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Abstract. We study the thermal and electric transport of a fluid of interacting Dirac fermions as they arise in single-layer
graphene. We include Coulomb interactions, a dilute density of charged impurities and the presence of a magnetic field to
describe both the static and the low frequency response as a function of temperature T and chemical potential µ . In the critical
regime µ ! T where both bands above and below the Dirac point contribute to transport we find pronounced deviations from
Fermi liquid behavior, universal, collision-dominated values for transport coefficients and a cyclotron resonance of collective
nature. In the collision-dominated high temperature regime the linear thermoelectric transport coefficients are shown to obey
the constraints of relativistic magnetohydrodynamics which we derive microscopically from Boltzmann theory. The latter also
allows us to describe the crossover to disorder-dominated Fermi liquid behavior at large doping and low temperatures, as well
as the crossover to the ballistic regime at high fields.
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INTRODUCTION

The quasiparticles in single layered graphene obey the
massless Dirac equation [1, 2, 3]. At finite temperature
and moderate doping, they form an interacting electron-
hole plasma of ultra-relativistic fermions whose trans-
port properties differ significantly from a conventional
Fermi liquid. Indeed, it has been argued that intrinsic
graphene at T = 0 realizes a system at a quantum critical
point which controls the transport properties in a window
of temperature and chemical potential given by T " µ
[4, 5]. This criticality is reflected in the inelastic scatter-
ing rate being proportional to α2T (we set kB = h̄ = 1
throughout), i. e. , solely depending upon temperature.
Here, α is the fine structure constant characterizing the
strength of Coulomb interactions, α = e2/κv, where κ
is the dielectric constant of the adjacent medium and v is
the Fermi velocity of the linearly dispersing quasiparti-
cles.

In this paper we show on the basis of a microscopic
Boltzmann equation approach that at low frequencies
and high enough temperatures graphene behaves like a
plasma of charged particles and antiparticles obeying
relativistic magnetohydrodynamics [6]. The temperature
has to be high enough such that the inelastic scattering
rate τ−1

ee is bigger than the driving a.c. frequency ω , and
the scattering rates due to impurities, τ−1

imp, or weak mag-
netic fields, τ−1

B = v2eB/cT . All the frequency depen-
dent thermo-electric conductivities turn out to be com-
pletely fixed by thermodynamic quantities, the covari-
ant equations of motion and a single transport coefficient
σQ(µ/T ) which assumes a universal, entirely collision-
dominated value in the critical regime µ/T # 1 of a

clean system [5, 7].
A logarithmic divergence in the collinear scattering

amplitude, occurring generally in two-dimensional sys-
tems, allows us to obtain the transport coefficients to
leading order in an expansion in the logarithm of the
relevant infra-red cutoff, which in graphene turns out
to be 1/ log(α). This approach also allows for an ele-
gant description of the crossover from the critical regime
µ < T to the Fermi liquid regime µ $ T , establishing
the connection with existing results [8, 9]. To leading
logarithmic order the collinear divergence results in an
effective equilibration among quasiparticles moving in
the same direction. This reduces the complexity of solv-
ing the Boltzmann integral equation for the distribution
function to the determination of at most three numbers
that characterize the angle-dependent effective equilibria
of collinearly moving particles.

Very similar transport characteristics as in the criti-
cal region of graphene is expected in other relativistic
systems as they often emerge close to quantum criti-
cal points with a dynamical exponent z = 1, such as
the superfluid-insulator transition [10, 11] in a Bose-
Hubbard model. Boltzmann transport theory has first
been applied to such critical systems by Damle and
Sachdev [12, 13], with the important difference that there
only short-range interactions between the linearly dis-
persing bosonic excitations were considered. Bhaseen et
al. [10] have recently extended this approach, discussing
interesting effects in the presence of a magnetic field.
With minor modifications, the present general analysis
applies to such systems, too. A detailed analysis of Boltz-
mann magnetotransport of relativistic quasiparticles in a
magnetic field was given in Ref. [15].
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RELATIVISTIC HYDRODYNAMICS
FROM BOLTZMANN APPROACH

If the Coulomb interactions are not too strong, α # 1,
a description of the system in terms of quasiparticles
is possible. In graphene, this is certainly the case if the
sample is adjacent to a dielectric with κ $ 1, but also
holds generally at low enough temperatures, since the
coupling α is marginally irrelevant and flows logarith-
mically to zero as T → 0, see [16, 17]. This allows us to
analyze transport within a quasiclassical Boltzmann ap-
proach, solving for the distribution function fk,λ (r,t) in
the presence of driving fields which vary slowly in space
and time.

The low energy excitations belong to two valleys
around two inequivalent Dirac pointsK,K′. Within each
valley the fermionic quasiparticles form two bands with
linear dispersion εk,λ = λvk, where λ = ±1 refers to the
band of electrons and holes of the undoped material, re-
spectively.

In equilibrium the distribution function is

f 0
k,λ =

1
exp[(εk,λ − µ)/T ]+ 1

. (1)

In the presence of an electrical field E(t), a temperature
gradient∇T , and a perpendicular magnetic field B=Bez,
the distribution function obeys the Boltzmann equation:
(

∂
∂ t

+ e
(

E+vk,λ ×
B
c

)

·
∂
∂k

+vk,λ ·
∂
∂r

)

fk,λ (r,t)

= −Icoll[λ ,r,k,t |{ f}]. (2)

Here Icoll[λ ,r,k,t |{ f}] denotes the collision integral
due to Coulomb interactions and impurity scattering, and
vk,λ ≡ vv̂k,λ =∇kεk,λ , denotes the quasiparticle velocity.
Assuming small deviations from equilibrium the above
can be rewritten as
(

∂t +
eB
c

(

vk,λ × ez
)

·
∂
∂k

)

fk,λ (r,t)+Icoll[{ f}] (3)

= T
[

v̂k,λ ·FEφE(k,λ )+ v̂k,λ ·FTφT (k,λ )
]

,

where the RHS describes the driving terms due to small
electric fields, and a slowly varying temperature, as char-
acterized by the dimensionless vectorsFE = veE/T 2 and
FT = −v∇T/T 2. Further, we have defined
(

φE(k,λ )
φT (k,λ )

)

= f 0
k,λ (1− f 0

k,λ ) ·

(

1
(εk,λ − µ)/T

)

. (4)

In linear response we can analyze each driving term
separately. For the corresponding driving force we will
simply write F below. In linear approximation we may
parameterize the deviations from local equilibrium as

fk,λ (r,t)− f 0
k,λ (T (r)) = f 0

k,λ (1− f 0
k,λ )× (5)

×F ·
[

v̂k,λg‖(λ , k̃)+ v̂k,λ × ezg⊥(λ , k̃)
]

,

where g‖,⊥ are dimensionless functions of λ and the
modulus of k̃ = vk/T only, while the dependence on
time is understood to be implicit. The electrical and
the heat current associated with such a deviation from
equilibrium are given by
(

J/e
Q/T

)

=
4
2
T 2

v

(

F
〈

g‖|φE
〉

+ ez×F
〈

g⊥|φE
〉

F
〈

g‖|φT
〉

+ ez×F
〈

g⊥|φT
〉

)

. (6)

where the factor 4 accounts for both the spin and valley
degeneracy, and the inner product

〈g1|g2〉 ≡∑
λ

∫ d2k̃
(2π)2 g1(k̃,λ )g2(k̃,λ ). (7)

has been defined.
The linearized Boltzmann equation can be cast in the

generic form
(

M −B

B M

)(

g‖
g⊥

)

=

(

φE,T

0

)

, (8)

where M = C +D − iΩ . (9)

The linear operators C and D are the two components of
the collision operator Icoll describing scattering due to
inelastic Coulomb collisions and impurities, respectively.
Explicit expressions have been given in Refs. [5, 15]. The
dynamical term Ω acts like

[Ωg](k,λ ) = ω f 0
k,λ (1− f 0

k,λ )g(k,λ ), (10)

and arises due to the time derivative in (3). Finally, B

describes the deflection due to the magnetic field, and
consequently, it is the only term which mixes g‖ and
g⊥. Typical eigenvalues of these operators correspond
to the inelastic and elastic scattering rates τ−1

ee , τ−1
imp, the

a.c. frequency ω , and the typical cyclotron frequency
of thermal particles τ−1

B ≡ ω typ
c ∼ v2eB/cT . One can

show [18, 19] that the linear operators defined above are
Hermitian with respect to the inner product (7).

Here we concentrate on the regime of high temper-
atures, low frequencies and weak fields such that τ−1

ee
dominates among the above rates.

In the absence of a magnetic field one easily finds from
the above the conductivity,J= σxxE or the thermopower,
Q= αxxE, with

σxx = 2
e2

h̄
〈

φE |M−1|φE
〉

, (11)

αxx = 2
ekB
h̄

〈

φE |M−1|φT
〉

. (12)

In the presence of a magnetic field this generalizes to
J= σxxE+σxy(E× ez), with

σxx = 2
e2

h̄
〈

φE |(M +BM
−1

B)−1|φE
〉

, (13)
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σxy = 2
e2

h̄
〈

φE |M−1
B(M +BM

−1
B)−1|φE

〉

. (14)

The above formalism is completely general and does
not use any particular properties of graphene. In the
sequel we will analyze a remarkable simplification which
arises in the hydrodynamic regime in d = 2. Further, we
will show how relativistic hydrodynamics emerges in the
case of a massless linear dispersion relation.

Divergent forward scattering in 2d

It has long been noticed that interactions in d ≤ 2 lead
to singular forward scattering between particles with a
linearized spectrum [20, 21]. The physical reason for a
diverging cross-section is that collinearly moving par-
ticles share the same velocity to the extent that non-
linear corrections to the dispersion can be neglected.
Thus the interaction time in forward scattering processes
diverges, leading to a singular amplitude. While in higher
dimensions this effect is irrelevant, being suppressed
by its small phase space volume, it emerges as a log-
arithmic singularity in d = 2. The singularity is usu-
ally cut off by non-linearities in the spectrum, which in
graphene are predominantly due to renormalization ef-
fects of Coulomb origin. In the case of RPA-screened
Coulomb interactions in graphene there is another cut-
off mechanism due to the vanishing of the full Coulomb
propagator in exactly collinear scattering processes. Both
mechanisms cut off the logarithmic divergence at small
scales and lead to an extra factor of log(1/α) in the
typical inelastic relaxation rates, i.e., 〈g|C |g〉/〈g|g〉 ∼
α2 log(1/α)T .

The strong forward scattering has an interesting phys-
ical consequence: It leads to an effective equilibration
among collinearly moving particles. In other words the
distribution function will tend to a Gibbs distribution
when it is restricted to quasiparticles with a particular
direction of motion, v̂k,λ = eφ , where eφ is a unit vec-
tor in the plane. However, the parameters of these one-
dimensional quasi-equilibria will in general depend on
the angle of motion with respect to the applied field. As
always, the equilibrium parameters (T,!u,µ) are conju-
gate to the conserved quantities, i.e., energy, momen-
tum and charge. However, for massless relativistic par-
ticles, there is a further pseudo-conservation law which
holds for weak interactions (α # 1). In this limit, we can
restrict ourselves to the Born approximation and eval-
uate the inelastic collision term with Fermi’s Golden
rule. Within this approximation, the phase space for
two-particle processes (1 + 2 → 3 + 4) in which the to-
tal chirality changes (λ1 + λ2 /= λ3 + λ4) vanishes ex-
actly [13, 5]. In other words, to leading order in α2,
the particle and hole number is separately conserved,

which leads to an extra pseudo-equilibrium parameter, φ .
We may call it a gravitational potential, since it couples
equally to electrons and holes with positive energy. 1

For a vectorial driving term (an electric field or a
thermal gradient) we thus expect

fk,λ ≈
1

exp
[

εk,λ−δu[v̂k,λ ]·k−(µ+δµ[v̂k,λ ])−λδφ [v̂k,λ ]

T+δT [v̂k,λ ]

]

+ 1

≈ f 0
k,λ +T−1 f 0

k,λ (1− f 0
k,λ ) (15)

× F · v̂k,λ

[

λkδu+ δµ+λδφ +(εk,λ − µ)
δT
T

]

,

where we have taken into account that δT,δµ ,δu,δφ
can depend on the driving force F only like δT [v̂] =
F · v̂δT , etc. 2

Note that in the case of a linear dispersion εk,λ =

λkv, the perturbation δT is redundant since it can be
expressed as a combination of two perturbations with
δu/v = −δµ/µ = δT/T . Below we will thus concen-
trate on the three soft modes 3

g0(λ , k̃) = λ k̃, (16)
g1(λ , k̃) = 1, (17)
g2(λ , k̃) = λ . (18)

To logarithmic accuracy we can restrict the deviations
from equilibrium to the above ansatz, since these modes
are the only ones with a relaxation rate of order α2T (or
smaller), while all other modes decay with a rate of order
O(α2 log(1/α)T ).

Notice that the response functions φE,T (4) are simply
linear combinations of g0 and g1, multiplied by f 0

k,λ (1−
f 0
k,λ ). The basis of soft modes is thus perfectly suited to

capture the essentials of thermo-electric response.
In a general two-dimensional Fermi liquid with arbi-

trary interactions, one may still linearize the spectrum
around EF . However, the non-linearity in the dispersion
of typical thermal excitations will be of order T/EF ,
which now cut off the divergence, leading to an extra

1 In this paper we only consider perturbations E and ∇T which do not
change the overall number of particles and holes, but only redistribute
them between different wavevectors. We thus do not have to worry
about the very long relaxation time τph ∼ τee/α2 which is needed to
equilibrate the relative number of particles and holes. The situation
is different, however, for scalar perturbations which do alter the total
chirality [14].
2 For a scalar driving force such as ∇ ·!u relevant in the case of bulk
viscosity, the prefactor F · v̂ in (16) is absent, while in the case of a
tensorial perturbation such as ∂ui/∂x j , relevant for shear viscosity, the
prefactor has to be chosen as ∑i j v̂iv̂ j∂ui/∂x j .
3 In the presence of a perpendicular magnetic field there are additional
term analogous to the above, but with v̂→ ez× v̂, and corresponding
coefficients δµ⊥,δφ⊥,δu⊥.
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factor log(EF/T ) as noticed in Ref. [20]. However, those
authors concluded incorrectly that this logarithm would
also show up in the transport relaxation time. Instead,
we see here that there are always the above soft modes
which decay with a slower rate without logarithmic en-
hancement, because they represent deviations preserving
unidirectional equilibrium which kill the logarithmic di-
vergence in the scattering rate.

Recovering relativistic Hydrodynamics

An entirely different approach to transport in the
collision-dominated regime is provided by hydrodynam-
ics. In the present case the relativistic nature of the fluid
has to be taken into account, and one should analyze the
equations of motion

∂β Jβ = 0, (19)

∂βT βα = FαγJγ + τ−1
impδβ0Tβα , (20)

where the stress energy tensor and the current of a rela-
tivistic fluid are given by

T µν = (ε+P)uµuν +Pgµν + τµν , (21)
Jµ = ρuµ +νµ , (22)

νµ = −σQ
[

T (gµλ +uµuλ )∂λ
(µ
T

)

−Fµλuλ
]

.(23)

Here uµ is the three-velocity of the energy density. We
have also included a phenomenological momentum re-
laxation rate due to impurities, τ−1

imp, which explicitly
breaks the Lorentz invariance of course. The correctness
of this procedure for weak disorder will be confirmed be-
low.

The Reynolds-tensor τµν describing viscous forces
can be neglected for the response in the long wavelength
limit. The contribution νµ to the electrical current cor-
rects for the presence of energy currents that do not carry
charge. The form (23) can be inferred by generalizing
arguments by Landau and Lifshitz [22] for B = 0, in-
voking covariance and the second law of thermodynam-
ics [11, 6], which requires that the divergence of the en-
tropy current be always positive. The argument leading
to (23) is valid at small fields B, where it is allowed to
linearize in B. However, it leaves undetermined the phe-
nomenological conductivity parameter σQ > 0.

The hydrodynamic approach allows us to obtain all the
low frequency thermoelectric response by linearizing the
equations of motions around equilibrium and reading off
the response functions following the recipes of Ref. [23].
Only thermodynamic data and the single coefficient σQ
enter into those expressions, which are discussed in de-
tail in Refs. [11, 6]. This remarkable property of relativis-
tic hydrodynamics, which strongly constrains the form

of the response, is fully confirmed by the Boltzmann ap-
proach, as we discuss now.

To establish the connection between hydrodynamics
and the microscopic analysis, it is central to notice that
the "momentum mode" g0 is an exact zero mode of the
collision operator C , C g0 = 0. This is so because g0 de-
scribes the equilibrium of a system which moves at speed
δu in the direction of the driving force. Since equilibrium
is preserved by the translation invariant Coulomb inter-
actions the perturbation g0 can only decay due to impu-
rity scattering, magnetic fields or the a.c. driving. In the
hydrodynamic regime the latter all live on much longer
time scales than the relaxation time of any other modes. It
turns out that in this regime it is essentially the dynamics
of the momentum mode which governs the magnetore-
sponse.

The Boltzmann formalism provides an explicit expres-
sion for the transport coefficient in the form

σQ = σxx−σmom, (24)

where, in the absence of impurities,

σmom =
2e2

h̄

〈

φE |g0
〉2

〈g0|Ω|g0〉
=
e2

h̄
1

−iω
ρ2v2

ε+P
(25)

is the conductivity contribution due to the momentum
mode. Here, ε is the energy density and P is the pressure
of the free electron gas. In general σmom diverges in the
d.c. limit ω → 0. However, at particle-hole symmetry
(µ = 0) the coupling to the momentum mode vanishes,
〈

φE |g0
〉

= 0, and σQ is seen to equal the d.c. conductivity
in the absence of impurities. The interesting fact that this
is in fact finite will be discussed below. To logarithmic
accuracy one finds the result [5]

σQ(µ = 0,ω = 0) =
2e2

h̄

〈

φE |g1
〉2

〈g1|C |g1〉
=

0.121
α2

e2

h̄
. (26)

For general µ /= 0 one can obtain a logarithmically accu-
rate approximation for σxx and σQ by observing that σxx
is the maximum of the functional

Q [g] =
2e2

h̄
[

2
〈

φE |g
〉

−〈g|C |g〉
]

, (27)

and extremizing it over the linear space spanned by the
three soft modes g0,g1,g2, Eqs. (16-18) discussed above.
In full generality, one finds that σQ is a scaling function
of µ/T which decays as a power law for µ $ T [15].

The response functions σxx, αxx and the thermal con-
ductivity κxx have all the same structure in the absence
of a magnetic field. There is a contribution from the
momentum mode, which generally diverges in the clean
d.c. limit, and in addition there is an extra piece propor-
tional to σQ which is contributed by the Coulomb relax-
ing modes. An explicit calculation [15] shows that the
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relative deviations between hydrodynamics and the mi-
croscopic Boltzmann calculation are of higher order in
O(ωτee,τee/τimp), which are indeed small in the hydro-
dynamic regime. The same statement holds also for the
case with magnetic field, where relative corrections are
suppressed by factors of O(τee/τB).

Impurity scattering

The momentum relaxation rate which was added in
the hydrodynamic formulation (20) in an ad hoc manner,
turns out to reproduce the leading disorder effects of
the Boltzmann theory provided that the relaxation rate
is taken to be the inverse of the elastic lifetime of the
momentum mode,

τ−1
imp =

〈g0|D |g0〉

〈g0|Ω/ω |g0〉
∝
e4

κ2
nimp

max[T, |µ |]
. (28)

The final estimate applies to charged, unscreened impu-
rities of density nimp. The lowest order corrections to the
clean hydrodynamic results are simply obtained by re-
placing ω → ω+ iτ−1

imp. In particular the contribution of
the momentum mode to the d.c. conductivity takes the
generalized Drude form

σmom =
e2

h̄
τimp

ρ2v2

ε+P
, (29)

where the band mass m is replaced by (ε+P)/(ρv2).

Crossover in the electrical conductivity

The above described approximation of restricting to
the soft modes lends itself naturally to the description of
an experimentally relevant situation [24]: the crossover
observed when the system is driven from the critical, rel-
ativistic regime (µ # T ) to the conventional Fermi liq-
uid regime (µ $ T ) by adjusting the doping level, see
Refs. [4, 15]. In the Fermi liquid regime we can make
connection with existing results [8, 9]. It is worth notic-
ing that the asymptotics for µ # T and µ $ T is al-
ready well described by only two modes, g0 and g1. In-
deed, the "chirality mode" g2 either contributes very little
to the current since it is hardly excited by the electrical
field at µ # T , or it is essentially identical to the "chem-
ical potential mode" g1 when µ $ T , where essentially
only one type of charge carriers with a definite sign of
λ is present. The crossover is thus expected to be rea-
sonably well captured by this two-mode approximation,
which was carried out in detail in Ref. [15]

For low doping, in the critical regime µ # T , the
inelastic scattering time behaves as

τ−1
ee = α2T (30)

reflecting the quantum criticality of the system [4, 5].
Upon doping, the Coulomb scattering rate decreases and
ultimately behaves as τ−1

ee ∝ α2 T 2

µ for µ $ T if screen-
ing is taken into account. This is the standard inelastic
scattering rate in a Fermi liquid. The relaxation due to
impurities behaves very differently as a function of T and
µ , as seen from Eq. (28). The increase of the scattering
rate with decreasing temperature reflects the increased
crosssection for Coulomb scattering at low energies. The
crossover from a collision-dominated, critical conductiv-
ity where σ ≈ σQ(µ = 0) ∼ e2/h̄α2 to an impurity lim-
ited conductivity which is dominated by the contribution
from the momentum mode (29) occurs when the density
of thermally excited carriers, ρth ∼ T 2/(h̄v)2, (holes and
electrons) equals the density of impurities, nimp.

Of course it is possible to go beyond the logarithmic
approximation based on two or three modes, if the log-
arithmic divergence is properly regularized. In particu-
lar, it was shown in Ref. [15] that in the weak disorder
limit one can absorb the effect of all modes other than
g0,g1 into one (or two in the case of strong magnetic
fields) effective frequency-dependent matrix element(s)
entering all the response functions. This is a more pre-
cise version of the hydrodynamic statement that at low
fields the whole response contains solely σQ as non-
thermodynamic parameter.

Criticality at the Dirac point

The fact that σxx is finite in a clean, undoped system
(µ = 0) is a peculiar feature which is also known from
neutral plasmas. It is possible because at particle-hole
symmetry, an electric field does not excite a momentum
flow, which would not decay under Coulomb collisions
and thus yield an infinite conductivity. Instead, the elec-
tron and hole currents decay within the finite relaxation
time τee due to their mutual friction. Since there is no di-
mensionless parameter in the problem except for α , the
universal collision-dominated scaling (26), σ ∼ e2/hα2,
can be predicted simply from dimensional considera-
tions [25].

It is also interesting to study other thermoelectric
response functions at the Dirac point and their crossover
to to Fermi liquid behavior at large doping. For ex-
ample one finds an anomalously large Mott ratio,
−αxx/(dσ/dµ), in the regime µ # T , as well as strong
modifications of the Wiedemann-Frantz law, given that
the thermal conductivity diverges in a clean system as
µ → 0. In both cases the deviation from Fermi liquid
behavior at low doping, is diminishing at T ∼ µ , re-
covering the usual Fermi liquid characteristics at high
doping levels.

Equally unusual behavior of clean undoped graphene
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can be expected with respect to the shear viscosity, a
quantity which is of great interest recently in the con-
text of another relativistic fluid: the quark gluon plasma
where the shear viscosity is found to be anomalously
small, approaching a lower bound conjectured from
a general holographic correspondence with black hole
problems and their area law. The large critical scaling
of τ−1

ee ∼ T in graphene also suggests an exceptionally
small value of the shear viscosity at the Dirac point (since
η ∼ τee, as opposed to the Fermi liquid regime µ $ T .
This is indeed confirmed by explicit calculations. [14]

Magnetotransport and cyclotron resonance

An interesting prediction of relativistic hydrodynam-
ics is the appearance of a collective cyclotron reso-
nance [6], whose existence is confirmed by the Boltz-
mann approach. As we have mentioned before, the dy-
namics of the momentum mode dominates most of the
thermo-electric response, since it has the longest life
time. In the presence of magnetic fields, impurities and
a finite a.c. frequency, g0 is not a zero mode of (8) any
more, but there is still a unique pair of modes correspond-
ing to the smallest eigenvalue of that operator (the orig-
inal pair of zero modes g‖ = g⊥ = g0 is split into two
modes).

Within first order perturbation theory, projecting the
operators in Eq. (8) to the momentum mode, one expects
a resonance in the clean material at

ωc = ±
〈g0|B|g0〉

〈g0|(Ω/ω)|g0〉
= ±

eBρv2

c(ε+P)
. (31)

Notice the similarity to the expression ωc = eB/cm for
a standard cyclotron resonance. Again the band mass is
replaced by m→ (ε+P)/ρv2, and ωc is proportional to
the density, which reflects the collective nature of this
hydrodynamic mode.

Including weak impurities to first order perturbation
theory, and the coupling of the momentum mode to the
faster relaxing modes in second order in B, one finds
an imaginary part to the low eigenvalue. The frequency
pair for which the operator on the left hand side of (8) is
singular, becomes

ωpole ≈±ωc− i(γ+ τ−1
imp), (32)

where the collision induced damping is given by

γ =
σQB2v2

c2(ε+P)
. (33)

The pole ωpole shows up in all frequency-dependent re-
sponse functions as a resonance ∼ (ω −ωpole)−1. The
fact that γ has such a simple expression in terms of the

coefficient σQ defined above in (24), is a special fea-
ture of the massless Dirac spectrum which ensures that
Bg0 ∝ φE . At µ = 0 the above relation (33) is indeed
easy to check in second order perturbation theory, using
that σQ = σ is given by (11). A general proof of (33)
was given in Ref. [15]. It is also shown there that the
property Bg0 ∝ φE is ultimately responsible for the fact
that the relativistic hydrodynamics emerges in the micro-
scopic theory.

The interaction induced broadening γ is already pre-
dicted by hydrodynamics [6], and is exactly reproduced
by the Boltzmann formalism. However, the latter allows
one also to go beyond small magnetic fields, an assump-
tion that had to be made when deriving the relation
(23). While there is still a collective cyclotron resonance
due to the damped dynamics of the original momentum
mode, the pole must be found from the solution of

Det
(

M (ωpole) −B

B M (ωpole)

)

= 0. (34)

In perturbation theory one can establish that ℜ[ωpole] ex-
ceeds the lowest order result (32), while (33) overesti-
mates the damping ℑ[ωpole]. A numerical solution of the
above secular equation shows that at high fields, where
τ−1
B ∼ τ−1

ee this trend persists. [15]
Interestingly, this behavior is qualitatively similar as

in nearly critical, relativistic conformal field gauge the-
ories which are exactly solvable thanks to the AdS-CFT
correspondence. [26]

Clearly, the magnetic fields need to be such that the
Landau level spacing ELL = h̄v

√

2eB/h̄c is still small
compared to the temperature. Otherwise, interference ef-
fects and the Quantum Hall effect start to set in, which
cannot be described on the level of a semiclassical Boltz-
mann theory. However, at small α , this still leaves a large
window α2T < τ−1

B < T for the Boltzmann theory to ap-
ply in a regime where the fields have to be considered
large and the straightforward hydrodynamic description
with the constitutive relation (23) breaks down.

In conclusion, we have discussed the transport prop-
erties of a weakly coupled fluid of massless Dirac par-
ticles. The critical regime of low doping and high tem-
peratures is predicted to exhibit several unusual char-
acteristics, such as a universal collision-dominated con-
ductivity, an anomalously low viscosity and a collective,
interaction-damped cyclotron mode. We hope that these
effects will soon be within experimental reach in very
clean, suspended graphene as studied in Refs. [27, 28].

The fact that in two dimensions forward scattering is
anomalously strong allows one to solve the Boltzmann
equation in a simple, physically transparent way which is
asymptotically exact for weakly coupled graphene, and is
well adapted to describe the crossover to the Fermi liquid
regime.
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