Motivation

Who is the driver of the nematicity: magnetism or orbital fluctuations?

Parquet RG equations and the flow

At the bare level

\[U_1 = U_2 = U_3 = U_4 = U_5 = U \]
\[U_1 = U_2 = U_3 = U_4 = U_5 = U \]

But running couplings under RG cannot be absorbed into running \(U, U', J, J' \), i.e., non-local interactions emerge

Parquet RG equations (\(u_i = U_i A_i/(4 \pi) \), \(A_i \) are combinations of masses)

\[\delta_i = \delta_i^0 + \frac{i}{C} \delta_i^0 \]

Only one stable solution: \(\delta_4,5 \rightarrow 0 \), \(u_4 \rightarrow u_4^0 \)

Fixed trajectory

\[\text{Fixed trajectory:} \]
\[u_2 = u_2^0 = \gamma_2 \hat{u}_1, \quad u_3 = u_3^0 = \gamma_3 \hat{u}_1, \quad u_4 = u_4^0 = \gamma_4 \hat{u}_1, \quad u_5 = u_5^0 = \gamma_5 \hat{u}_1 \]

\[\gamma_1 = \frac{1}{(L \alpha - L) \sqrt{L \alpha - L}}, \quad \gamma_2 = \frac{1}{(L \alpha - L) \sqrt{L \alpha - L}}, \quad \gamma_3 = \frac{1}{(L \alpha - L) \sqrt{L \alpha - L}}, \quad \gamma_4 = \frac{1}{(L \alpha - L) \sqrt{L \alpha - L}}, \quad \gamma_5 = \frac{1}{(L \alpha - L) \sqrt{L \alpha - L}} \]

The exponent \(\alpha_{SC} < 1 \)

Parquet RG for the model w. orbital content

Fixed trajectory

The role of the Fermi energy

Pomeranchuk channel wins if the largest of Fermi energies, \(E_p \), is small enough such that the instability develops at \(T > T_s \). This is the case of FeSe, where \(E_F < 10 \text{ meV} \) and \(T_s \approx 80 \text{K} \). In this system, nematicity well may be a spontaneous orbital order if \(E_F \) is larger and no instability develops down to \(T_s \approx 10 \text{ meV} \). Then either SC or SDW becomes the first instability.

If \(E_F \) is larger and no instability develops down to \(T_s \approx 80 \text{K} \), then either SC or SDW becomes the first instability.

In such systems (most of Fe-pnictides), nematicity likely is a vestigial magnetic order.

While earlier RG studies concluded...

The largest exponent of divergent susceptibility is in the Pomeranchuk channel, \(s^+ \) SC channel is second, no SDW

\[\text{The exponent } \alpha_{SC} < 1 \]

We argue: one has to solve another set of RG eqs. for \(\Gamma_{\alpha} \), obtain susceptibilities, check divergences, and compare the exponents

Pomeranchuk channel wins if the largest of Fermi energies, \(E_p \), is small enough such that the instability develops at \(T > T_s \).

The exponent \(\alpha_{SC} < 1 \)

Second level RG: vertices and susceptibilities

If we just compare \(\Gamma_{\alpha} \), assume \(\Gamma_i = \Gamma_1, (1 + u' \nu^2 + \ldots) \), i.e., SC, Pomeranchuk...

SDW and SC channels: \(\chi_{SDW}(L) \propto \int dU_\alpha \chi^0_{SDW}(U_\alpha), \quad \chi_{SC}^0 \propto \int dU_\alpha \chi^0_{SC}(U_\alpha) \)

and the exponents

\[\alpha_{SDW} = 2 + \frac{\gamma_2(1 + \gamma_3 C)}{1 + \gamma_2 C^2}, \quad \alpha_{SC} = 2 + \frac{\gamma_2(1 + \gamma_3 C)}{1 + \gamma_2 C^2} \]

Fixed trajectory: \(u_2 = u_2^0 = \gamma_2 \hat{u}_1, u_3 = u_3^0 = \gamma_3 \hat{u}_1, u_4 = u_4^0 = \gamma_4 \hat{u}_1, u_5 = u_5^0 = \gamma_5 \hat{u}_1 \)

Message: the couplings which were initially \(U \) and the ones which were initially \(U' \) or \(J,J' \), tend to the same value under parquet RG

The largest exponent of divergent susceptibility is in the Pomeranchuk channel, \(s^+ \) SC channel is second, no SDW

The exponent \(\alpha_{SC} < 1 \)

\[\chi_{SDW}(L) \propto \int dU_\alpha \chi^0_{SDW}(U_\alpha), \quad \chi_{SC}^0 \propto \int dU_\alpha \chi^0_{SC}(U_\alpha) \]

SDW and SC channels: \(\chi_{SDW}(L) \propto \int dU_\alpha \chi^0_{SDW}(U_\alpha), \quad \chi_{SC}^0 \propto \int dU_\alpha \chi^0_{SC}(U_\alpha) \)

The exponents

\[\alpha_{SDW} = 2 + \frac{\gamma_2(1 + \gamma_3 C)}{1 + \gamma_2 C^2}, \quad \alpha_{SC} = 2 + \frac{\gamma_2(1 + \gamma_3 C)}{1 + \gamma_2 C^2} \]

Only one \(\chi \) diverges

For realistic \(C \), only SC develops, no SDW

The exponent \(\alpha_{SC} < 1 \)

Pomeranchuk channel wins if the largest of Fermi energies, \(E_p \), is small enough such that the instability develops at \(T > T_s \). This is the case of FeSe, where \(E_F < 10 \text{ meV} \) and \(T_s \approx 80 \text{K} \). In this system, nematicity well may be a spontaneous orbital order if \(E_F \) is larger and no instability develops down to \(T_s \approx 10 \text{ meV} \). Then either SC or SDW becomes the first instability.

In such systems (most of Fe-pnictides), nematicity likely is a vestigial magnetic order.