Quantum critical transport and black holes

See the News and Views article by J. Zaanen in Nature 448, 1000 (2007) and an interview by FQXi

  1. Quantum critical transport, duality, and M-theory, C. P. Herzog, P. Kovtun. S. Sachdev, and D. T. Son, Physical Review D 75, 085020 (2007); hep-th/0701036.
  2. Theory of the Nernst effect near quantum phase transitions in condensed matter, and in dyonic black holes, S. A. Hartnoll, P. K. Kovtun, M. Müller, and S. Sachdev, Physical Review B 76, 144502 (2007); arXiv:0706.3215
  3. Quantum magnetism and criticality, S. Sachdev, Nature Physics 4, 173 (2008); arXiv:0711.3015.
  4. Quantum phase transitions beyond the Landau-Ginzburg paradigm and supersymmetry, S. Sachdev and X. Yin, Annals of Physics 325, 2 (2010); arXiv:0808.0191.
  5. Quantum criticality and black holes, S. Sachdev and M. Müller, Journal of Physics: Condensed Matter 21, 164216 (2009); arXiv:0810.3005.
  6. Quantum oscillations and black hole ringing, F. Denef, S. A. Hartnoll, and S. Sachdev, Physical Review D 80, 126016 (2009); arXiv:0908.1788.
  7. Black hole determinants and quasinormal modes, F. Denef, S. A. Hartnoll, and S. Sachdev, Classical and Quantum Gravity 27, 125001 (2010); arXiv:0908.2657.
  8. Holographic metals and the fractionalized Fermi liquid, S. Sachdev, Physical Review Letters 105, 151602 (2010); arXiv:1006.3794.
  9. Holographic quantum critical transport without self-duality R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011); arXiv:1010.0443.
  10. Strange metals and the AdS/CFT correspondence, S. Sachdev, Journal of Statistical Mechanics (2010) P11022, Plenary talk at Statphys 24, Cairns, Australia, July 2010; arXiv:1010.0682.
  11. The landscape of the Hubbard model, S. Sachdev, TASI (Boulder, June 2010) and Chandrasekhar (Bangalore, December 2010) lectures; arXiv:1012.0299. (Subject ads)
  12. Fermi surfaces and gauge-gravity duality L. Huijse and S. Sachdev, Physical Review D 84, 026001 (2011); arXiv:1104.5022.
  13. A model of a Fermi liquid using gauge-gravity duality, S. Sachdev, Physical Review D 84, 066009 (2011); arXiv:1107.5321.
  14. What can gauge-gravity duality teach us about condensed matter physics?, S. Sachdev, Annual Review of Condensed Matter Physics 3, 9 (2012); arXiv:1108.1197.
  15. Strange and Stringy, S. Sachdev, Scientific American 308, 44 (January 2013).
  16. Renyi entropies for free field theories, I. R. Klebanov, S. S. Pufu, S. Sachdev, and B. R. Safdi, Journal of High Energy Physics 1204 (2012) 074; arXiv:1111.6290
  17. Hidden Fermi surfaces in compressible states of gauge-gravity duality L. Huijse, S. Sachdev, and B. Swingle, Physical Review B 85, 035121 (2012); arXiv:1112.0573. (Subject ads)
  18. Entanglement Entropy of 3-d Conformal Gauge Theories with Many Flavors, I. R. Klebanov, S. S. Pufu, S. Sachdev, and B. R. Safdi, Journal of High Energy Physics 1205 (2012) 036; arXiv:1112.5342
  19. The quantum phases of matter, S. Sachdev, Rapporteur presentation at the 25th Solvay Conference on Physics, "The Theory of the Quantum World", Brussels, Oct 19-22, 2011, arXiv:1203.4565
  20. Strange Metals in One Spatial Dimension, R. Gopakumar, A. Hashimoto, I. R. Klebanov, S. Sachdev, and K. Schoutens, Physical Review D 86, 066003 (2012) arXiv:1206.4719
  21. Compressible quantum phases from conformal field theories in 2+1 dimensions, S. Sachdev, Physical Review D 86, 126003 (2012); arXiv:1209.1637
  22. The quasi-normal modes of quantum criticality, W. Witczak-Krempa and S. Sachdev, Physical Review B 86, 235115 (2012); arXiv:1210.4166
  23. Multipoint correlators of conformal field theories: implications for quantum critical transport, D. Chowdhury, S. Raju, S. Sachdev, A. Singh, and P. Strack, Physical Review B 87, 085138 (2013); arXiv:1210.5247
  24. Dispersing quasinormal modes in 2+1 dimensional conformal field theories , W. Witczak-Krempa and S. Sachdev, Physical Review B 87, 155149 (2013); arXiv:1302.0847
  25. Monopoles in (2+1)-dimensional conformal field theories with global U(1) symmetry, S. S. Pufu and S. Sachdev, Journal of High Energy Physics 1309 (2013) 127; arXiv:1303.3006 (Subject ads)
  26. Vortex Lattices and Crystalline Geometries, N. Bao, S. Harrison, S. Kachru and S. Sachdev, Physical Review D 88, 026002 (2013); arXiv:1303.4390
  27. Conformal field theories in a periodic potential: results from holography and field theory, P. Chesler, A. Lucas, and S. Sachdev, Physical Review D 89, 026005 (2014); arXiv:1308.0329
  28. Entanglement entropy of compressible holographic matter: loop corrections from bulk fermions, B. Swingle, L. Huijse, and S. Sachdev, Physical Review B 90, 045107 (2014); arXiv:1308.3234
  29. The dynamics of quantum criticality revealed by quantum Monte Carlo and holography, W. Witczak-Krempa, E. Sorensen, and S. Sachdev, Nature Physics 10, 361 (2014) arXiv:1309.2941.
  30. Scale-invariant hyperscaling-violating holographic theories and the resistivity of strange metals with random-field disorder, A. Lucas, S. Sachdev, and K. Schalm, Physical Review D 89, 066018 (2014); arXiv:1401.7993.
  31. Conformal field theories at non-zero temperature: operator product expansions, Monte Carlo, and holography, E. Katz, S. Sachdev, E. Sorensen, and W. Witczak-Krempa, Physical Review B 90, 245109 (2014); arXiv:1409.3841.
  32. Conductivity of weakly disordered strange metals: from conformal to hyperscaling-violating regimes, A. Lucas and S. Sachdev, Nuclear Physics B 892, 239 (2015); arXiv:1411.3331
  33. Memory matrix theory of magnetotransport in strange metals, A. Lucas and S. Sachdev, Physical Review B 91, 195122 (2015); arXiv:1502.04704.
  34. Bekenstein-Hawking Entropy and Strange Metals, S. Sachdev, Physical Review X 5, 041025 (2015); arXiv:1506.05111.
  35. Absence of disorder-driven metal-insulator transitions in simple holographic models, S. Grozdanov, A. Lucas, S. Sachdev, and K. Schalm, Physical Review Letters 115, 221601 (2015); arXiv:1507.00003.
  36. Transport in inhomogeneous quantum critical fluids and in the Dirac fluid in graphene, A. Lucas, J. Crossno, Kin Chung Fong, Philip Kim, and S. Sachdev, Physical Review B 93, 075426 (2016); arXiv:1510.01738.
  37. Numerical study of fermion and boson models with infinite-range random interactions, Wenbo Fu and S. Sachdev, Physical Review B 94, 035135 (2016); arXiv:1603.05246.