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Static hole in a critical antiferromagnet:

field-theoretic renormalization group
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Abstract

We consider the quantum field theory of a single, immobile, spin S hole coupled to a two-

dimensional antiferromagnet at a bulk quantum critical point between phases with and without

magnetic long-range order. We present an alternative derivation of its two-loop beta function; the

results agree completely with earlier work (M. Vojta et al, Phys. Rev. B 61, 15152 (2000)), and

also determine a new anomalous dimension of the hole creation operator.
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Recent papers [1, 2] have introduced the following model Hamiltonian for a single non-

magnetic (Zn or Li) impurity in a two-dimensional d-wave superconductor or spin-gap insu-

lator (see [3] for a review and experimental motivation):

H = Hφ − γ0Ŝαφα(x = 0)

Hφ =
∫

ddx

[
π2
α + c2(∇φα)2 + sφ2

α

2
+

g0

4!
(φ2

α)
2

]

. (1)

We have written the Hamiltonian in d spatial dimensions, and Ŝα (α = 1, 2, 3) are spin S

operators of a magnetic moment that is postulated to be present near the impurity (the case

of physical interest has S = 1/2); these operators obey the SU(2) commutation relations

[Ŝα, Ŝβ] = iϵαβγŜγ (2)

and ŜαŜα = S(S +1). The field φα(x, t) represents the local orientation of the antiferromag-

netic order parameter at spatial position x and time t; its canonically conjugate momentum

is πα(x, t), and hence

[φα(x, t), πβ(x
′, t)] = iδαβδ

d(x − x′) (3)

This theory has a bulk quantum critical point at s = sc between a phase with magnetic

order (s < sc, ⟨φα⟩ ≠ 0), and a symmetric phase with a spin gap (s > sc, ⟨φα⟩ = 0).

We are interested in the spin correlations of H for s close to sc, and in the vicinity of

the impurity at x = 0. As discussed in [1, 2], universal aspects of these correlations are

associated with a renormalized continuum theory of H defined in an expansion in ϵ = 3− d.

This renormalization involves the familiar bulk renormalizations which are insensitive to the

impurity degree of freedom

φα =
√

ZφRα ; g0 =
µϵZ4

Z2Sd+1
g (4)

and new ‘boundary’ renormalizations associated with the impurity spin

Ŝα =
√

Z ′ŜRα ; γ0 =
µϵ/2Zγ√
ZZ ′S̃d+1

γ. (5)
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Here µ is a renormalization momentum scale (we set the velocity c = 1), Sd =

2/[Γ(d/2)(4π)d/2], and S̃d = Γ(d/2 − 1)/[4πd/2]. The renormalization constants Z, Z4 were

computed long ago [4]; their values in the minimal subtraction scheme to order g2 are

Z = 1 − 5g2

144ϵ
; Z4 = 1 +

11g

6ϵ
+
(

121

36ϵ2
− 37

36ϵ

)
g2. (6)

The boundary renormalizations were computed to the same order in [1, 2]:

Z ′ = 1 − 2γ2

ϵ
+
γ4

ϵ
; Zγ = 1 +

π2[S(S + 1) − 1/3]

6ϵ
γ2g (7)

This paper will rederive the above results by a new method which also yields a renormal-

ization constant for the hole creation operator. Furthermore, the present approach, unlike

that of [2], has the advantage of being formulated entirely in terms of perturbation expan-

sion which has a Wick theorem, and can thus be presented in conventional time-ordered

Feynman diagrams.

We will identify the spin Ŝα with that of a hole, with creation operator ψ†
a, that has been

injected into the antiferromagnet. So

Ŝα = ψ†
aL

α
abψb (8)

where a, b take the 2S + 1 values −S, . . . S, and the Lα are the (2S + 1)× (2S + 1) angular

momentum matrices associated with the spin S representation. The hole operators obey the

anticommutation relation

ψ†
aψb + ψbψ

†
a = δab (9)

So the remainder of this paper will consider the Hamiltonian

Hψ = λψ†
aψa + Hφ − γ0ψ

†
aL

α
abψbφα(x = 0) (10)

We will only look at the Hilbert space with a single hole, and λ, the energy of this hole is

an arbitrary positive number.

We now consider the renormalization of Hψ. The standard procedure suggests the pa-

rameterization

ψa =
√

ZhψRa ; γ0 =
µϵ/2Z̃γ

Zh

√
ZS̃d+1

γ. (11)
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It is important to note that despite the relation (8), the renormalization of the spin Ŝα is

not the square of the renormalization of ψa, Z ′ ̸= Z2
h; bringing the two Fermi operators to

the same spacetime point introduces a composite operator renormalization which invalidates

such a relation. Instead, the relationship between the two renormalization schemes emerges

by comparing the renormalization of γ0 in (5) and (11); consistency of these relations de-

mands

Z2
hZ2

γ = Z̃2
γZ

′ (12)

We will now compute Zh and Z̃γ by completely standard field theoretic methods, and verify

that their values and (7) satisfy (12).

The Feynman diagrams for the renormalization of two-point ψ Green’s function are shown

in Fig 1. As an explicit example, we display the computation of the simplest one-loop graph

in Fig 1a:

(1a) = γ2
0S(S + 1)

∫ ddk

(2π)d

∫ dω′

2π

1

(ω′2 + k2)

1

(−i(ω + ω′) + λ)

= γ2
0S(S + 1)

Sd

2

∫ ∞

0

kd−2dk

(−iω + k + λ)

= Aµ(−iω + λ)γ2S(S + 1)
[
−1

ϵ
+ ℵ/2 + O(ϵ)

]
, (13)

where Aµ ≡ µϵ(−iω + λ)−ϵZ̃2
γ/(Z

2
hZ). In the last step, the integral was evaluated in dimen-

sional regularization. The constant ℵ = −0.8455686701969 . . . is a consequence of phase

space factors and will eventually cancel out of our final results. The remaining diagrams can

be evaluated in a very similar manner: the frequency integrals are performed first, followed

by integrals over the radial momenta. The results for the two-loop diagrams in Fig 1 are

(1b) = A2
µ(−iω + λ)γ4S2(S + 1)2

[
1

2ϵ2
+

1 − ℵ
2ϵ

+ O(ϵ0)

]

(1c) = A2
µ(−iω + λ)γ4S(S + 1)(S2 + S − 1)

[

− 1

ϵ2
+

−1 + 2ℵ
2ϵ

+ O(ϵ0)

]

(14)

Turning to the renormalization of the vertex γ0, the Feynman diagrams are shown in

Fig 2. Evaluating these as above we obtain

(2a) = γ0Aµγ
2(S2 + S − 1)

[
1

ϵ
− 1 − ℵ/2 + O(ϵ)

]
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(2b) = γ0A
2
µγ

4(S2 + S − 1)2

[
1

2ϵ2
− 3 + ℵ

2ϵ
+ O(ϵ0)

]

(2c) = γ0A
2
µγ

4(S − 1)(S + 2)(S2 + S − 1)
[

1

2ϵ
+ O(ϵ0)

]

(2d) = γ0A
2
µγ

4(S2 + S − 1)2

[
1

ϵ2
− 2 + ℵ

2ϵ
+ O(ϵ0)

]

(2e) = γ0A
2
µγ

4S(S + 1)(S2 + S − 1)

[

− 1

ϵ2
+

2 + ℵ
2ϵ

+ O(ϵ0)

]

(2f) = −γ0
A2

µZ
2
hZ4

Z̃2
γZ

γ2g(S2 + S − 1/3)

[
π2

6ϵ
+ O(ϵ0)

]

(15)

The two-loop expression for the boundary renormalization constants follows immediately

from the results (13,14,15). Demanding cancellation of poles in ϵ in the expressions for the

renormalized vertex and ψ Green’s function at external frequency −iω + λ = µ we obtain

Zh = 1 − γ2 S(S + 1)

ϵ
+ γ4

[
(S − 1)S(S + 1)(S + 2)

2ϵ2
+

S(S + 1)

2ϵ

]

Z̃γ = 1 − γ2 (S2 + S − 1)

ϵ
+ γ4

[
(S2 + S − 3)(S2 + S − 1)

2ϵ2
+

(S2 + S − 1)

2ϵ

]

+ gγ2π
2(S2 + S − 1/3)

6ϵ
(16)

It can be checked that (16) and (7) satisfy (12).

The validity of (12) implies that the beta function for the coupling γ is the same as that

in [2]. Using either (5,6,7) or (11,6,16) we obtain

β(γ) = −ϵγ
2

+ γ3 − γ5 +
5g2γ

144
+

gγ3π2

3
(S2 + S − 1/3). (17)

The anomalous dimension of the ψa field at the quantum critical point also follows from (16)

ηh = β(γ)
d lnZh

dγ
= S(S + 1)(γ2 − γ4), (18)

while, as in [2], the anomalous dimension of the spin field, Ŝα, follows from (5,7):

η′ = 2(γ2 − γ4). (19)

For completeness we also note the beta function for the coupling g which follows from (6)

β(g) = −ϵg +
11g2

6
− 23g3

12
. (20)
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The stable fixed point of the beta functions (17,20) has g ̸= 0 and γ ̸= 0 [2]. Evaluating

(18) at the fixed point of the beta functions [2], we obtain

ηh = S(S + 1)

[
ϵ

2
−
(

5

484
+
π2(S2 + S − 1/3)

11

)

ϵ2 + O(ϵ3)

]

(21)

(η′ = 2ηh/[S(S + 1)] at this order). This anomalous dimension implies that the Green’s

function G = ⟨ψaψ†
a⟩ obeys

G(ω) ∼ (λ− ω)−1+ηh . (22)

The equations (16,18,21) are the main new results of this paper. Unfortunately, the order

ϵ2 corrections in (21) are rather large: this suggests that truncating the asymptotic series

for ηh at order ϵ probably gives the most reasonable estimate for its numerical value.

There is also an unstable fixed point at which the bulk interactions vanish (g = 0). As

shown in [2], η′ = ϵ exactly at this fixed point, and here we find that ηh = S(S+1)ϵ/2+O(ϵ3).

There appears to be no general reason for the higher order terms in ηh to vanish. The g = 0

fixed point can also be studied in a large N theory [2], and the N = ∞ results are η′ = 1

and ηh = 1/2.

The physical motivations and implications of the above results are discussed in a separate

paper [5]: there we argue that the anomalous dimension ηh characterizes photoemission

spectra of mobile holes in two-dimensional antiferromagnets and superconductors in the

vicinity of points in the Brillouin zone where their dispersion spectra are quadratic (i.e.

near energy minima, maxima, and van Hove singularities). The intensively studied (π, 0),

(0, π) points (the anti-nodal points) in the high temperature superconductors are prominent

examples.
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(c)

FIG. 1: Diagrams contributing to the ψ fermion self energy. The full line is the fermion

propagator, while the dashed line is the φα propagator.
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(a) (b)

(c) (d)

(e) (f)

FIG. 2: Diagrams contributing to the renormalization of the coupling γ. The full circle is

the interaction g


