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Recently, neutron scattering data on powder samples of Zn-paratacamite, ZnxCu4−x(OH)6Cl2,
with small Zn concentration has been interpreted as evidence for valence bond solid and Néel
ordering [1]. We study the classical and quantum Heisenberg models on the distorted kagome lattice
appropriate for Zn-paratacamite at low Zn doping. Our theory naturally leads to the emergence
of the valence bond solid and collinear magnetic order at zero temperature. Implications of our
results to the existing experiments are discussed. We also suggest future inelastic neutron and
X-ray scattering experiments that can test our predictions.

PACS numbers:

Introduction.– The hallmark of frustrated magnets
is the existence of macroscopically degenerate classical
ground states. It is believed that quantum fluctuations
about such a highly degenerate manifold may lead to
unexpected quantum ground states. Proposals for emer-
gent quantum phases include various quantum spin liq-
uid and valence bond solid (VBS) phases and there has
been tremendous progress in a theoretical understanding
of these phases during the last decade [2]. On the ex-
perimental front, ideal materials with spin-1/2 moments
(without orbital degeneracy) on frustrated lattices have
just become available, providing great opportunities for
testing old and new theoretical proposals [3, 4, 5, 6].

One of the prime examples is a series of recent ex-
periments [1, 6, 8, 9, 10, 11] on Zn-paratacamite,
ZnxCu4−x(OH)6Cl2, where Cu2+ ions carry spin-1/2 mo-
ments. Most of the attention has focused on the x = 1
limit [6], but the present paper will address the x = 0
limit [1] when no Zn is present. An important advantage
of the x = 0 limit is the absence of stoichiometric disor-
der, which is a serious complication in the interpretation
of experiments in the x = 1 limit.

At x = 1 (herbersmithite), the idealized structure
without stoichiometric disorder, has the Cu moments re-
siding only on the layered kagome lattices. Remarkably,
in the experiment no magnetic ordering has been found
down to 50 mK even though the Curie-Weiss tempera-
ture is ΘCW = −300K [6, 8, 9]. This has raised the hope
that the quantum ground state of this system may be a
quantum spin liquid[12, 13, 14]. As mentioned, however,
the presence of stoichiometric disorder makes the inter-
pretation of the low temperature data a difficult task.

The situation is very different near x = 0, where there
is no intrinsic stoichiometric disorder. The magnetic lat-
tice of the Cu2+ spin-1/2 moments form stacks of alter-
nating (distorted) kagome and triangular lattices. The
lattice undergoes a structural change around x ∼ 0.33;
monoclinic (rhombohedral) structure for x < 0.33 (x >
0.33) [1, 11]. As a result, the magnetic lattice for x < 0.33

FIG. 1: Black (blue) represent the Distorted kagome (dual
dice) lattice. The numbers, in multiples of 1/8, are the frac-
tional offsets in the height model on the dual dice lattice which
characterize the Berry’s phase effects.

can be described as weakly-coupled[1] distorted kagome
lattices (see Fig. 1 for its structure).

Our theory is motivated by a recent neutron scatter-
ing experiment on powder samples of Zn-paratacamite
for small x [1]. These experiments find two phase transi-
tions at finite temperature for small x. In the low tem-
perature phase, the neutron scattering data is consistent
with collinear (or Néel) magnetic ordering while no mag-
netic ordering is observed in the intermediate phase. Fur-
thermore, in both phases a heavy gapped spin-1 mode is
found as well as evidence for dimerization. Finally, a
weak distortion in the kagome planes is observed at this
x which vanishes sharply for x > 0.33. Based on these re-
sults, the authors of Ref. [1] propose that at small x the
intermediate phase is a VBS phase which then co-exists
with magnetic ordering in the low temperature phase.
It should be noted that identification of the intermediate
phase as VBS ordered is not consistent with the interpre-
tation of previous µSR data[7, 8] that suggests this phase

http://arXiv.org/abs/0709.4489v2


2

FIG. 2: The large-N Sp(N) mean field phase diagram. In
the small (large) J ′/J regime, the Néel (incommensurate)
long/short range ordered (LRO/SRO) phases arise. The inset
represents the Néel ordering pattern.

is magnetically ordered. As such, further experiments,
preferably on single crystals, providing more direct mea-
surements of VBS order in the intermediate phase is nec-
essary to reconcile these experiments. It is our aim to
provide useful predictions for such studies.

In the present work, we study the antiferromagnetic
Heisenberg model on the distorted kagome lattice shown
in Fig. 1. We consider two inequivalent exchange in-
teractions, J > J ′, consistent with the distortion seen
in the experiment, where J corresponds to the shorter
bond-length (see Fig. 1). We are mostly interested in the
zero temperature ground states of this model and their
connection to Zn-paratacamite at x = 0 and possibly
for small x. Using the Cu-O-Cu angles identified in the
experiment, one can utilize the Goodenough-Kanamori
rule to get J ′/J ≈ 0.3 [15]. In the classical Heisenberg
model, we find that energetics chooses the collinear mag-
netically ordered state shown in Fig. 2 for J ′/J < 0.5
and there exist highly degenerate classical ground states
for J ′/J > 0.5. The collinear state for J ′/J < 0.5 has
precisely the same magnetic order identified in the low
temperature phase in Zn-paratacamite for small x [1].

We then investigate the effect of quantum fluctuations
and possible quantum paramagnetic phases. We use
the well-documented method of the Sp(N)-generalized
Heisenberg model where one can change the magnitude
of “spin” to control the degree of quantum fluctuations
[14, 16]. The large-N mean field phase diagram of this
model is presented in Fig. 2. Note that one gets the
same collinear magnetically ordered state for large “spin”
for J ′/J < 0.5-0.8. Understanding of the nature of the
quantum paramagnetic phase for small “spin”, however,
requires careful analysis of the spin Berry’s phase and
quantum fluctuation effect about the saddle point solu-
tion [16, 17]. We show that the resulting quantum param-
agnetic state is a VBS phase depicted in Fig. 3a. We call
this the “pin-wheel” VBS state. It is to be distinguished
from the “columnar” VBS state (shown in Fig. 3b) which
was suggested as a candidate valence bond order in the
Ref. [1]. It can be shown[16] that the “pin-wheel” state
can lower the energy by the resonating moves of dimers

(a)Pin-wheel state (b)Columnar state
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(c)Pin-wheel triplons
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(d)Columnar triplons

FIG. 3: Pin-wheel and columnar VBS states and their corre-
sponding lowest energy triplon excitation spectra.

around the “pin-wheel” structures.

In order to provide definite predictions for the valence
bond solid phase, we compute the triplon dispersions
(shown in Fig. 3c-d) for both of the VBS phases and
suggest that inelastic neutron scattering will be able to
distinguish these phases via their quite different triplon
dispersions when a single crystal sample becomes avail-
able. We also suggest that an X-ray scattering experi-
ment may clearly distinguish the two VBS ordering pat-
terns via their different further lattice distortions induced
by the ordering. The expected X-ray structure factors for
both phases are shown in Fig. 4.

Classical Heisenberg Model.– Possible magnetic order-
ing patterns in the classical Heisenberg model can be
investigated by studying the O(N) model in the large-
N limit [18] where the 3 component spin unit vector is

replaced by an N-component real-valued vector ~φ, with
~φ · ~φ = N . The collinear magnetic order shown in Fig. 2,
the same magnetic order observed in the experiment, is
chosen for J ′/J < 0.5 by this method. When J ′/J > 0.5,
a highly degenerate set of wavevectors have the same low-
est eigenvalue and energetics alone does not determine
any particular magnetic order. Thus, if magnetic order-
ing occurs for J ′/J > 0.5 at finite temperatures, it should
arise via a thermal order by disorder phenomenon.

Quantum Sp(N) Model and Mean Field Theory.– To
investigate possible magnetically ordered and quantum
paramagnetic states in the quantum antiferromagnetic
Heisenberg model, it is useful to generalize the usual spin-
SU(2) Heisenberg model to an Sp(N) model [16].
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Let us start with the Schwinger boson representation
of the spin operator ~Sr = b†rα~σαβbrβ, where α, β =↑, ↓,
~σ are Pauli matrices, brα are canonical boson operators
and a sum over repeated α indices is assumed. Note
that we need to impose the constraint nb = b†rαbrα =
2S to satisfy the spin commutation relations, where S
is the spin quantum number. A generalized model is
then obtained by considering 2N bosonic fields, brα with
α = 1, 2, ..., 2N and the constraint nb = b†rαbrα = 2SN .
The simplest such model with Sp(N) symmetry is

H =
1

2

∑

rr′

Jrr′(Jαβb†rαb†r′β)(Jγδbrγbr′δ), (1)

where Jαβ is a 2N × 2N totally antisymmetric matrix
which generalizes the Pauli matrix iσ2 from N = 1.
When κ = nb/N = 2S is fixed while taking the large-
N limit, the saddle point solution can be classified us-
ing both the valence bond order parameter Qrr′ =
〈Jαβb†rαb†r′β〉 and the magnetization induced by a finite
condensate xrα = 〈brα〉. The advantage of the large-
N mean field theory is that we can investigate both the
large-κ semiclassical limit and the small-κ extreme quan-
tum limit on an equal footing[16].

In the distorted kagome lattice, we need two inequiv-
alent valence bond order parameters, Q1

rr′ and Q2
rr′ , as

depicted in Fig. 1. We also need two Lagrange multi-
pliers for two inequivalent sites to impose the constraint
b†rαbrα = κN . These parameters need to be determined
self-consistently in the large-N mean field theory. The
large-N Sp(N) mean field phase diagram for the distorted
kagome lattice is shown in Fig. 2. For κ > κc = 0.26,
the collinear magnetically ordered state (Fig. 2) appears
in the J ′/J < 0.5-0.8 regime; this is the same magnetic
order as discovered in the experiment and in the classi-
cal model. For J ′/J > 0.5-0.8 and at large κ, the ground
state acquires an incommensurate coplanar order and be-
comes the

√
3 ×

√
3 state at J ′ = J [2]. The nature of

the paramagnetic state for small κ < κc, however, cannot
fully be determined within the mean field theory.

Quantum Fluctuations and Valence Bond Solid in the
Paramagnetic Phase.– Understanding of the paramag-
netic phases requires careful analysis of spin Berry’s
phase and quantum fluctuation effects about the mean
field solution [16, 17]. It is important to note that
Q2

rr′ = 0 in the paramagnetic phase for small J ′/J < 0.5-
0.8. Thus this phase is adiabatically connected to the
J ′ = 0 limit, corresponding to the bipartite lattice de-
picted by the thick lines in Fig. 1. Using Q1

rr′ = Q1e
iArr′ ,

one can clearly see that the action in this Q2
rr′ = 0 para-

magnetic phase is invariant under the U(1) gauge trans-
formation: brα → eiθrbrα (brα → e−iθrbrα) for r on the
A-sublattice (B-sublattice) and Arr′ → Arr′ + θr − θr′ .
The effective field theory of such a paramagnetic phase is
given by the gapped bosonic spinons carrying ±1 gauge
charges (depending on the sub-lattices) coupled to a U(1)

gauge field Arr′ . Since the spinons are gapped in the
paramagnetic phase, integrating them out in general pro-
duces a 2+1 dimensional compact U(1) lattice gauge the-
ory captured by the simple partition function [2]

Z =

∫

∏

〈ij〉

dAij

2π
exp[

∑

p

V (curlp A) + i
∑

〈ij〉

ηijAij ], (2)

where 〈ij〉 represent the nearest-neighbor sites of the
space-time lattice (here we have discretized time) and
V (Φ) = V (−Φ) = V (Φ+2π) is an arbitrary periodic po-
tential. Here p labels the plaquette of the space-time lat-
tice and curlp A =

∑

〈ij〉∈p sgnp(ij)Aij , where sgnp(ij) =

−sgnp(ji) = 1 if j comes right after i when one goes
around a given plaquette p and sgnp(ij) = 0 otherwise.
Here ηij is an external current determined by spin Berry’s
phase and it is given by ηij = η(rt),(r′t′) = ±δrr′δt+1,t′

(for spin-1/2) depending on whether r belongs to the A-
or B-sublattice. Thus the problem reduces to the com-
pact U(1) gauge theory with background charges of ±1 at
the A- and B-sublattice [2]. As well known, this compact
U(1) gauge theory is confining and the resulting ground
state would most likely be a VBS.

In order to find the nature of the VBS state, it is use-
ful to construct the so-called height model on the dual
lattice [2], which is equivalent to the compact U(1) gauge
theory on the direct lattice. The height model can be de-
rived using the well-documented duality transformation
and written in terms of the integer-valued height fields
hı defined on the sites ı of the dual space-time lattice
[2]. In our case the dual lattice (in a given time slice)
is a distorted dice lattice {r̄} as shown in Fig. 1 (blue
lattice). Note that the thick blue lines correspond to the
dual lattice of the J ′ = 0 limit of the original distorted
kagome lattice. The height model is found to have action

Sh =
∑

〈ı〉

g

2
(hı − h + ζı − ζ)

2 (3)

where 〈ı〉 are the thick bonds of the distorted dual space-
time lattice and g a non-universal coupling constant.
Here the constraint hı = h must be imposed if ı is
a thin bond and the offset variables ζı are determined
by the spin Berry’s phase and their time independent
site-dependent values (1

8 , 6
8 , 3

8 , 0, 5
8 , 2

8 , 7
8 , 4

8 ) on the dice
lattice are shown in Fig. 1. After solving the simple
constraint, this height model can be understood using
standard methods[16] and the average height fields can
be determined up to an overall constant [2].

The nature of the VBS ground state can be studied
by using the relation between the height fields and the
VBS order parameter. It can be shown that the “electric
field” (in the compact U(1) gauge theory) defined on the
spatial dual-lattice links is related to the height fields via
er̄r̄′ = 〈hr̄〉−〈hr̄′〉 [2]. The VBS order parameter defined
on the direct-lattice link that intersects the spatial dual-
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FIG. 4: X-ray structure factor: circles represent Bragg peaks
of the ideal kagome lattice; triangles arise from the structural
distortion shown in Fig. 1. These are the only Bragg peaks in
the columnar state. In the pin-wheel state, additional Bragg
peaks (hexagons) appear due to further lattice distortion.

lattice link 〈r̄r̄′〉 is given by the strength of er̄r̄′ [2]. The
result is a “pin-wheel” pattern shown in Fig. 3a.

Neutron Scattering: Triplon Dispersion.– In the Ref.
[1], a different VBS phase (see Fig. 3b) - the “colum-
nar” phase—was suggested. Here we show that different
triplon dispersions in the pin-wheel and columnar VBS
phases can be used to distinguish them if inelastic neu-
tron scattering experiments are done on single crystals.

To compute the triplon dispersion, consider letting J
be the exchange interaction between two spins within the
same valence bond and λJ between two spins on different
nearby valence bonds. In the decoupled λ = 0 limit, the
triplon dispersion would be completely flat with energy
J . When λ is finite, the triplon band disperses. Here
we compute this dispersion to first order in λ. For this
purpose, we apply the bond-operator formalism[19] to
the valence bonds in the VBS phases where the Hilbert
space can be represented via singlet and triplet states
on the bonds of Fig. 3. At first order in λ, only the
processes that preserve triplon number contribute, and
to this order they become dispersing particles. These
dispersions for the lowest band in both the pin-wheel and
columnar states are shown in Fig. 3c-d. The minima in
the two cases are clearly located at different positions, a
feature that can be distinguished experimentally.

X-ray Scattering.– Assuming a lattice contraction
where valence bonds exist, the pin-wheel state should
break the lattice translational symmetry of the distorted
kagome lattice in one of two directions, doubling the unit
cell. This would lead to new peaks in the X-ray struc-
ture factor. However, the lattice translational symmetry
would be intact in the columnar state, leading to no new
Bragg peaks in the X-ray structure factor in addition to
those associated with the distorted kagome lattice. The
X-ray structure factors for the two VBS phases are shown
in Fig. 4. Note that the hexagon symbols represent the
new Bragg peaks in the pin-wheel state. All other peaks
also exist in the columnar state.

Summary and Conclusion.– We have provided a theory
of the zero temperature phases of an antiferromagnetic
Heisenberg model on a distorted kagome lattice. The re-
sulting VBS and Néel ordered phases are strikingly sim-

ilar to those identified in the recent neutron scattering
experiment on Zn-paratacamite at small doping x [1]. In
particular, our theory predicts that “pin-wheel” VBS or-
dering (see Fig. 3a) can occur as a result of quantum
disordering of the Néel order. We have suggested future
neutron and X-ray scattering experiments that can test
our predictions for this “pin-wheel” VBS ordering. Our
predictions may also be used for future resolution of the
disagreement between the interpretations of the neutron
scattering and µSR data in the intermediate tempera-
ture phase. Furthermore, here we focused on zero tem-
perature ground states of a Heisenberg model so that
an explanation of the coexistence of Néel and VBS or-
dering at finite temperature is beyond the scope of this
work. However, we note that a phase transition between
the two phases is likely to be first order leaving the pos-
sibility of a coexist region in the phase diagram. Pos-
sible relation between the quantum phases on the dis-
torted kagome lattice described here and the yet-to-be-
determined quantum ground state[2, 12, 13, 14, 20, 21]
on the ideal kagome lattice is an important subject of
future research.
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and KRF-2005-070-C00044 (MJL, YBK); NSF Grant
No. DMR-0537077 (LF, SS); Deutsche Forschungsge-
meinschaft under grant FR 2627/1-1 (LF). We thank S.-
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SUPPLEMENTARY INFORMATION

Electromagnetic duality on the distorted kagome lattice.
The electromagnetic duality of a U(1) lattice gauge the-
ory on a two dimensional square lattice is well known
and documented. Here we follow Ref. [S1] for the case of
the duality of a U(1) lattice gauge theory on the strong
bonds of the distorted kagome lattice of undoped parat-
acamite. In this 2 + 1 dimensional model, this duality
mapping connects the U(1) gauge theory with a scalar
“height” model. An analysis of such a model is then
straightforward and includes a clear picture for exactly
how the confinement occurs: the spinons will bind into
singlets and a valence bond solid (VBS) forms.

Recall the U(1) lattice gauge theory of Eq. 3:

Z =

∫

∏

〈ij〉

dAij

2π
exp

[

∑

p

V (curlp A) + i
∑

〈ij〉

ηijAij

]

,

(S1)
The first step in transforming to the dual theory is to
Fourier transform the periodic function exp{V (Φp =
curlp A)} on each plaquette:

expV (Φp) =
∑

ep∈Z

exp
[

Ṽ (ep) + iepΦp

]

(S2)

where exp Ṽ (ep) is the fourier transform of expV (Φp)
and ep are integer electric fields living on the plaquettes
p of the direct lattice. After performing this transforma-
tion on each plaquette, we integrate out Aij to obtain

Z =
∏

p

∑

{ep∈Z}

δ

(

divije − ηij

)

exp

{

∑

p

Ṽ (ep)

}

(S3)

where divij is the lattice divergence of ep with plaquettes
p that share the bond 〈ij〉. Thus we have replaced Aij

with the integer electric fields ep.
At this stage it is useful to switch to a description on a

connected dual lattice whose bonds pierce the plaquettes
of the direct lattice. Such a lattice is actually well known
in the isotropic limit for the dual of the kagome lattice is
the dice lattice. Fig. 1 of the main text extends both of
these lattices to the distorted case.

The duality mapping is then completed by a suitable
mapping that relates ep to bı = −bı and ηij to ηp̄, where
ı and  label the sites of the dual lattice of Fig. 1 that
form the bond 〈ı〉 which pierces the plaquette p of the
direct lattice and p̄ labels a plaquette of the dual lattice.
Note: we remove the ambiguity p → ı or p → ı by
associating an outward normal for each plaquette using
the right hand rule on the A sublattice of the bipartite

direct lattice. The resulting partition function is

Z =
∑

{bı∈Z}

∏

〈ı〉∈thin

δbı,0

∏

p̄

δ
(

curlp̄ b−ηp̄

)

exp

[

∑

〈ı〉∈thick

Ṽ (bı)

]

(S4)
Thus the Gauss’ law constraint on ep in the direct de-
scription becomes Ampère’s law for bı in the dual de-
scription, provided we set bı = 0 on the thin bonds.
Aside from this one caveat, this electro-magnetic duality
transformation directly follows that on square lattice[S1].

It remains to solve the constraints in Eq. (S4) to obtain
a useful representation of the dual theory. In general, we
can solve the Ampère’s law constraint for bı by letting

bı = b0
ı + hı − h (S5)

where hı are integer “height” fields that live on the sites
of the dual lattice and the integers b0

ı satisfy

∑

〈ı〉∈p̄curlp̄ b
0 = ηp̄ (S6)

which can take any one of many gauge equivalent con-
figurations. One possible solution is shown in Fig. S1a.
Given such a solution, it is useful to split it up into its
divergence free and curl free parts:

b0
ı = ζı − ζ + Hı (S7)

where Hı is the divergence free part and ζı and Hı are
fractions whose sum give the integers bı. For our solution
Hı and ζı are shown in Fig. S1b. In conjunction with
this decomposition it is also useful to specialize to the
Villain model Ṽ (ep) = − g

2 (ep)
2 for

(hı − h+ζı − ζ+Hı)
2
=(hı − h + ζı − ζ)

2−e2

2
(Hı)

2

+ terms that vanish in the sum over ı, (S8)

so that Hı only contributes to an overall constant out
front of the partition function.

Thus, the solution of the Ampère’s law constraint
leaves us with the height model of Eq. 4 of the main
text defined on the sites of the dual lattice:

Z =
∏

ı

∑

hı∈Z





∏

〈ı〉∈thin

δ
(

hı − h

)



 e−Sh , (S9)

with Sh =
∑

〈ı〉∈thick
g
2 (hı − h + ζı − ζ)

2 and g a non-
universal coupling constant.

Confinement and the pin-wheel VBS phase. The re-
maining constraints, hı − h + b0

ı = 0 if 〈ı〉 is a thin
bond, reduce the number of independent height fields
and fractional offsets ζı to those living on the sites of a
square lattice. An understanding of (S9) then proceeds
by a series of mappings onto already known results.

The dual lattice, shown in Fig. S1, has two types of
sites: black sites with four neighbors which lie on the ver-
tices of a square lattice and gray sites with two neighbors

http://arXiv.org/abs/0707.0892
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(a)b0
ı

(b)decomposition

FIG. S1: Solution to the Ampére’s law constraints on bı on
the dual lattice (reshaped for convenience). a) one choice of
the particular solution with b0

ı = −b0

ı = 1 if ı and  are

connected by an arrow from ı to ; b0

ı = 0 otherwise. b)
The decomposition into divergence and curl free parts: Hı =
−Hı = 3/8 if ı and  are connected by an arrow from ı to ,
Hı = 0 on the dashed line bonds; the fractional offsets ζı are
the numbers on the sites of the lattice divided by 8.

that are decorations which lie on the bonds of a square
lattice. The constraint across the thin bonds relates two
decorations to a vertex. Denoting v as a vertex site and
d(v) as one of its decorations, we have

hd(v) = hv, ζd(v) = ζv − 1
8 (S10)

where ζv ∈ {1/8, 3/8, 5/8, 7/8} cyclicly around a plaque-
tte of the square lattice. Utilizing this mapping, and
shifting all ζv by 1/8, the height model takes the form

Z =
∏

v

∑

hv∈Z

exp

{

−
∑

〈vw〉

g

2

(

hv − hw + ζv − ζw

)2

− 2
∑

〈〈vw〉〉

g

2

(

hv − hw + ζv − ζw

)2

}

(S11)

with ζv = {0, 1/4, 2/4, 3/4}. This height model differs
from the simple square lattice case studied by Sachdev
and Park[S1] by the addition of off diagonal terms that
convert it to a model on the anisotropic triangular lattice.

To gain a simple understanding of the dual height
model, consider softening the integer height fields, hv →
χv such that χv is any real number. This necessarily
introduces periodic potentials, cos 2πχv, cos 4πχv, etc.
The resulting model is then Zχ =

∫

Dχe−S with

S =
g

2

∫ β

0

dτ

[

∑

v

a2
(

∂τχv

)2
+

∑

〈vw〉

(

χv−χw

)2

+2
∑

〈〈vw〉〉

(

χv−χw

)2
+

∑

v

M2 cos (2π(χv−ζv))

]

(S12)

where for simplicity we have taken the continuum limit
along the imaginary time axis and we have shifted χv

by the fractional offsets ζv. A simple saddle point anal-
ysis for this model has already been studied in Ref.
[S3]. Since ζv takes on four different values depending
on four different sublattices of the square lattice labeled
by W, X, Y, Z in Fig. S2, this saddle point analysis sim-
ply sets χv to one of {χW , χX , χY , χZ} depending on the
sublattice and minimizes the energy with respect to these
four parameters. Following Ref. [S3], the result is

2πχW = −π

4
+

M2

8
√

2
− M4

256
(S13)

2πχX = −π

4
+

M2

8
√

2
+

M4

256
(S14)

2πχY = −π

4
− M2

8
√

2
− M4

256
(S15)

2πχZ = −π

4
− M2

8
√

2
+

M4

256
(S16)

so that the added terms on the diagonal bonds of the
square lattice do not alter the ground state.

Given these mean field parameters, we are left with
the task of determining the physical properties of the
ground state in terms of quantities defined on the direct
lattice. To this end, we compute the static magnetic
fields in the ground state 〈bı〉 ≡ χı − χ which are the
gradient of the potential χı. As stated earlier, each of
these dual magnetic fields correspond to an electric field
〈bı〉 = −〈bı〉 → 〈ep〉 on a plaquette of the direct lattice.
Spatial plaquettes have a vanishing 〈ep〉, while temporal
plaquettes have either 〈ep〉>0, 〈ep〉=0 or 〈ep〉<0. A plot
of 〈ep〉 is shown in Fig. S2b and has the same symmetry
as the pin-wheel state shown in Fig. 2 of the main text.

1

w

z

x

z

wx

ww

y

0 1

23

0 0

3

0

(a)4-site
sublattice

(b)“Electric” fields

FIG. S2: (a) The four sublattices W , X, Y , Z of the square
lattice. (b) the numerator of the square lattice fractional off-
sets ζv ∈ {0, 1/4, 2/4, 3/4}. (c) The electric fields 〈ep〉. The
thickness of the bonds (time-like plaquettes) represent the
magnitude of 〈ep〉 while the dark bonds have 〈ep〉 > 0 and
the light bonds have 〈ep〉 < 0. The pattern of dark bonds has
the same symmetry as the pin-wheel state.
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[S2] J. V. José, L. P. Kadanoff, S. Kirkpatrick, and D. R.
Nelson, Phys. Rev. B 16, 1217 (1977).

[S3] N. Read and S. Sachdev, Phys. Rev. B 42, 4568 (1990).


