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The valley quantum number of electrons in the conduction band of doped semiconductors is shown to
affect the electron dynamics in a manner analogous to the spin quantum number. Recent theoretical
and experimental studies have demonstrated the strong effects of disorder-enhanced electron-electron in-
teractions upon the spin susceptibility and electron-spin-resonance spectrum. It is shown that similar
effects should also exist in the valley fluctuations, leading to measurable consequences in the ultrasonic

attenuation at low temperatures.

PACS numbers: 71.30.+h, 62.80.+f, 72.50.+b, 76.30.Lh

Degenerately doped semiconductors have been used
extensively to study the properties of interacting elec-
trons in a random potential.»? Conductivity measure-
ments have shown that the electrons undergo a continu-
ous metal-insulator transition at a certain critical density
of doping.! Recent theoretical analyses>~’ have pointed
out the importance of electron-spin fluctuations upon the
metallic side of the metal-insulator transition. An
enhancement of the spin susceptibility and a suppression
of the spin-diffusion coefficient over the corresponding
quantities for charge fluctuations have been predicted at
low temperatures. Trends in accord with these expecta-
tions have been observed in an electron-spin-resonance
experiment in phosphorus-doped silicon.®~® In this paper
we focus attention upon the many-valley nature of the
semiconductor conduction band. The additional valley
quantum number is shown to alter the electron dynamics
in a manner which is analogous to that due to the spin
degeneracy. This similarity between the spin and valley
quantum numbers was recently recognized in an entirely
different context in the quantized Hall effect by Rasolt,
Halperin, and Vanderbilt.” Just as was the case with
spin fluctuations, the interaction of long-wavelength and
long-time diffusive valley fluctuations leads to an
enhancement of the appropriately defined “valley suscep-
tibility” and a corresponding suppression of the “valley
diffusion” constant at low temperatures.

I argue in this paper that ultrasound experiments in
degenerately doped semiconductors can be used to probe
the effects of the interacting valley fluctuations. As is
well known, !%!! the dominant effect of the dopant elec-
trons upon the propagation of ultrasound is through pro-
cesses involving transfer of electrons between conduc-
tion-band valleys. The oscillating shear strain in an ul-
trasonic wave lifts the degeneracy between the valleys.
By use of the spin analogy, the shear strain is similar to a
magnetic field which lifts the degeneracy between up and
down spins. We can therefore use the techniques
developed for evaluating magnetic response functions to
calculate changes in the velocity and attenuation of the
ultrasonic wave. It is shown below that at very low tem-

peratures (below 1 K), the interacting valley fluctuations
lead to a strong temperature dependence in the ultrason-
ic attenuation. This temperature-dependent attenuation
should be measurable under suitable conditions in a
many-valley semiconductor like silicon. Previous analy-
ses!? of the attenuation did not have the benefit of
Finkelstein’s renormalization scheme®* and do not agree
with my results.

The analysis in this paper will be presented with par-
ticular reference to the experimentally interesting case of
silicon. The form of the results, however, is more gen-
eral and should be applicable, with minor changes, to
other many-valley semiconductors. The dynamics of the
conduction-band electrons is described by the model
Hamiltonian H =Hg+ Hinp+ H,, as a sum of free elec-
tron, impurity scattering, and electron-electron interac-
tion parts. H0=Z,-’ae,-(k)c§,-cck,-a describes free elec-
trons moving in the six conduction-band valleys of sil-
icon. The index i extends over the six valleys located on
the +x, —x, +y, —y, +z, and —z axes, and the index
o sums over spin-up and spin-down states. The band
structure ¢;(k) is approximated by an anisotropic para-
bolic dispersion with differing longitudinal and trans-
verse masses. This mass anisotropy will turn out to be of
great importance later in this paper.

H iy describes the scattering of the electrons from the
donor atoms in the silicon crystal. The dominant scatter-
ing process is the intravalley process. This is modeled by
an s-wave scattering potential v. It leads to an intra-
valley scattering rate 1/zo=2zNv2, where N; is the
single-electron, single-spin, and single-valley density of
states at the Fermi level. The donor core potentials also
lead to intervalley scattering. The symmetry of the sil-
icon lattice divides these processes into two types: (i)
those between collinear valleys (e.g., between the valleys
along the +x and —x axes) which is modeled by a
scattering potential wuy,, and (ii) those between noncol-
linear valleys which is modeled by a scattering potential
uxy. These processes lead to the intervalley scattering
rates 1/7; =2zNu2, and l/rz=27rN1ux2y. The relation-
ship 7o !> 7 !,7; ! is always satisfied by at least two
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orders of magnitude. All impurity spin-flip scattering
rates are much smaller and can safely be neglected. The
total single-particle lifetime t is given by 1/7=1/1
+2/7t+4/15.

H,, describes the Coulomb interactions between the
electrons. Following Ref. 4, the interactions are
represented by the Landau Fermi-liquid-like parameters
Ty, I'y, and T3 as shown in Fig. 1. T} and I'; represent
the direct interactions between particle-hole pairs in col-
linear and noncollinear valleys, respectively. The bare
values of these interaction parameters are equal but they
will renormalize differently. I'; represents the exchange
interaction between particles and holes in collinear val-
leys. All other interactions are either irrelevant for the
long-wavelength physics, or much smaller in magnitude.®
I emphasize here the following properties of the interac-
tion parameters: (i) They are effective interaction pa-
rameters obtained after intergrating out all the short-
distance and short-time fluctuations. The inclusion of
long-wavelength and long-time fluctuations will lead to a
scale dependence of these parameters to be considered
below. (ii) They do not as yet include the long-range
part of the direct Coulomb interactions, which, as in
Landau’s Fermi-liquid theory, has to be treated sepa-
rately. (iii) Diagonalization of the interactions in the
spin and valley space leads to three different interaction
parameters I', =4[, —I,+8T;, [, =—T), and F =41
—I';,—4I';. This diagonalization is analogous to the
usual decomposition into singlet and triplet particle-hole
pairs for the single-valley case. (iv) Since the interaction
parameters only include short-distance and short-time
fluctuations, they are expected to be quite insensitive to
the presence of Hiyp. Consider, therefore, a hypothetical
system described by H but with Hinp,=0. This system
will be characterized by the Landau parameters 4§ and

FIG. 1. The interaction parameters I';, '3, and I'3. They are
represented by double lines to emphasize that they are effective
parameters. Valleys j and / are collinear while valleys / and &
are not.

A$. (Here A§ and 4§ are defined such that the spin sus-
ceptibility and the compressibility have their usual
Fermi-liquid form. ) The relationships l" =45 T = A48
and T, = 4§ are then satisfied.

We may now calculate particle-hole ladders.! They
can be divided into two classes:

(i) The particle and hole carry the same valley quan-
tum numbers [Fig. 2(a)l. These can be represented by
an appropriate linear combination of Lo, L;, and L3,
where

Li=(Dq?*+ | w, | +m;) ~.

Here D =uv¢t/3 is the bare diffusion constant (v is a
suitable average of the Fermi velocity over the Fermi
surface), mo=0, n;=2/1,+4/73, my=6/1,, and q and
w, are the small momentum and frequency carried by
the particle-hole pair. (I am using the Matsubara
finite-temperature formalism.)

(ii) The particle and hole carry different valley indices
[Fig. 2(b)]. As pointed out by Fukuyama,!3 only when
the particle and hole lie in collinear valleys does the
particle-hole ladder yield a diffusive form. This is be-
cause the mass anisotropy causes the Fermi surfaces of
noncollinear valleys to have different orientations. These
ladders are given by L3 where m3=1/1,+4/15.

By use of the techniques of Refs. 4-7 the renormaliza-
tions of the interaction parameters and the particle-hole
ladders from diffusive electron fluctuations may be cal-
culated. I assume that the temperature T is large
enough to satisfy + !> kT/a >t !,t; !, because only
then are the diffusive valley Auctuations important. 4
The renormalized particle-hole ladders are given by

L= (D'q’+z| w, | +m/),

where I have introduced the renormalization constants z
and ¢ and the renormalized diffusion constant D'. The
“masses” m; have the same form as before but with re-
normalized intervalley scattering times r; and t3. Fol-
lowing Castellani, Kotliar, and Lee,'® I introduce the
scaling variables I'y=I"¢% TI;=I¢2% T3=03¢2, and
t=A"%(4x>ND") (where A is an upper cutoff in
momentum space), and obtain the following renormal-
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FIG. 2. The two classes of particle-hole ladders: (a) Valleys
i and [ can cither be collinear or noncollinear. The ladder is
given by a linear combination of Lo, Ly, and L,. (b) Valleys i
and j are collinear and the ladder is given by L3.
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ization-group equations in (2 +¢) dimensions:

dry _ I3 dr, _ | 1 . Aari | dry;
dE t| I+ pl (e t{lz(l A§)+T+ " J, dE 0,
(1)
dz _ L s _ dr e oo 152+ |z+4Ta | 1 1—4§ 1—A§
dE t 3 (1—A§)+1—415 |, dE 2t+t [8 > T, In " +3z—1+A81n[ . ”
These equations are obtained after integrating fluctua- |
tions between A and AA where £= —InA2 The effect of 15 for the single-valley case. The transition is due to a
the long-range part of the Coulomb interactions has been critical /ine in the (I"y/z,t) plane. Of interest in this pa-
included in the above. The renormalizations of the inter- per is the temperature dependence of the relaxation rate
valley scattering times leads to the equations 1/7; near the critical line. This may be calculated by in-
tegrating Eqgs. (1) and (2) from an initial state close to
Ln(l—/—rl—)—=t+8tln z+T but on the metallic side of the critical line, to a final
dg¢ z ’ state determined by the temperature. Such a procedure
() yields that 1/7, increases rapidly with temperature be-
din(1/7,) 15 1 4T, +_1_ | 1— A8 fore saturating at a large finite value,
e 2" i /1T = (1/5)expl15Quo/e)[1 — (T7) d@+15]}
These are equations for the physical relaxation rates (see where 7 is the initial value of r. However, 1/7; cannot
Ref. 7 for a discussion of this point for a related prob- become larger than kT/h because then the scaling equa-
lem). tions break down and the valley fuctuations are
The scaling equations (1) display a metal-insulator suppressed. Far from the critical line on the metallic
transition very similar in nature to that discussed in Ref. side, I may use perturbation theory and obtain in three
| dimensions

1/7(T) =1/t ) [14+3/3 | 48 | (1 —1.83/T7)/(Ep7)2l.

I now turn to a discussion of the interaction between the electrons and the ultrasonic phonons. The coupling of elas-
tic strains to the electrons can be described by the following Hamiltonian as written down by Herring !5
1 _ . .
Heph=—= Y Y fdr(:d&,ﬂ+:.,,a,‘,afg)uaﬁ(r)cﬁacp,-ae’(k p)r
Vi,a,,B,cr k,p
where u,p is the strain tensor, al is the @ component of a unit vector directed towards the valley i, and E; and E, are
the deformation-potential constants. It is now straightforward to calculate the ultrasonic phonon self-energy IT due to
the electron-phonon coupling. Consider, for example, the self-energy of a longitudinal wave along the [100] direction

D'q?+6/7,(T)
D'q*+6/7(T) —iw(1 — A§)’

where p is the mass density of the silicon lattice. The contribution above comes from the valley fluctuations associated
with the T’ interaction. There is also an additional contribution from the number density fluctuation mode but the
long-range Coulomb force suppresses it by the very small factor q*/K2 (K is the inverse screening length.) Using Eq.
(3), we find that the change in the velocity, c, of the longitudinal phonon along [100] is Ac = —452N,(1 — A8)/ (3pc).
This quantity is temperature independent and does not display any unusual behavior. The attenuation of the same pho-
non is given by the imaginary part of I1,

8=2 w?l7(T)/6]

=2

2
=4q
pw?

n(q,w)=§ Ny (1 —A48) 3)

= u — 4a)2 -
) = s N A e e (el

where the Dq? term has been omitted because it is very
small under most experimental conditions. We note that normal modes whose velocity depends upon the elastic
the attenuation displays the temperature dependence of constant (c;; —c12)/2 are affected by the coupling to the
15(T) which has been calculated above. Measurement electrons.’® The modes associated with the bulk
of the attenuation should therefore yield useful informa- modulus (¢ +2¢12)/3 and ¢4 are not affected. In ger-
tion about the effects of diffusive valley fluctuations. manium, on the other hand, the different orientation of

By calculating the phonon self-energy for other polar- the valleys causes only the modes associated with caq to
izations and directions it is easy to show that only the be affected.
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I conclude this paper with a summary and a discussion
of the experimental conditions. Ultrasound is attenuated
in doped many-valley semiconductors by processes in-
volving the transfer of electrons between the
conduction-band valleys. The attenuation is proportional
to a valley relaxation time. The interaction of diffusive
valley fluctuations leads to a temperature dependence of
the valley relaxation time and consequently also of the
ultrasonic attenuation under the following conditions:
(i) The electron inelastic scattering time is long enough
to satisfy 7 K kT/h, and (ii) the temperature (k7/#)
is larger than the valley relaxation rates (¢ ',7; !). For
the approximation of electrons moving in independent
valleys to be valid, it is necessary that the Fermi energy
be much greater than the “valley-orbit” splitting!” of
isolated donor atoms. This constrains the doping density
to be considerably above the metal-insulator transition
density. The independent valiey picture gives a good
description of the temperature dependence of the con-
ductivity at these densities.!® Existing measurements'®
of the ultrasonic attenuation in germanium at these den-
sities have not gone to the low temperatures necessary to
observe the effects discussed.
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