive phase however, the skyrmions

proliferate, and this argument suggests a minimum degeneracy of all low-lying states of 4.

In a similar manner we can argue that, in the spin-disordered phase for nc(mod 4) = 2, all

low-lying states have a degeneracy of at least 2. The degeneracy can be arbitrarily small for

nc(mod 4) = 0.

We conclude this section with a reiteration of the main results established. We have
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shown that in the semiclassical (large nc) limit, the SU(N) spin model is described by a NLσ

model. At a value of nc = κN (where κ is a constant of order 1) the Neel phase undergoes a

second order phase transtion to a state with exponentially decaying spin correlations. This

massive phase was argued to have a degeneracy of all low-lying states of at least 1,4,2, or 4

as nc(mod 4) took the values 0,1,2, or 3.

3. Functional Integral Method

This section will analyze the properties of the Hamiltonian (1.1) for the case m = N/2, nc

arbitrary but small, in the large N limit. This is most conveniently done by using the fermion

representation in Eqn (1.2). The resulting interacting fermion theory can be analyzed by

the functional integral method developed for the heavy-fermion problem [14] and used in the

context of the SU(N) antiferromagnets by Affleck and Marston [5]. While the method can

in principle be used for any m of order N the m = N/2 case has a particle-hole symmetry

which simplifies the calculation. Attempts by Marston and Affleck [22] to use the functional

integral method for the case m = 1 have apparently not led to a consistent 1/N expansion.

This case will be addressed in Section 4 by different methods.

Generalizing the procedure of Ref [5] to nc colors, the fermion interaction can be de-

coupled by introducing a nc × nc matrix field χa
b (ij) on every link (i, j); the a, b are color

indices. It is easy to show that the partition function for Hamiltonian H in Eqn (1.1) can

be expressed as follows (after subtracting a constant energy of −Jn2
c/2 per site):

Z/Zo =
∫ π/β

−π/β

dλa
b (i)

2π

∫
DcDc†Dχ exp

(
−
∫ β

0
dτL(τ)

)
(3.1)

where the Lagrangian L is given by

L = c†αa(i)
∂cαa(i)

∂τ
+ iλa

b (i)
[
c†αa(i)c

αb(i)− δb
aN/2

]
+

N

J
|χa

b (ij)|2
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+ c†αa(i)c
αb(j)χa

b (ij) + χb
a(ji)c

†
αb(j)c

αa(i) (3.2)

with all repeated indices summed over. The normalization Zo is given by

Zo = ZF

∫
Dχ exp(−

∫ β

0
dτ |χa

b (ij)|2) (3.3)

where ZF is a free fermion determinant.

The structure of the theory is straightforward in the large N limit. After integrating

out the fermions, the effective action for the χ and λ fields acquires a factor of N in front.

The functional integral can therefore be approximated by the stationary phase point of

the action. By particle-hole symmetry the expectation value of the λ fields is zero at the

stationary phase point. In addition it can easily be shown the fluctuations of the λ fields

make no contribution to the ground state energy; the λ field will therefore be omitted in the

subsequent discussion. The effective action for the χ fields after integrating out the fermions

is given by

Seff

N
=
∫ β

0
dτ

−Tr Ln

(
∂

∂τ
δa
b δij + χa

b (ij)

)
+

1

J

∑
<ij>

∑
ab

|χa
b (ij)|2

 (3.4)

with χa
b (ij) =

(
χb

a(ji)
)∗

.

A class of time-independent stationary phase solutions of Seff are those with χ color-

diagonal. The colors then decouple from each other and the subsequent minimization be-

comes identical to the one color calculation carried out by Affleck and Marston. The global

minima found by Affleck and Marston correspond to the ‘bond’ solutions: for each color,

a, the field χa
a(ij) has a mean field value of either χ̄ or 0 on every link (χ̄ = J/2 at this

order); every site has exactly one link with χa
a = J/2 (a ‘bond’) for all values of the color a.

The relative positions of bonds with different colors is however arbitrary. The ground state

energy EG is given by

EG = −NsNncJ

8
(3.5)
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where Ns is the number of sites on the square lattice.

There is an additional continuous family of solutions to the mean field equations which

was not considered by Affleck and Marston and which is degenerate with the ‘bond’ states

in the n →∞ limit. This family is illustrated in Fig 4 for the color a. The lattice splits into

disjoint plaquettes, with the mean field values of χa
a nonzero only along the links surrounding

the plaquette. The constraints satisfied by the values of χa
a on a plaquette of sites numbered

1,2,3,4 (Fig 4) are

|χa
a(12)| = |χa

a(34)| ; |χa
a(41)| = |χa

a(23)| ; |χa
a(12)|2 + |χa

a(23)|2 = J2/4

χa
a(12)χa

a(23)χa
a(34)χa

a(41) = −|χa
a(12)|2|χa

a(23)|2 (3.6)

A special case of this mean field solution was found in Ref [23]. Note that by choosing

χa
a(41) = χa

a(23) = 0, the ‘plaquette’ states reduce to a subset of the ‘bond’ states. We will

show in the next subsection, that the 1/N corrections pick out a particular bond configuration

as the lowest energy state.

Going beyond the assumption of color-diagonal solutions, we have carried out an extensive

computer search for additional time independent χ configurations which minimize Seff with

up to three colors. We examined all periodic configurations with a unit cell of four sites.

No additional color-gauge inequivalent solutions with a lower energy were found for any nc

studied, and we believe that none exist for any nc.

3.1 1/N Corrections for nc = 1

To break the degeneracy in the ground state it is necessary to consider the 1/N corrections

to the ground state energy. The analysis is simplest for the one color case which will be

considered first. We will refer to the color by the index a, and will therefore focus on the
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fluctuations of χa
a(ij). We will present details of the calculation for the ‘bond’ states. The

calculations for the ‘plaquette’ states can be carried out in a similar manner.

The contributions to the effective action can be divided into two classes: the link-diagonal

and off-diagonal terms. Consider first the link-diagonal terms. Let Ba be the set of links

in a given mean-field configuration which has a bond of color a on it. The set B′
a is the

complement of Ba. The link diagonal contributions to Seff can be shown to equal

∆1Saa
eff =

∑
(i,j)

N

β

∑
n

χa
a(ij; ωn)χa

a(ji;−ωn)

(
1

J
− χ̄

ω2
n + 4χ̄2

)

+
∑

(i,j)∈Ba

N

β

∑
n

(χa
a(ij; ωn)χa

a(ij;−ωn)+χa
a(ji; ωn)χa

a(ji;−ωn))
χ̄/2

ω2
n + 4χ̄2

(3.7)

where we have introduced the Fourier transformed variables χa
b (ij; ωn) as a function of the

Matsubara frequency ωn = 2πn/β for integer n, and the first summation extends over all

the sites of the square lattice.

As the fermion fluctuations are localized upon the bonds, it easy to see that there is

only one type of local bond configuration which leads to an off diagonal coupling: this

configuration is shown in Fig 5. There is a bond of color a on link (1,2) and also on link

(3,4); the fermion fluctuations will lead to coupling between χa
a(13) and χa

a(24). Such terms

to lead to the following additional terms in the effective action

∆2Saa
eff =

∑
(i,j)∈Ba;(k,l)∈Ba

N

β

∑
n

(χa
a(ki; ωn)χa

a(jl;−ωn) + χa
a(ik; ωn)χa

a(lj;−ωn))
χ̄

ω2
n + 4χ̄2

(3.8)

where, naturally, (i, k) and (j, l) have to be links of the square lattice.

The functional integral over the χa
a(ij) variables can now be carried out as the action

is quadratic. The structure of the resulting determinant is sufficiently local that it can be

evaluated for any random bond configuration. After determining the correction to the value
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of χ̄, we obtain the following ground state energy at order 1/N

∆EG(nc = 1) = −Na
J

2
−N‖

J

2
−Nr

J

2
(2−

√
2) (3.9)

The first term arises from the links with a bond on them; Na is the number of links in Ba.

The second term arises from parallel bond pairs like the ones shown in Fig 5; N‖ is the

number of links in B′
a belonging to such configurations. The third term is contribution of

the remaining Nr links. We therefore have the constraint Na + N‖ + Nr = 2Ns. Examining

equation (3.9), we see that parallel pairs of bonds lower the ground state energy because

the absolute value of the coefficient of N‖ is larger than that of Nr. This picks out four-fold

degenerate ‘column’ states (shown in Fig 3a), which maximize the number of parallel bonds,

as the lowest energy ‘bond’ state (∆EG = −NsJ(5−
√

2)/4).

We also need the 1/N corrections for the energy of ‘plaquette’ states. These can be

evaluated using methods similar to the ones presented in this subsection. The results ob-

viously depend upon the mean field values of χa
a on the plaquettes which can now vary

continuously between 0 and J/2. We have verified that at order 1/N the ‘column’ state has

the lowest energy among this entire class of solutions. For example, the correction to the

energy of the state shown in Fig 4 with |χa
a| = J/(2

√
2) on all the links on the plaquettes is

∆EG = −NsJ(5−
√

3)/4. The column state is therefore identified as the true ground state

of H for nc = 1. Note however that the column state can be transformed continuously to a

‘plaquette’ state, indicating the presence of gapless singlet excitations. There is clearly a gap

towards excitations transforming as higher representations of SU(N) because it is necessary

to destroy a singlet bond to create them.
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3.2 1/N corrections for nc ≥ 2

The fluctuation corrections to the ground state energy for all nc ≥ 2 can be performed using

a method similar to that of the previous section. The color diagonal fluctuations χa
a(ij) do

not mix with each other and lead to a simple sum of nc contributions of the one color result.

The color off-diagonal fields χa
b (ij) couple just the 2 colors a and b; we therefore obtain

nc(nc−1)/2 similar contributions of two color fluctuations. We will only consider the ‘bond’

states in this section as the color-diagonal fluctuations have lowered their energy below the

‘plaquette’ states.

It is clear, therefore, that all that remains to be calculated are the contributions due to

the fluctuations of the field χa
b (ij), with a 6= b being two fixed colors. We now enumerate

the various contributions to the action for the colors a and b.

(i) There is one link diagonal term which occurs on all links of the lattice

∆1Sab
eff =

∑
(i,j)

N

β

∑
n

(χa
b (ij; ωn)χb

a(ji;−ωn)+χb
a(ij; ωn)χa

b (ji;−ωn))

(
1

J
− χ̄

ω2
n + 4χ̄2

)
(3.10)

(ii) A second link-diagonal term occurs on links which have bonds of both colors a and b

(Fig 6a):

∆2Sab
eff =

∑
(i,j)∈Ba;(i,j)∈Bb

N

β

∑
n

(χa
b (ij; ωn)χb

a(ij;−ωn) + χa
b (ji; ωn)χb

a(ji;−ωn))
χ̄

ω2
n + 4χ̄2

(3.11)

(iii) One off-diagonal term occurs when a bond of color a and a bond of color b have just

one site in common (Fig 6b):

∆3Sab
eff =

∑
(i,j)∈Ba;(j,k)∈Bb

N

β

∑
n

(χa
b (ij; ωn)χb

a(kj;−ωn) + χb
a(ji; ωn)χa

b (jk;−ωn))
χ̄

ω2
n + 4χ̄2

(3.12)
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(iv) and the other off-diagonal term occurs when a bond of color a is parallel to a bond of

color b (Fig 6c):

∆4Sab
eff =

∑
(i,j)∈Ba;(k,l)∈Bb

N

β

∑
n

(χa
b (ik; ωn)χb

a(lj;−ωn) + χb
a(ki; ωn)χa

b (jl;−ωn))
χ̄

ω2
n + 4χ̄2

(3.13)

where (i, k) and (j, l) must be links of the square lattice.

The action for nc colors can now be constructed from the expressions above. The func-

tional integral and the resulting determinant can easily be evaluated for an arbitrary configu-

ration of bonds by a simple extension of the one color results. We will omit the intermediate

steps and simply present the results for the energy of the lowest metastable states and ground

states for small nc.

(a) One Dimension

We begin the discussion by considering first the one-dimensional chain. For nc = 2, there

are only two possible ground states: one in which the two colors alternate from link to link,

and the other in which they overlap. These configurations are shown in Fig 7. The energy

of the ‘alternating’ state is −NsJ(N/4 + (5 −
√

2)/2) while that of the ‘overlapping’ state

is −NsJ(N/4 + (6− 2
√

2)/2). The ground state is therefore the non-degenerate alternating

state, which bears a close resemblance to the states considered by Affleck [4] for m = 1.

Interchanging the position of the color in the alternating state produces a state which is

color-gauge equivalent to the original state; the alternating state is therefore non-degenerate.

The ground state for arbitrary nc is now clear: for even nc we have a unique ground state in

which the colors split into two groups which alternate with each other; for odd nc we have a

two-fold degenerate ground state with the even links having one less or more bond than the

odd links.
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We emphasize that, for the first time in a functional integral large-N expansion, we have

obtained for nc even (S integral for N = 2) a unique ground state separated by a gap (the

Haldane [7] gap) from the low-lying spin excitations, which will be in the adjoint or singlet

representations of SU(N). We will now argure that our result for nc odd (half-integer S for

N = 2) of a pair of degenerate ground states, which break translational symmetry and have

a gap for (soliton-like, fundamental representation ) excitations, is usually the physically

correct result. This is in contrast to the discussion of Arovas and Auerbach [6], who studied

the nc = 1 case and found a spatially uniform saddle point solution, which gives gapless,

Fermi-liquid like excitations. Their result is attractive because for N = 2, S = 1/2 it

agrees with the correct physics known since Bethe’s solution [25]. There are nonetheless

difficulties with this point of view, the first of which is that the saddle point is unstable; the

energy can be continuously lowered [26] until the dimerized state is reached, due to a Peierls

instability of the Fermi ‘surface’. Further, using the analogue of this state for arbitrary nc,

one apparently obtains a (gapless) constrained Fermi system that corresponds to the Wess-

Zumino-Witten (WZW) model with k = nc [8]. The WZW model has different properties

for the cases N = 2 and N > 2: (a) N = 2 The correct result for this model is believed

[27] to be that nc even leads to ground states with a gap, and nc odd leads to leads to an

SU(2) WZW model with k = 1, i.e. the same exponents as nc = 1. The crossover from

k = nc to k = 1 (for nc odd) apparently occurs because the conformal SU(2) WZW field

theory with k > 1 posseses relevant operators which generically have non-zero coeffecients

(say for the Heisenberg model), causing a runaway from k = nc [27]. (b) N > 2 The WZW

model has relevant operators for all k ≥ 1 and a gapless Fermi phase is expected only at

isolated (multicritical) points in the Hamiltonian parameter space, which presumably do not

coincide with the model here studied. Hence one expects that, for nc even the ground state
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is translationally invariant and has a gap, and for nc odd [28] translational symmetry is

broken, i.e. a spin-Peierls phase . It is quite satisfying that the large-N theory agrees with

this.

As noted above, for N = 2 there should be gapless behavior similar to the known exact

result for nc = 1 [25] for all odd nc ≥ 1. To obtain such behavior in a functional integral

type of approach at least involves, for nc = 1, somehow stabilizing the uniform solution, and

for larger nc, finding a crossover away from the k = nc saddle point behavior to an effective

k = 1.

(b) Two Dimensions

We now return to our discussion of the square lattice. We first restrict our attention to

nc = 2. The three lowest gauge inequivalent metastable states can be shown to be the ones

in Fig 8; we shall refer to there states as the four-fold degenerate ‘overlapping’ state (Fig 8a),

the two-fold degenerate ‘line’ state (Fig 8b), and the four-fold degenerate ‘square’ state (Fig

8c). (Note that the line state in Fig 8b is an alternative representation of the state in Fig

3b of the introduction.) Because of the enhanced interference between the two colors, the

‘overlapping’ state turns out to have the lowest energy −NsJ(N/4 + 5−
√

2). The ‘square’

state and the ‘line’ state turn out to have the same energy −NsJ(N/4 + (11− 3
√

2)/2); we

however do not expect these states to be degenerate when higher order terms in 1/N are

included. The ‘square’ state and the ‘line’ state are also metastable towards deformation

to the ‘overlapping’ state: performing local bond rearrangements to transform between the

states always creates higher energy intermediate states. Thus for nc = 2 we have found

a four-fold degenerate ground state (the overlapping state of Fig 8a), and the two lowest

metastable states - the two-fold degenerate line state (Fig 8b) and the four-fold degenerate

square state (Fig 8c). All three states have a degeneracy greater than the lower bound

26



suggested by the NLσ model in Section 2.2, with the degeneracy of the line state being the

lowest allowed value of 2.

There is now a straightforward prescription for generating the lowest metastable states

for any nc. (i) Arrange all the bonds of a given color into column states; the relative

orientation of the column states of different colors can be arbitrary. The contribution of

the fluctuations of the color-diagonal field χa
a(ij) to the energy will be simply nc times the

one-color contribution of Section 3.1 (ii) Take all nc(nc − 1)/2 possible combinations of two

color pairs. The two colors chosen (a and b say) will necessarily form either the overlapping

state, the square state or the line state and the fluctuations of the χa
b (ij) field will give the

corresponding contribution to the energy. It is now easy to show that all such states have a

degeneracy (after excluding color gauge equivalent states) of at least 1,4,2,4 for nc(mod 4) =

0,1,2,3 respectively. This is one of the central results of this paper. Thus, for example, it is

impossible to obtain a state with a degeneracy smaller than 4 for nc = 5. The states which

have the smallest possible degeneracy for all nc were displayed in Fig 3. The global ground

state for all nc is formed when all of the colors overlap in the same column state; this state

is therefore the nc > 2 generalization of Fig 8a and is four-fold degenerate.

We have therefore determined the ground states and the lowest metastable states for all

nc of the m = N/2 models. None of the states obtained violate the lower bound on the

ground state degeneracy of 1,4,2,4 for nc(mod 4) = 0,1,2,3 respectively, which was suggested

by the semiclassical NLσ model Section 2.2.

4. Mapping to a Generalized Dimer Model

In this section we will consider properties of the Hamiltonian in Eqn (1.1) for the case m = 1.

Using the fermion representation of Eqn (1.2) for the SU(N) generators we now find that
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there are nc electrons per site on the A sublattice and (N − 1)nc electrons per site on the

B sublattice. We will show that for m = 1, at order 1/N , the antiferromagnet is exactly

equivalent to a generalized quantum dimer Hamiltonian. The m = 1 antiferromagnet has in

fact already been considered by Affleck [4] in one dimension, where the dimer Hamiltonian

is trivially solvable. While the overall phase diagram obtained by Affleck is correct, there

are some minor errors in the structure of his perturbation theory; it will be important to

correct these errors to understand the physics in two dimensions.

We begin by describing the model with nc = 2, but we shall use a general formalism

which will allow a straightforward generalization to arbitrary nc. It is convenient to make a

particle-hole transformation on the B sublattice by introducing the hole operators c̃αa = c†αa;

on this sublattice we also use conjugate SU(N) generators

ˆ̃S
β

α(i) =
∑
a

c̃βa †(i)c̃αa(i)− δβ
α

nc

2
(4.1)

which are (−1) times the usual generators. The vacuum state is now redefined to have no

electrons on the A sublattice and no holes on the B sublattice; all physical states will have

nc electrons per site on the A sublattice and nc holes per site on the B sublattice. We also

introduce the symmetric tensor operators Tαβ

Tαβ(i) = εabc
†
αa(i)c

†
βb(i) (4.2)

on every site on the A sublattice. On the B sublattice, the T̃αβ(j) operators are defined

identically, with the c̃† operators replacing the c† operators. The Hilbert space is spanned

by the action of the T operators upon the vacuum state on every site of the square lattice.

( For arbitrary nc > 2 we generalize these operators to symmetric tensor operators Tαβγ···,

with nc free SU(N) indices, by using a n-th rank Levi-Civita antisymmetric tensor εabc··· in

color space. )
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In the N → ∞ limit the ground states of H can be easily deduced from the arguments

of Affleck [4]. The ground state has a degeneracy of order exp(cN) for some constant c.

Each ground state can be described as follows: contract the SU(N) indices of the Tαβ on

neigbouring sites in an arbitrary manner until there are no free indices left. All of the states

so obtained are manifestly SU(N) singlets and can be labelled by a set of non-negative

integers, {n`}, where 0 ≤ n` ≤ nc is the number of contractions (‘bonds’) on the link ` of

the square lattice. For example, the state

| · · ·n(i,j) · · ·n(p,q), n(q,r), n(r,s), n(s,p) · · ·〉 =

C ′

 ∑
αβγδνσ

· · ·Tαβ(i)T̃αβ(j) · · ·Tγδ(p)T̃ δν(q)Tνσ(r)T̃ σγ(s) · · ·

 |0〉 (4.3)

where C is a normalization constant, (i, j), (p, q), (q, r), (r, s) and (s, p) are links of the

square lattice, has n(i,j) = 2, and n(p,q) = n(q,r) = n(r,s) = n(s,p) = 1. The set of integers {n`}

must also satisfy the constraint

n(i,i+x̂) + n(i,i−x̂) + n(i,i+ŷ) + n(i,i−ŷ) = nc (4.4)

because there are nc SU(N) indices emerging from each site (the sum in the equation above

extends over the four links ending at the site i).

A word is in order here about our phase convention for the states. We will always write

the Tαβ···(i) operators by using a fixed, but arbitrary, ordering of the sites i of the square

lattice. This convention now uniquely determines the state |{n`}〉 once the values of the link

variables n` are known. We show in Fig 9 sample ground states in N → ∞ limit for a few

nc values. The integers on the links specify the number of SU(N) bonds between the two

sites at the ends of the links.
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4.1 Order 1/N

We now show that at order 1/N , there are matrix elements which mix the states in the

ground state manifold; this mixing can be described by an effective Hamiltonian which is a

generalization of the quantum dimer Hamiltonians considered by Rokhsar and Kivelson [12].

The results follow from the repeated use of the following commutation relation

[Ŝβ
α, Tγδ] = Tγαδβ

δ + Tδαδβ
γ (4.5)

and its obvious generalization to arbitrary nc. A similar result holds on sublattice B. The

site index has been supressed in the above two equations. To evaluate the energy of the

bonds between the sites i and j we will need the following commutator

[
Ŝν

µ(i)ˆ̃S
µ

ν (j) , Tαβ(i)T γδ(j)
]

=

δγ
αTµβ(i)T̃ µδ(j) + δδ

αTµβ(i)T̃ µγ(j) + δγ
βTαµ(i)T̃ µδ(j) + δδ

βTαµ(i)T̃ γµ(j)

+
{
Tµβ(i)T̃ γδ(j)ˆ̃S

µ

α(j) + Tαµ(i)T̃ γδ(j)ˆ̃S
µ

β(j) + Tαβ(i)T̃ µδ(j)Ŝγ
µ(i) + Tαβ(i)T̃ γµ(j)Ŝδ

µ(i)
}
(4.6)

This result can be used to commute the Hamiltonian H in Eqn (1.1) through the T operators,

and so determine the diagonal energies and the off-diagonal mixing terms between the states

|{n`}〉. The terms in the curly brackets in Eqn (4.6) annihilate the ground state and can

ignored in the subsequent discussion. The remaining terms in Eqn (4.6) have three different

types of effects:

(i) They contribute a diagonal term to the energy of the state |{n`}〉. The contribution of a

n`-fold bond on a link, En`
, to the ground state energy can easily be computed to be

En`
= − J

N
n`(N − 1 + 2nc − n`). (4.7)
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In Eqn (4.7), and in the remainder of this section, we have omitted a constant energy per

site of (Jn2
c/2)(1− 4m/N).

(ii) They generate states which have a bond between the sites which are not nearest neigh-

bors. An example of this process is illustrated in Fig 10 for the case nc = 1. It is easy to show

that such processes contribute to the energy of states |{n`}〉 in second order perturbation

theory. They shift the energy of the states by an amount proportional to

J
m2(N −m)2

N2(N − 1)2
. (4.8)

For m = 1, this contribution is proportional to 1/N2, and can therefore be neglected. For m

of order N however, these terms are of the same order as the first order perturbation theory

result. This makes clear why the calculations of this section do not define a consistent

perturbation theory for m = N/2, and the functional integral method of Section 3 is the

appropriate way to proceed.

(iii) They lead to mixing between the states |{n`}〉, as shown in Fig 11. The action of the

Hamiltonian leads to a local rearrangement in the values of the n` field around a plaquette.

A plaquette with n1, n2− 1, n3, n4− 1 bonds on the four links around it can be transformed

to a configuration with n1 − 1, n2, n3 − 1, n4 bonds on the links. The matrix element for

the process requires determination of the normalization constant C ′, and use of Eqn (4.6);

it can be shown to equal

〈
· · ·n1, n2 − 1, n3, n4 − 1 · · ·

∣∣∣H∣∣∣ · · ·n1 − 1, n2, n3 − 1, n4 · · ·
〉

= −(2J/N)
√

n1n2n3n4 (4.9)

We are now in a position to express the 1/N corrections in terms of a effective Hamiltonian

Heff acting upon the Hilbert space of the |{n`}〉 states. The non-orthogonality of the different

|{n`}〉 states can be shown to affect Heff only at order 1/N2. Using the results in Eqn (4.4),
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(4.7), and (4.9) we can show

Heff

J/N
=
∑
{n`}

∣∣∣{n`}
〉(∑

`

n2
`

)〈
{n`}

∣∣∣
−

∑
`1,`2,`3,`4∈2

∣∣∣· · ·n`1 , n`2−1, n`3 , n`4−1, · · ·
〉
2
√

n`1n`2n`3n`4

〈
· · ·n`1−1, n`2 , n`3−1, n`4 , · · ·

∣∣∣
(4.10)

where the second sum extends over all plaquettes on the lattice. Equation (4.10) defines the

effective Hamiltonian of the generalized dimer model. Notice that while the full Hamiltonian

was not invariant under translation by one lattice spacing, the “reduced” dimer Hamiltonian

(4.10) does have this property. For nc = 1, it reduces to a special case of the quantum dimer

model of Ref [12]. In one dimension, the off-diagonal term vanishes and Heff is trivially

soluble. The ground states, as noted by Affleck [4], for even nc are non degenerate and have

n` = nc/2 on every link of the chain. (For N = 2 these states are identical to the exact

ground states of the models introduced in Ref [24] ) For odd nc, the ground states have a

two-fold degeneracy and we have n` = (nc + 1)/2 on even links and n` = (nc − 1)/2 on odd

links or vice versa. Heff differentiates the candidate states obtained from the N →∞ limit

at order 1/N , whereas Affleck incorrectly found a difference only at order 1/N2.

The physics of Heff is not so transparent in two dimensions. The first term in Eqn

(4.10) is clearly minimized if the n` values on all the links are as equal as possible, subject

to the constraint in Eqn (4.4). Thus for nc(mod 4) = 0, the first term is minimized by

the translationally invariant state with n` = nc/4 on all the links; this will be equivalent

to the state shown in Fig 3d. However there is the possibility that the off-diagonal terms

do not pick out a state with broken translational symmetry as the ground state. For other

values of nc(mod 4) 6= 0, one clearly can construct crystalline states similar to the ones in

Fig 3a, 3b, and 3c, but it is not a priori obvious that they will have a lower energy than a

state in which the dimers have melted into a translationally invariant fluid state. We note
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however, as shown by Read and Chakraborty [13], that translationally invariant fluid states

can also have a non-trivial ground state degeneracy. In any case, the d = 2 version of the

Lieb-Schultz-Mattis theorem [11], which applies to a translationally-invariant Hamiltonian

(which for us means only if either m = N/2 or N = 2) on a lattice with an odd number

of rows, demands that the ground state have either gapless excitations or at least a 2-fold

degeneracy if nc is odd.

We have carried out preliminary numerical calculations of Heff for the case nc = 1.

Using the Lanczos method, we were able to determine the exact ground state of Heff on

a 6 × 6 lattice with periodic boundary conditions. The bond correlation functions in these

small lattices show a clear signal of a crystalline ground state with the symmetry of the

state in Fig 3a (the correlation functions appear to reach their asymptotic values within two

lattice spacings, indicating that finite size effects are small). Further details on the numerical

calculations will be published in a separate paper.

5. Conclusion

The NLσ model representation of the Heisenberg antiferromagnet (ignoring momentarily

the effect of Berry phase terms) predicts two classes of ground states for d > 1 for fairly

general spin Hamiltonians [9]: (i) a Goldstone phase with long-range Neel order and spin-

wave fluctuations and (ii) some sort of massive phase with exponentially decaying spin

correlations. Power law spin correlations are only allowed at special critical points separating

the phases. However, the underlying quantum spin Hamiltonian can introduce a Berry phase

term in the action, which can potentially change the nature of the massive phase. In one

dimension, no ordered phase can exist, and here the effect of such a residual Berry phase term

(the θ term [7, 8]) is dramatic: as noted first by Haldane [7], in the SU(2) case for half-integer
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spins, gapless excitations carrying spin-1/2 appear and give power law spin correlations, in

contrast to the integer spin case, where the only excitations are massive and carry integer

spin. The exact solution for the spin-1/2 antiferromagnetic chain [25] helped motivate these

results,which are also supported by numerical studies [29] and can be given a field-theoretic

interpretation [8, 27]. (The somewhat different situation for N > 2 was discussed in Section

3.) Thus the combination of arguments based on the NLσ model representation (obtained

in the semiclassical large S limit) with other results appears to predict the correct physics

down to S = 1/2 in one spatial dimension.

The effect of the Berry phase term on the NLσ model in two spatial dimensions however

appears to be much more innocuous [3]. It does not affect the low energy dynamics of the Neel

phase, changing only the structure of some high energy excitations. In the massive phase,

Haldane [3] has suggested that it leads to additional degeneracies in low-lying states which

depend on 2S(mod 4). We have obtained, in this paper, results in the extreme quantum limit

(N → ∞) of a nearest neighbor SU(N) spin model which support the correctness of this

conjecture. For the case when the number of rows, m, in the Young tableau of the SU(N)

representation satisfies m = N/2, we find massive ground states which break translational

symmetry. The degeneracy of all of the low-lying states is always 4, exceeding the conjectured

lower bound of degeneracy 1,4,2, or 4 for nc(mod 4) = 0,1,2, or 3 respectively (here nc is the

number of columns in the Young tableau of the SU(N) representation under consideration).

Our results lead us to conjecture that the ground state anywhere in the disordered region of

the phase diagram, Fig 2, is a dimerized (spin-Peierls) state similar to one of those in Fig 3,

and satisfying the conjectured lower bound on the ground state degeneracy (we regard a non-

degenerate state like Fig 3d as a spin-Peierls state also). This region may contain other phase

boundaries which are transitions among spin-Peierls states of different degeneracies, and it
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is amusing to speculate that Haldane’s lower bound is saturated adjacent to the transition

to Neel order, but that the degeneracy and hence the degree of breakdown of translational

invariance tends to increase as we move away from this region, until the extreme region

(N large, nc fixed) studied in this paper is reached. Thus we expect that, once again,

the semiclassical picture leads to qualitatively correct results even for small values of nc.

However, we emphasise that our results are for the unfrustrated nearest-neighbor model and

that the introduction of large amounts of frustration or of mobile holes may lead to quite

different disordered phases.
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Appendix

This appendix fills in some missing steps in the arguments of Section 2.2 on the NLσ

model representation of the SU(N) model. We shall show that a tunneling event which

changes the skyrmion number by p leads to a vortex of magnitude 2πp in the spatial field

ωj which was defined in Eqn (2.32). For simplicity we will restrict our attention to the

U(N)/(U(1)× U(N − 1)) models, also known as the CpN−1 models. Our results can easily

be generalized to the U(N)/((U(m)×U(N−m)) models by the methods of MacFarlane [30].

We begin with the following representation of the matrix field Ωj

(Ωj)αβ = δαβ − 2Z∗
α(j)Zβ(j) (A.1)

where Zα(j) are N complex fields (α = 1, · · · , N) satisfying the constraint
∑

α |Zα|2 = 1.

Inserting this equation into Eqn (2.32) we can show easily

ωj = −i
∫ β

0
dτ
∑
α

Z∗
α(j)

dZα(j)

dτ
(A.2)

We will describe the evolution of the Zα variables during a skyrmion-number changing

tunneling event which is centered at the origin. We will focus of the four points, z1−4 shown

in Fig 12, at the vertices of the plaquette where the tunneling occurs; here zj = xj + iyj are

the complex co-ordinates of the points. Let us begin at time τ = 0 with a skyrmion centered

at the origin. The order parameter field for this can be written in the form [31]

Zα(j) =
Ûα + V̂α(zj/λ)p√

1 + (|zj|/λ)2p
(A.3)

where λ is a length, much larger than the lattice spacing a, specifying the scale of the

skyrmion, and Ûα and V̂α are orthogonal unit vectors in the N dimensional order parameter

space. It is convenient to break up the subsequent time evolution of the Zα fields into four

steps:
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(i) Step 1: 0 < τ < τ1

The tunneling occurs in this step, reducing the skyrmion number to 0. The order param-

eter has the following time dependence

Zα(j, τ) =
Ûα + V̂αf(τ)(zj/λ)p√
1 + f 2(τ)(|zj|/λ)2p

(A.4)

where f(τ) is a real function of time satisfying f(0) = 1 and f(τ1) = Γ; Γ is a large constant

which satisfies λ/Γ � a. At τ = τ1, the scale of the skyrmion is λ/Γ which is much smaller

than the lattice spacing; consequently the skyrmion number has been reduced to 0. By

inserting Eqn (A.4) into Eqn (A.2) we can easily see that the contribution of this step to ωj

is zero at all sites.

(ii) Step 2: τ1 < τ < τ2

To satisfy periodic boundary conditions, we have to now return the order parameter

configuration at the points z1−4 to their τ = 0 values in a locally smooth manner; this will

be achieved in Steps 2 and 3. We first rotate the order parameter configurations at z1−4 to

a common value :

Zα(j, τ) =
Ûα + V̂αgj(τ)Γ(zj/λ)p√
1 + |gj(τ)|2Γ2(|zj|/λ)2p

(A.5)

where gj(τ1) = 1, and gj(τ2) = (z∗j )
p/|zj|p. Since the absolute values |zj| are equal at the four

points under consideration, at τ = τ2 the order paramters are also equal. This step involves

a non-trivial Berry phase factor; we may show by inserting Eqn (A.5) into Eqn (A.2) that

ωj = −i
∫ τ2

τ1
dτ

Γ2(|zj|/λ)2p

1 + |gj(τ)|2Γ2(|zj|/λ)2p

1

2

[
g∗j (τ)

dgj(τ)

dτ
− c.c.

]
(A.6)

In the limit λ/Γ � a, the integral can be easily evaluated and we obtain ω1 = 0, ω2 = pπ/2,

ω3 = pπ, and ω4 = 3pπ/2.

(iii) Steps 3 and 4: τ2 < τ < β
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These steps are the reverse of steps 1 and 2. Step 3 undoes the scale contraction in step

1 and gives no additional contribution to ωj. Step 4 is the reverse of the rotation carried out

in step 2; it is easy to check that, because zj � λ, there is no additional contribution to ωj.

All of the Berry phase contribution in the tunneling event therefore arose in Step 2. It is

clear from the values of ωj quoted above that a vortex of magnitude 2πp was generated at

the origin. We have therefore established the required result.
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Figure 1. Young tableau of the SU(N) representations by which the states on sites belonging
to sublattice A and B transform.
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Figure 2. A constant m cross section of the phase diagram of the square lattice SU(N)
antiferromagnet. The dashed line represents a second order transition from the Neel phase
to a spin-disordered state which is described by a (2+1) dimensional non-linear sigma (NLσ)
model. The position of this line is insensitive to the value of m. The arrow labelled AA
represents the region in which Auerbach and Arovas [6] analyzed the bosonic representation
of the SU(N) generators for the case m = 1.
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Figure 3. Metastable states of the Hamiltonian (1.1) for filling factor m = N/2 as a function
of nc(mod 4). The states chosen have the minimum possible degeneracy for their nc value.
Each line represents m singlet bonds between SU(N) fermions on neighboring sites. There
are nc such bonds emerging from each site (Only the last nc(mod 4) bonds are shown; the
remaining form copies of the translationally invariant nc(mod 4) = 0 state).
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Figure 4. An example of the ‘plaquette’ states which is degenerate with the ‘bond’ states in
the N →∞ limit.

Figure 5. Bond configuration which leads to an off diagonal coupling between χa
a(13) and

χa
a(24).

Figure 6. Local bond configurations which lead to off-diagonal couplings in the χa
b (ij) field.

We represent bonds of color a by the thick line, and bonds of color b by the dashed line.
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Figure 7. The two lowest configurations of bonds of colors a and b for a one-dimensional
chain: (a) the ‘overlapping’ state and (b) the ‘alternating’ state (also the ground state)

Figure 8. The three lowest configurations of bonds for nc = 2 and m = N/2. The thick
and dashed lines represent the two colors. Note that in all three states, the two colors are
arranged in separate column states. The states are referred to as (a) the overlapping state,
(b) the line state and (c) the square state.
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Figure 9. Candidate ground states in the N →∞ limit for the case m = 1 for a variety of nc

values. The numbers on the links specify the number of bonds between the two sites. Note
that the sum of the numbers on the four links ending at any site is always equal to nc.
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Figure 10. Fluctuations caused by the action of H12 upon a candidate ground state for
nc = 1. This fluctuation changes the energy at order 1/N2.
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Figure 11. The off-diagonal term in Heff which changes the local n` values on the links
around a plaquette.
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Figure 12. Four points surrounding the center of the skyrmion-number changing tunneling
event which occurs at the origin. The light lines represent the x and y co-ordinate axis.
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