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Non-magnetic impurities as probes of insulating and doped
Mott insulators in two dimensions

Subir Sachdev and Matthias Vojta

Abstract. We characterize paramagnetic Mott insulators by their response
to static, non-magnetic impurities. States with spinon deconfinement (or spin-

charge separation) are distinguished from those with spinon confinement by

distinct impurity susceptibilities and finite-size spectra. We discuss the evolu-
tion of physical properties upon doping to a d-wave superconductor, and argue

that a number of recent experiments favor spinon confinement in the reference
Mott insulating state.

1. Introduction

Soon after the discovery of high temperature superconductivity, Anderson [1]
made the prescient suggestion that the phenomenon is related to the physics of a
doped Mott insulator. The parent insulating compound, La2CuO4, is well described
at low energies by the excitations of a model of single orbitals on the vertices of the
square lattice at a density of one electron per site. The ground state of this model
is an insulator, and is known to have antiferromagnetic long-range order. Never-
theless, Anderson argued that the appropriate reference state was a paramagnetic
Mott insulator without antiferromagnetic long-range order, often loosely referred to
as a “spin liquid”. In the intervening years, much effort has been expended towards
finding such spin liquid states, and a number of definite candidates have emerged.
There are important qualitative distinctions between these candidates, and we are
especially interested in distinguishing states which cannot be deformed adiabati-
cally into each other, and must be separated by a quantum phase transition. In
particular, a key propery is whether the state allows deconfined S = 1/2 spinon
excitations or not. If it does, then these neutral, S = 1/2 excitations imply that
“spin-charge separation” has occurred.

In this paper, we argue that the response of the ground state to non-magnetic
impurities is a sensitive probe of spinon confinement, and so is a central distinguish-
ing characteristic of the various paramagnetic Mott insulators. Experimentally,
such non-magnetic impurities can be easily created by substituting Zn or Li on the
Cu sites, and a large number of such experiments have been carried out on both the
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insulating and superconducting compounds. We will describe the results of some
of these experiments here, and argue that they offer evidence that the appropriate
reference Mott insulating state to the high temperature superconductors is one in
which the spinons are confined; our point of view is therefore contrary to [2]. We
will also mention theoretical work [3, 4] which argues that such confined states
break translational symmetry by the appearance of spin-Peierls order (which can
also be viewed as a “bond-centered stripe”).

The spin excitations of a Mott insulator are usually well described by the
Heisenberg Hamiltonian

H =
∑
i<j

JijSi · Sj + . . .(1.1)

where Si are SU(2) operators with spin S = 1/2 on the sites, i, of some lattice,
and the ellipsis represent possible additional multiple spin exchange terms. We
will describe cases in which H has a paramagnetic ground state with confined
spinons in Section 2 and also discuss their response to non-magnetic impurities. The
corresponding discussion for models with deconfined spinons is in Section 3. Finally
Section 4 uses the insights gained to review recent experimental and theoretical work
on non-magnetic impurities in d-wave superconductors.

2. Confined spinons

Consider the spin-ladder realization of H, as defined in Fig 1c. For the case
where the thick lines have Jij much larger than all other exchanges, the state in
Fig 1c is a good approximation to the ground state. As the values of Jij on the
three sets of links become equal to each other, there is increasing resonance in the
ground state between other singlet pairings between the sites, until at a critical
point there is an onset of magnetic long-range order. However, the nature of the
paramagnetic state remains essentially unchanged all the way up to the critical
point. In particular, the lowest-lying excitation is a S = 1 particle which is shown
schematically in Fig 1d: the columnar pairing of the spin singlets in the environment
ensures that the two spin-1/2’s at the ends of the broken bond cannot move apart
from each other, i.e., the spinons are confined. If we represent the dispersion of the
stable S = 1 particle by

εk = ∆ +
c2xk

2
x

2∆
+
c2yk

2
y

2∆
(2.1)

(k = (kx, ky) is the momentum, ∆ is the gap to spin excitations, and cx,y are
velocities), then the response to an external magnetic field is determined entirely
by the thermally excited density of such particles. A simple calculation then shows
that the susceptiblity, χu, of a sample of area A is given by [4]

χu =
A∆
πcxcy

e−∆/T ,(2.2)

where T is the absolute temperature, ~ = kB = 1, and we have absorbed factors of
the electron magnetic moment into the definition of the suscpetibility.

It is important to keep in mind that the above picture of the confined para-
magnet holds not only for anisotropic spin ladders just mentioned, but also for
isotropic models in which the Hamiltonian has the full four-fold rotational symme-
try of the square lattice about every site [3, 5]. In this case, the model with only
nearest neighbor interactions is known to have magnetic long-range order, and so
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Figure 1. (a) Definition of an ellipse as the representation of a sin-
glet bond between a pair of sites. (b) Two different singlet pairings
(“dimer packings”) of pairs of spins around a plaquette. The res-
onance between these will be largest when the exchange constants
represented by the think and think straight lines are equal. (c)
Spin ladder realization of H. The thick, thin, and dashed straight
lines represent Jij > 0 couplings of differing values. A snapshot of
the ground state is shown for the case where the thick lines have
the largest Jij . (d) S = 1 particle excitation of (2.1) represented
by the absence of a singlet bond between a pair of spins; the two
free spins propagate throughout the lattice but remain confined
to each other. (e,f) Two candidate ground state configurations in
the presence of two non-magnetic impurities (represented by the
X’s). For a confining paramagnet, the configuration in (f), with
two free moments near the impurities, is always preferred once the
impurities are sufficiently far apart.

frustrating second neighbor interactions are necessary to access the paramagnetic
state. It has been argued that this state spontaneously breaks the square lattice
rotational symmetry so that the pattern of singlet bonds in one of the four equiva-
lent ground states has the same symmetry as the configuration in Fig 1c [6]. This
broken symmetry can be understood in the framework of a “quantum dimer” model
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[7] of resonating nearest-neighbor singlet bonds: among all the dimer packings, the
columnar pattern of dimers has the maximum number of states which can resonate
with it by flipping a pair of singlet bonds as shown in Fig 1b. More technically,
the quantum dimer model is dual to a compact U(1) gauge theory [3, 8, 9], and
the confining property of this theory implies that translational symmetry is broken.
The non-zero spin excitations of such a paramagnet continue to be described by
the S = 1 particle in (2.1).

Let us now add a non-magnetic impurity. Actually, it is convenient to always
deal with systems with an even number of spins, and so we will add two impurities
and eventually move them infinitely far apart from each other. These two impuri-
ties are represented by the two X’s in Figs 1e,f. If we now attempt to construct the
ground state of the system with impurities, two distinct possibilities exist. First, we
can remain within the subspace of short-range singlet bonds (i.e., the Hilbert space
of the quantum dimer model), and this is indicated in Fig 1e. The key property
of such a state is that there is a string of ‘defect’ bonds connecting the two impu-
rities which is out of registry with the global columnar order; so as the impurities
move apart from each other, there is an energy cost which grows linearly with the
separation between the impurities. This linear energy cost can also be understood
within the compact U(1) gauge theory representation of the dimer model, in which
the impurities at X appear as static electric charges which are linearly confined by
the gauge force. So ultimately, it will always pay for the system to break a sin-
glet bond, and produce two nearly free moments (‘spinons’) confined around each
impurity [10, 3, 11, 12, 13, 14], as shown in Fig 1f. There is a weak effective
interaction, Jeff , between these moments which is mediated by virtual excitations
of the intervening singlet bonds, and is therefore exponentially small in the sepa-
ration, R, between the impurities. We expect |Jeff | ∼ ∆e−R∆/c where c is of order
the geometric mean of cx, cy. The sign of Jeff will be (anti-) ferromagnetic if the
impurities are on the same sublattice (opposite sublattices).

The presence of these two weakly interacting moments has strong and dis-
tinctive signals in the spectrum and thermodynamics of the model. Upon exact
diagonalization of a finite-size system of two impurities, one should find a very
low-lying S = 1 state, well below the bulk spin gap, which approaches the ground
state exponentially fast as the separation between the impurities is increased. For
Jeff < 0, the S = 1 state will eventually become the global ground state. In the
presence of a uniform external magnetic field, the free moments contribute a large
susceptibility which is easily detectable experimentally; in addition to the bulk
contribution in (2.2), we have the impurity contribution

χimp =
2
T

e−Jeff/T

1 + 3e−Jeff/T
.(2.3)

This has a Curie divergence of two free moments, ∼ 1/2T , for T > |Jeff| which
excludes only an exponentially small low T regime as |Jeff| is so small.

3. Deconfined spinons

We now look for paramagnetic Mott insulators in which non-magnetic impuri-
ties do not bind local moments in their vicinity. Clearly, the key effect responsible
for confinement in Section 2 was the rigidity of the wavefunction in the space of
different singlet bond pairings, produced by the energy gained in the resonance of
Fig 1b. We can anticipate that stronger fluctuations will appear in this singlet
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Figure 2. Snapshot of the wavefunction on the triangular lattice
in the presence of two impurities. The two impurities are not
connect by a line of “defect” bonds and are free to move infinitely
apart from each other.

pairing space by allowing frustrating exchange interactions in H, e.g., diagonal or
second-neighbor bonds on the square lattice will permit resonance around a much
bigger class of loops, some of which overlap with each other. More technically,
we need the quantum dimer model to be dual to a deconfined gauge theory: the
electric charges induced by the non-magnetic impurities will then not be confined
to each other, and it will be possible to move the impurities apart with negligible
energy cost once they are well separated. In such a situation, even in the presence
of the impurities, the ground state will remain within the subspace of short-range
singlet bonds, and no nearly-free spinons will be generated. A schematic of such a
state with impurities is indicated in Fig 2 for the triangular lattice.

Such paramagnetic Mott insulating states with strong fluctuations in the space
of singlet pairings were discussed by a number of investigators under the general
umbrella of “resonating valence bond” (RVB) states [15, 1, 16, 7, 17]. However,
a clear distinction between deconfined RVB wavefunctions and the confined states
in Section 2 was not made. A specific condition for deconfinement was spelt out in
Refs. [18, 19, 20]: one needed condensation of a charge ±2 Higgs field, realized by
a dimer on a link with a frustrating interaction, to move the compact U(1) gauge
theory into a deconfined phase (the quantum transition between the confined and
deconfined states is described by a Z2 gauge theory [21, 22, 9]). Examples of such
deconfined phases where presented in large N computations on frustrated antifer-
romagnets on the square [18, 19], triangular, and kagome lattices [23]. Theses
phases also have stable, spin-singlet, Z2 vortex excitations [18, 4] (christened ‘vi-
sons’ in recent work [22]), and it is possible that the non-magnetic impurities bind
visons in their vicinity[17]; even so, the impurities will be able to move apart as
there is no long-range force between two visons. Formation of local moments near
the impurities will require the breaking of singlet bonds, and this is suppressed by
the presence of the spin gap. Of course, even in the absence of confinement, we
cannot completely rule out the possibility that there is an impurity-spinon bound
state lower in energy than an isolated impurity and a impurity-vison bound state,
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but we consider it unlikely in a situation where short-range RVB states are strongly
preferred.

Recently, a couple of plausible candidates for deconfined states have emerged
in numerical studies of specific models on the triangular lattice: Misguich, Lhuillier
and collaborators [24] examined an extention of H with ring-exchange interactions,
while Moessner and Sondhi [25] argued for a deconfined phase for the quantum
dimer model.

We close this section by contrasting the spectral and thermodynamic properties
of confined states (discussed in Section 2) with the corresponding properties of
deconfined states. All specific models for deconfined states discussed so far have
been found to have a pair of S = 1/2 spinon excitations [18, 4]; the two spinons
have minima for their dispersion at different points in the Brillouin zone, and the
dispersion is described by (2.1) in its vicinity. As in (2.2) we can then compute the
susceptibility to a uniform magnetic field

χu =
A∆

2πcxcy
e−∆/T ,(3.1)

which differs from (3.1) by a factor of 1/2 (also ∆ is now the gap to S = 1/2, rather
than S = 1 excitations). A more striking difference appears when we consider the
response to two non-magnetic impurities: no local moments form, and so there is
no low-lying S = 1 state exponentially close to the ground state. Consequently the
change in the susceptibility is not large: it is expected to be of order (3.1) with A
replaced by the area of two unit cells. The absence of low-lying S = 1 states should
also serve as a sensitive diagnostic of deconfinement in numerical studies: it should
be interesting to extend the numerical results in [24] in this direction.

4. d-wave superconductors

The Bogoliubov quasiparticles of a superconductor have essentially the same
quantum numbers as deconfined spinons [26], and so there is no fundamental reason
why a non-magnetic impurity in a good d-wave superconductor must necessarily
bind a S = 1/2 moment in its vicinity. However, when one considers incrementally
doping a paramagnetic Mott insulator, two distinct possibilities arise.
(A) For the deconfined states of Section 3, both the weak and strong doping limits do
not bind moments near the impurity: consequently, we expect a smooth evolution
of physical properties with doping, with only a weak magnetic response associated
with the impurity.
(B) A quite different picture emerges upon doping the confined states of Section 2.
The undoped limit has a S = 1/2 near each impurity, while the strongly doped limit
does not: we expect that the free T = 0 moment will survive in the superconducting
state for a finite range of doping (i.e., an isolated moment will exhibit a divergent
Curie susceptibility ∼ 1/4T even in the superconducting state), and a quantum
critical point separates the weak and strong doping limits. On the strong doping
side of this quantum critical point, the moment is Kondo screened as T → 0, and
such a regime is continuously connected to a regime, at higher doping, where the
moment does not even form at intermediate T . This quantum phase transition is
described by a Kondo-like Hamiltonian of a S = 1/2 moment exchange-coupled to
the gapless Bogoliubov quasiparticles. This model has been much studied [27, 28,
29] in recent years, and it is well established that such a transition does exist in
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models without particle-hole symmetry; however, no fundamental understanding of
the nature of the critical properties of the transition has yet been achieved.

We wish to argue here that a number of recent experiments on the high tem-
perature superconductors suggest that possibility (B) is the correct one, i.e., the
appropriate reference Mott insulating state in the one with spinon confinement,
and that non-magnetic impurities in the under-doped superconductor always bind
a S = 1/2 moment at T = 0. The most direct evidence comes from recent NMR
measurements of Alloul and collaborators [30] who have measured a Curie-like sus-
ceptibility of Li moments in the superconducting state of underdoped YBCO; a
number of earlier experiments [10, 31] have also seen moments above the super-
conducting critical temperature in the normal state. Indirect, but strong, evidence
comes from our studies of the influence of the non-magnetic impurities on other
excitations of the superconductor:
(i) the resonant S = 1 spin collective mode broadens dramatically upon doping
with a very small concentration of Zn impurities [32], and we have argued [33] that
this is naturally explained by the unpaired moments near the impurity. Indeed,
the very existence of the spin resonance mode is evidence for confinement in the
reference insulating state, as the resonance may be viewed [34] as the continuation
of the S = 1 particle discussed in Section 2 and Fig 1d.
(ii) STM experiments measuring the quasiparticle tunneling current near Zn impu-
rities in BSCCO have an unusual dependence on bias voltage and spatial location
[35], and this is reproduced [28] in the Kondo-like models mentioned above.

Finally, we mention the issue of translational symmetry breaking. We have
argued that the translational symmetry breaking must be present in the confined
insulator, and it is natural to expect that this will survive in at least the lightly-
doped superconducting state[18, 19, 36], and a state with co-existing stripe and
superconducting order was discussed early on in [19]. Indeed, it is tempting to
relate the stripes in Fig 1c to the stripes experimentally observed in the super-
conductor [36, 9]. However, at least at very low doping, it seems clear that the
magnetic long-range order present in the actual undoped insulator plays an im-
portant role in the microstructure of the stripes. But at somewhat larger doping,
once the magnetic order disappears, we think it is plausible that the local stripe
correlations are bond-centered and look similar to those in Fig 1c. Indeed, a re-
cent photoemission experiment [37] has suggested bond-centering of stripes in this
regime.

We reiterate that while local moment formation near non-magnetic impurities
is intimately linked with confinement and translational symmetry breaking in the
insulating, charge-incompressible state, this is no longer expected to be the case in
the superconductor. The latter is compressible and local moments may be present
even in a phase without translational symmetry breaking. The main argument for
moment formation in the superconductor is based on continuity from the undoped
insulator; the quantum critical point at which the moment is quenched with in-
creasing doping can be distinct from the critical point at which bulk translational
and rotational symmetries are restored (and also from the point where the ground
state becomes a normal metal at large overdoping).
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