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The interaction of a damped cavity with a two-level atom is examined. The treatment is fully
quantum mechanical. Expressions are obtained for the effect of damping and fluctuations in the
walls of the cavity on the atom-cavity interaction, at zero temperature and in the limit of small
damping. The physical situation can be realized with Rydberg atoms and a cavity.

I. INTRODUCTION

The spontaneous radiation of atoms in cavities is at-
tracting increasing attention because of the emergence of
new techniques, employing Rydberg atoms, which permit
observation of spontaneous processes at microwave or
millimeter wavelengths.!~* The fact that the spontaneous
emission rate of an atom in a resonant cavity is approxi-
mately Q times greater than the free-space value was
pointed out by Purcell.” The quantum-mechanical equa-
tion of motion of a two-level atom coupled to a single
resonant mode of a cavity in the absence of dissipation
was solved exactly by Jaynes and Cummings.® They
found that this interaction led a to simple oscillation of
energy between the atom and the cavity mode. Remark-
ably, this result is identical to the well-known semiclassi-
cal solution of a two-level system interacting with the
electromagnetic field. More recently Kleppner! has point-
ed out the possibility of inhibiting spontaneous emission
by placing an atom in a cavity that is small compared to
the wavelength of the emission. The novel properties of
Rydberg atoms—Ilong transition wavelengths, long-lived
high-/ states, and large dipole moments—make the obser-
vation of such phenomena experimentally feasible. Exper-
imental observation of inhibited blackbody absorption has
been reported by Vaidyanathan et al.> Raimond et al.?
have reported the observation of blackbody-induced radia-
tion by an ensemble of atoms in a tuned resonator. The
enhancement of the single-atom spontaneous emission in a
cavity has been observed by Goy et al.*

In light of these advances it is of interest to examine
theoretically the effect of the losses in the walls of the
cavity on the interaction between the atom and the cavity.
Damping in the interaction of atoms with the electromag-
netic field is usually treated in a semiclassical manner by
the introduction of a phenomenological damping con-
stant. In the experimental situation of the spontaneous
emission of an atom into a single mode of a cavity, how-
ever, it is no longer a valid approximation to treat the ef-
fect of the damping in a semiclassical way. The thermal
fluctuations that must necessarily accompany the damp-
ing’ introduce a fluctuation in the photon occupation
number of the cavity and eventually bring the atom into
thermal equilibrium with the radiation field. Since the
system of a single atom in a cavity at zero temperature
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contains one photon, it is important to include the effect
of the fluctuations quantum mechanically. In this paper
we examine the quantum theory of the damped cavity and
atom in the limit of small damping. The atom is modeled
as a two-state quantum system. This can be an excellent
approximation for the two highest angular momentum
Rydberg states, for only a single electric dipole transition
is possible and coupling to all other levels can be ignored.
The cavity is modeled as a simple harmonic oscillator.
We ignore the effects of other cavity modes which is valid
for a high-Q cavity in one of its fundamental modes. The
damping of the walls is treated by the reservoir approach
of Lax.® This problem has also recently been solved by
Haroche® using density operator methods in the dressed
atom model.

The plan of the paper is as follows. In Sec. II the
operators necessary to study the dynamics of the atom-
cavity system are introduced. The coupling of the cavity
to a thermal reservoir is carried out following the ap-
proach of Lax. In Sec. III the equations of motion are de-
rived. These equations, which are expressed in terms of
c-number variables, do not involve the dynamics of the
reservoir explicitly. It is shown that these equations pro-
duce the correct limiting behavior of thermal equilibrium.
In Secs. IV and V two exact solutions are obtained. In
Sec. IV the exact solution is presented for arbitrary tem-
perature but with zero damping. This solution corre-
sponds to the solution of Jaynes and Cummings. Section
V presents the solution for arbitrary damping at zero tem-
perature. Two kinds of behavior are revealed. For small
damping there are damped Rabi oscillations; for large
damping the atom loses energy exponentially. In the
latter case the decay rate is Q times faster than in free-
space value. In Sec. VI the solutions found in Secs. IV
and V are applied to obtain an approximate solution for
small damping at finite temperatures. For small tempera-
tures the result is damped Rabi oscillations. Thermal
fluctuations wash out the oscillations at higher tempera-
tures.

II. DEFINITION OF THE OPERATORS

We start by defining operators suitable for describing
the radiation field in a cavity, a two-level atom, and a
thermal reservoir. We describe the single mode of the
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cavity at frequency w, by the creation and destruction
operators a' and a. These obey the commutation relation

[a,a’]=1. (2.1)
The Hamiltonian of the cavity field H, is
H,=%wa'a . 2.2)

The atom is assumed to behave as a two-level system.
Such a system can be described by the Dicke!® operators
R, R_, and R; which satisfy the commutation rela-

tions

[R3, Ry ]=R,, 2.3)
[R_, R3]=R_, (2.4)
[R,, R_L]1=2R;, 2.5)
R}=4, RZ=R%2=0. (2.6)

The atomic Hamiltonian H, is
H,=%wR; . 2.7

The operator R, is therefore a measure of the energy of
the cavity and its expectation value is directly measurable.
The population of the upper atomic level is given by
+(1+(R3)). In the rotating wave approximation, the di-
pole coupling between the atom and the cavity is®

Hi=i2k—(R+a—aTR_). (2.8)
The coupling parameter A is
172
2d | 27w
A= . 24| 2070 2.
7 v (2.9)

d is the dipole matrix element between the two levels of
the system. V is the effective volume of the cavity and is
given by

U %(F)
[arnav

U(r) is the electric field of the cavity mode and the atom
is at the position 7. The atom is assumed to be polarized
in a direction parallel to u(7). The atom-cavity Hamil-
tonian H, is therefore

H,=H,+H,+H, .

In addition the cavity is coupled to a thermal reservoir
through the walls of the cavity. We follow the approach
of Lax® in which all explicit reference to the reservoir is
eliminated by introducing frequency shifts and dissipation
coefficients in the Heisenberg equations of motion for the
cavity operators. The exact mechanism of the coupling of
the field to the atoms in the walls of the cavity is unim-
portant. The reservoir degrees of freedom can be aver-
aged over provided that suitable noise sources with correct
moments are added. Lax has shown that the interaction
between the cavity mode and the reservoir can be
represented by

(2.10)

1
v

(2.11)

d =—(io+yla+f(1), (2.12)

aa
dt

'
di:(m—y)auf*m . 2.13)

dt
y is the dissipation coefficient and any frequency shifts
have been absorbed into the definition of w. f(¢) and
f T(1) are Langevin noise sources. Their values averaged
over the thermal reservoir obey

(F))g=(fl1))r=0,
(Flofs)) g =2vad(t —s) .

( )r represents an expectation value over the reservoir de-
grees of freedom. 7 is the photon occupation number of
the cavity in thermal equilibrium,

_ 1
" expfiw/kT) —1 2.16)

Using Egs. (2.12)—(2.15), the equations of motion for ar-
bitrary products of the creation and destruction operators
can be shown to obey

(2.14)
(2.15)

:id?((aT)’as)R =[io(r—s)—y(r+s)]{(a"Va*)x

+2yrsi{(af)r—Dgs =Dy, . (2.17)
In the following discussion it will be found that the entire
effect of the reservoir is described by this result.

III. EQUATIONS OF MOTION

The quantities of interest in the system are (a'a) and
(R3), the expectation values of the energy in the field and
the atom. For a two-level atom (R3) is related simply to
the population of the two states, a convenient experimen-
tal observable. The rate of change of any system operator
can be written as the sum of a contribution due to the to-
tal Hamiltonian H, and a contribution arising from the
interaction with the reservoir. Thus

d(e) |d(e) d{(e)
d | dt dt

(3.1

t R

The first term on the right obeys the Heisenberg equations
of motion

dey | _1
o J,—ih [e, H,]. (3.2)

(d{©)/dt)g vanishes if O is a function only of the atom-
ic operators because the atom is not explicitly coupled to
the reservoir. (d{6)/dt)g can be obtained from Eq. (2.17)
for arbitrary products of the creation and destruction
operators. Using Egs. (3.1), (3.2), and (2.17), the equations
of motion for {a'a) and R; are

T
E%L?ma*a)—%wm_+R+a>+2w7, (3.3)
dR; A +

% =2 a’R_+R,a). 3.4

These equations involve the Hermitian operator

(a'R_+ R a) which obeys
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%(a*R_ +R,a)= —A(R3>_2x<a’fR3a)—%

—y(a'R_+R a) . (3.5)

This equation introduces another operator (a'Rja),
whose equation of motion involves higher-order products
of operators such as (a'a*R;aa), (a'aaa), and
((@a'a’R_+Raa)). To deal with such operators it is
convenient to define the c-number variables

4,=((a"Va?), p>0, 4o=1; (3.6)
B,=((a"VR3a?), p>0, Bo=(Rs); (3.7)
C,=((a"Pa?P~'R_+R (a"P~1a?), p>0. (3.9)

The observables (R;) and {(a'a) are equal to B, and 4,
respectively. Hence solving the dynamical equations for
A,, B,, and C, is equivalent to finding the dynamics of
the system. From Egs. (2.15), (3.1), and (3.2) the follow-
ing relations are eventually obtained:

iz—”:-—;\ipcp——ZypAp—FZyﬁpzAp_l, p>0; (3.9a)
%=%Cp+1+%—p0p—2w3p +2yAp*B, 1, p>0;
(3.9b)
%”—: —xpB,,_l—szp—%‘—pA,,_l—y(zp—nc,,
+2yap(p —1)C,_y, p>0. (3.9¢)

It is necessary to determine the initial and final values of
the variables. If the field is initially in thermal equilibri-
um and the atom is in its excited state, then at ¢ =0,

A,(t =0)=pi(7)Y,
B,(t=0)=3pl7 )V,
C,(t=0)=0.

(3.10)

As t— o we expect both the atom and the field to ap-
proach thermal equilibrium. Assuming d4,/dt=dB,/
dt=dC,/dt=0 as t— o, we can solve Egs. (3.9)—(3.11)
to obtain the steady-state solutions

A, (t—o0)=piAP,

1
B,(t— )= —3pN7A)P , 3.11)
Pt eI E TR o
Cp(t—0)=0.
In particular we see from the expression for B, that
_ 1 | explfiw/kT)—1
(R3(t——>oo)>— 2 |exp(#io/kT)+1 . (3.12)

This correctly describes the two-level atom in thermal
equilibrium with the field.
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IV. SOLUTION FOR THE UNDAMPED SYSTEM

To help motivate the general solution of Egs. (3.9) we
consider the case ¥ =0. Equations (3.9) become

dA A
-»r __ 4

g — PG @1
dB, )\ A
& =2t G “2
dc, A
7: —hpo__l—ZkBp —'2_’pAp_1 . (4.3)

We can find the exact solution to these equations if
initially there are exactly »n photons in the field and the
atom is in its excited state. Then at ¢ =0,

n!
» P<
Ap(t=0)= 1 (n —p)! p=n (4.4)
0, p>n
1_nl <n
B(t=0=12 (n—pt’ ¥= 4.5)
0, p>n
Cp(t=0)=0. (4.6)

These equations are difficult to solve directly, but by us-
ing the results of Jaynes and Cummings® it can be shown
that for p <n + 1 the solution is

Ap (n—p+1)![(n sP+1)—3pcos(AV'n +1¢)] ,
(4.7a)
(n) _ n!

? m[%p+(”_%P+l)cos(M/n_+—lt)] ,

(4.7b)
|
CM= - — v/ T sin(AVn +11) 4.70)
(n—p+1)
while for p>n +1,
A,=B,=C,=0.

Another useful situation to consider is the case where
the field is initially in thermal equilibrium. The probabili-
ty that the field has » photons is

P,=r"(1—r), (4.8)

where r =exp(—#iw/kT). The system is initally described
by a weighted sum of the constants defined in (4.4)—(4.6)
for n photons. The dynamical equations are linear so that
the solution to Egs. (4.1)—(4.3) is a weighted sum of the
solutions in Eq. (4.7). The result is
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Ay=(1—r) 3, rial”

n=0
_pirP N 1+4r)
2(1—rpP
—_ ® ]
_pl=r) m—2n cos(AVn +1t),
2 nep—1 (n—p+1)
(4.9a)
B,=(1—r) 3 r"B{"
n=0
___pwrmt
T 4(1—rp!
1—r & . n! 1
——(n—5p+1)
2 ng—lr (n—p+11 2P+
Xcos(AV'n +1t) (4.9b)
C,=(1—r) 3 rict™
n=0
=—(1—r) i r”msin(kVn+lt)
np—1 (n—p+1)
forp>0. (4.9¢)
In addition
(4.94)

Bo()= 1;’ S rrcos(AVa F 1) .
n=0

It can be verified that these are indeed solutions to Egs.
(4.1)—(4.3) with the initial conditions (3.10). Physically
|

Bo(t)=(R(1)) = — L 1 Sxpl=v1) l"‘”’

)\’2
7/2_‘ _2__ +y(1/2_)\'2)1/2

these solutions reveal the oscillation of energy between the
atom and the cavity in a superposition of Rabi frequen-
cies.

V. SOLUTION AT ZERO TEMPERATURE

Exact solutions to Egs. (3.9) can be obtained at zero
temperature. The results should also apply in the limit
7 <<1. Using the initial conditions in Eq. (3.10) for
i =0, the following solutions are easily found:

A,=B,=C,=0 forp>2, (5.1)

for all ¢t. The vanishing of these variables has a simple in-
terpretation: A cavity at zero temperature cannot emit
photons. Consequently there is never more than one pho-
ton in the atom-cavity system. For p <2, Egs. (3.9)
reduce to

dA, A

—dt—=——?cl——2’)/A1 s (5.1a)
d;;" =%c1 , (5.1b)
dB, )

—d;—=:C1 2yB,, (5.1¢)
0=—2AB;—AA,, (5.1d)
dC, A
—gt—=—AB0—27kB1—?—yC1 . (5.1e)

These five equations are overdetermined because there are
only four variables: A4, By, B, and C;. The situation is
straightforward:

eXp[(‘]/Z—A.Z)lnt]

2 2Ay*-A?Y)
12
+ ,}/2_ 5 _7(72_}‘2)1/2 exp[_(yZ_LZ)l/Zt] , (5.2a)
AMexp(—yt)  Aexp(—yt)
A(D=(ata(t)) = — hl(v2—2A2)72] . .
1((=(a'a(r)) 2y ) 20722 [(y? =A%) (5.2b)

Two limiting cases of this solution are of interest.

A. Underdamped solution, ¥y <A

In this case the arguments of the exponentials are
imaginary and the solutions are oscillatory. As a result
there is an exchange of energy between the atom and cavi-
ty. If y <<A, the solution takes the simple and suggestive
form

<R3(t))=—%+gmi_—m[l+cos(lt)] 53

These are damped Rabi oscillations at the frequency A.

[

B. Overdamped solution, ¥ > A

In this case the energy of the atom decays as the sum of
three exponentials. For y >>A, a single exponential dom-
inates and the solution is

(5.4)

2
(R;(2))=exp Et

Using Eq. (2.9), the damping constant I" becomes

_ 4e’0’d® o 6mc3
=35t 2y Vel (5.5)
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FIG. 1. Decay of the energy of an atom in a tuned cavity at
zero temperature for different values of y. Energy is measured
in units of #iw. Time and y are measured in units of 1/A and A,
respectively.

The first factor is the decay rate of the atom in free space;
the second is the quality factor Q of the cavity. The third
factor depends upon the geometry of the cavity and is of
order 1. (For the lowest mode of a simple cubic cavity it
is 6/m%) Thus, up to a geometric factor of order unity,
the decay of the atom in an overdamped cavity is Q times
faster than it is in free space. This is the result Purcell’
obtained from phenomenological arguments.

Equation (5.2a) is plotted in Fig. 1 for different values
of y. The transition from the underdamped case to the
overdamped case can clearly be seen. To a factor of order
unity this transition takes place when the Q of the cavity
is

Q(w/24)% . (5.6)

A is the decay rate of the atom in free space.

VI. DAMPED SYSTEM AT FINITE TEMPERATURE

We have found exact solutions to Egs. (3.9) in two re-
gimes: for zero damping at arbitrary temperature and for
arbitrary damping at zero temperature. In this section we
will match these two solutions to produce an approximate
solution for small damping at finite temperatures. For
times which are shorter than 1/y the system cannot feel
the effect of the damping. For such times the solution
should be identical to Egs. (4.9) up to a change in the am-
plitude and a shift in the baseline. We anticipate that the
amplitude of the oscillations and the baseline will vary
only over times which are larger than 1/y From Egs.
(3.11) and (5.3) we also know that the amplitude of the os-
cillations will eventually go to zero and the system will
approach thermal equilibrium. With these facts in mind
we make the following ansatz:

p'r? plr? !
(1—rP  2(1—rp~!

_ pl—r) & n!
alt) 5 n=§~1r [E——

A, (D)= a,(1)

Xcos(AVn +1t) . (6.1)
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B, (t)=— P — p b.(2
(1) 20—rP~W14r)  4(1—rP~X1+7r) o)
(1—r) & n! 1
a=r LA |
+alt)=— n=}p}_1r (n_p+1)!(n 7p+1)
Xcos(AVn +1t), 6.2)
= ¢ L ntVntl
Cp(t)—-cp(t)—a(t)(l—r)n=§_1r 5 —p 10
XsinAVa +1t),  (6.3)
11—~ 1—r
Bo=—5 |37 | +5i10m 20®
+a ST 3 rrcosaa T ) 6.4)
n=0

We have introduced the new variables a,(t), b,(2), c,(2),
and a(t) which are assumed to be constant over times that
are short compared to 1/y. The forms of the equations
have been chosen so that these variables satisfy the follow-
ing conditions:

a,(0)=b,(0)=a(0)=1,
(6.5)
cp(0)=cp(0)=0a,(0)=bp(0)=0ale0)=0.

Since a(t) multiplies a rapidly varying term, its
behavior is difficult to determine. We simply use the
solution obtained at zero temperature in Eq. (5.3) as a
lowest-order approximation for a(z). Therefore,

al(t)=exp(—yt) . (6.6)

This solution holds for small 7. A weak temperature
dependence is expected at higher temperatures.

In solving for a,, b,, and c,, the following dimension-

less parameters are useful:

r=yt, x= 1)’: «l1. 6.7

If we now substitute Egs. (6.1)—(6.4) into Egs. (3.9) and

perform a time average over the rapidly varying part, we
obtain the following:

da1
x |—+42a; |4+¢;=0, (6.8)
dr
dby  14r
X = l—rcl , (6.9)
de, 1 |1—r
X dr Cy ]— 2 | 1+r (bl_b()) s (6.10)
db, 4r 1—r
X dr +2b1+ l_rbo = — 1+r(2C2+Cl), (6.11)
day (A—ryp-!
*Tar T AR = i, iy
p>1; (6.12)
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db,
x E‘+2pbp—2pbp_l
_Q=rP7214r) _
= Py (2¢, +1+pcy) , p>1;  (6.13)
dc 2r
Ja
X “dT—!-(Zp—I)CP—‘r:p(p—l)Cp_l
plirP 2 (
= 1—7)b, _{+2rb
4(1—r)"_2(1+r)[ P10
—(14r)a,_1], p>1.
(6.14)

To solve the equations for a,(?), b,(¢), and c,(?) subject to
the conditions (6.5), we expand the solution in powers of
the parameters x << 1 as follows:

a,= +xa,ﬁ”+x a(2)+ ,
bp=b‘°’+xb“)+x2b(2’ . (6.15)
¢ :clﬁo)—#xc +Xx c +

We w111 only determine the leadmg terms a (0)(7') b(O)(T),

and cp (7). We assume that x is small enough to make
the following approximation for the boundary conditions:

a,”(0)=b"(0)=1, (6.16)
¢,(0)=a,"(0)=b, (6.17)

Inserting the expansions (6.15) into Egs. (6.8)—(6.14) and
equating terms with the same order of x yields

O 0)=c (O)(oo)=0.

=0 (6.18)
for all p. Inserting this into Egs. (6.10)—(6.14) we obtain

b =by" , (6.19)

(1= +2rb}” —(1+71a\”  =0 . (6.20)

These equations provide one set of constraints between the
variables apm(f) and b(O)(T) Another set is obtained by
eliminating the c,’s between Eqgs. (6.12) and (6.13). The

result is an equatlon involving the variables alﬁ°+)1, a’fo),
a;_)l, b,fo , and b _1 These two sets of equations are re-
cursive: given the values of a{”(r) and b (r) the

remaining variables can be solved for successively. For
example, eliminating ¢, between Egs. (6.8) and (6.9), gives

daﬁm I—r dbg”
2 (0) =0 .
dr tear 1+r dr 6.21)
If we now write the trial solution
a'\®(r)=exp(—T'7), (6.22)

which is consistent with the conditions (6.16) and (6.17),

we obtain

('=2)(1+r)
(1—7)

This can satisfy Egs. (6.16) and (6.17) only if

bV (r)=1+ [1—exp(—T71)]. (6.23)
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F'=1+r, (6.24)
in which case
a V(1) =bP(r)=exp[ —(147)7] . (6.25)

The remaining alﬁ Y() and b,ﬁm(‘r) can now be constructed
systematically from Eq. (6.20) and the equations obtained
from eliminating the c,’s from Egs. (6.12) and (6.13).
These solutions are correct to zeroth order in x. It might
seem that the ansatz in Eq. (6.22) was arbitrary, but in
general it will not be possible to satisfy all the boundary
conditions with an arbitrary ansatz. The fact that the an-
satz of Eq. (6.22) satisfies the boundary conditions to
zeroth to zeroth order is a check on its validity.

The final result for the energy transfer between the
atom and the field is

(ala(t)) = Fexpl —y(1+r)e]+

S pn —vyt)cos(AV'n +1t) ,

(6.26)

—r
2(1+)

(R;(1)) = exp[ y(14r)t]—

2(1
+ __—2—r 2 rexp(—yt)cos(AV'n +1t) .
n=0

(6.27)

This result is valid over the regime ¥ <<A. The expres-
sion for (R(2)) is plotted in Fig. 2 for different tempera-
tures. At low temperatures there is an oscillation of ener-
gy between the atom and the cavity. However, as the tem-
perature rises, an increasing number of cavity states are
excited—the oscillations eventually interfere and cancel
out. The energy then decays from the atom to the cavity
and the system attains thermal equilibrium.

VII. DISCUSSION

We have solved the problem of a two-level atom in-
teracting with a single mode of a damped cavity in two

TIME

FIG. 2. Decay of the energy of an atom in a tuned cavity at
different temperatures. y is taken to be 0.1. Energy is mea-
sured in units of #iw. Time and y are measured in units of 1/A
and A, respectively.
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limits. (a) Low temperatures: Two kinds of phenomena
are observed. At high Q values there is an oscillation of
energy between the atom and the cavity. At lower Q
values the energy of the atom simply decays into the cavi-
ty. The transition occurs at a Q of the order of (w/4 )"~
(b) High Q’s: At low temperatures there is an oscillation
of energy between the atom and the cavity. As the tem-
perature is raised, the fluctuations in the photon occupa-
tion number of the cavity increase and the oscillations are
eventually washed out.

This simple model of an interacting quantum system is
an excellent approximation for the interaction of a Ryd-
berg atom with a tuned cavity. Experiments to observe
the oscillation of energy between the atom and the cavity

have already been suggested and are currently in pro-
gress.>*

ACKNOWLEDGMENTS

This problem was suggested to me by D. Kleppner. I
acknowledge numerous enlightening discussions with him
throughout the course of the work. I also acknowledge a
useful discussion with S. Haroche. This work is based in
part upon a thesis submitted at Massachusetts Institute of
Technology (M.L.T.) in partial fulfillment of the require-
ments for the degree of Bachelor of Science. It was sup-
ported in part by the Undergraduate Research Opportuni-
ties Program, M.I.T., and the National Science Founda-
tion.

*Present address: Department of Physics, Harvard University,
Cambridge, MA 02138.

ID. Kleppner, Phys. Rev. Lett. 47, 233 (1981).

2A. G. Vaidyanathan, W. P. Spencer, and D. Kleppner, Phys.
Rev. Lett. 47, 1592 (1981).

3J. M. Raimond, P. Goy, M. Gross, C. Fabre, and S. Haroche,
Phys. Rev. Lett. 49, 117 (1982).

4P. Goy, J. M. Raimond, M. Gross, and S. Haroche, Phys. Rev.
Lett. 50, 1903 (1983) and references therein.

5E. M. Purcell, Phys. Rev. 69, 681 (1946).

SE. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 (1963).

7H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).

8M. Lax, Phys. Rev. 145, 110 (1965) and references therein.

9S. Haroche, Proceedings of the Les Houches Summer School,
New Trends in Atomic Physics, edited by A. S. Greenberg
(North-Holland, Amsterdam, 1982) and private communica-
tion.

10R. H. Dicke, Phys. Rev. 93, 99 (1954).



